首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
The metabolism of arachidonic and linoleic acids by VX2 carcinoma tissue was determined. Prostaglandin E2 was the major metabolic product of arachidonic acid in the neoplastic tissue. Minor products accounting for 3– 8% of arachidonic acid metabolism were 11-hydroxy-5, 8, 12, 14-eicosatetraenoic acid (11-HETE) and 15-hydroxy-5, 8, 11, 13-eicosatetraenoic acid (15-HETE). Linoleic acid was converted to a mixture of 9-hydroxy-10, 12-octadecadienoic acid (9-HODD) and 13-hydroxy-9, 11-octadecadienoic acid (13-HODD). The conversion of linoleic acid to monohydroxy C-18 fatty acids varied from 40–80% 9-HODD and 20–60% 13-HODD in tumor tissue harvested from different animals. The quantity of monohydroxy C-18 fatty acids biosynthesized by VX2 carcinoma tissue from endogenous linoleic acid equals or exceeds that of prostaglandin E2 biosynthesis from endogenous arachidonic acid. The presence of a hydroxyl group adjacent to a conjugated diene suggest that the monohydroxy C-18 and monohydroxy C-20 fatty acids were formed via the action of lipoxygenase-like enzymes. These lipoxygenase-like reactions are inhibited by indomethacin in a concentration-dependent fashion similar to the inhibition of prostaglandin E2 biosynthesis. The enzymes catalyzing the lipoxygenase-like reactions of linoleic and arachidonic acids are localized in the microsomal fraction of VX2 carcinoma tissue. These data suggest that the lipoxygenase-like reactions are catalyzed by fatty acid cyclooxygenase and that there are two major pathways of fatty acid cyclooxygenase metabolism of polyenoic fatty acids in the neoplastic tissue. One pathway involves the formation of prostaglandin E2 via cyclic endoperoxy intermediates. The second pathway involves the formation of monohydroxy C-18 fatty acids from linoleic acid via lipoxygenase-like reactions.  相似文献   

2.
Bioactive lipid mediators derived from n-3 and n-6 fatty acids are known to modulate leukocytes. Metabolic transformation of essential fatty acids to endogenous bioactive molecules plays a major role in human health. Here we tested the potential of substrates; linoleic acid (LA) and docosahexaenoic acid (DHA) and their bioactive products; resolvin D1 (RvD1) and 12- S-hydroxyeicosatetraenoic acids (HETE) to modulate macrophage plasticity and cardiac fibroblast phenotype in presence or absence of lipid metabolizing enzyme 12/15-lipoxygenase (LOX). Peritoneal macrophages and cardiac fibroblasts were isolated from wild-type (C57BL/6J) and 12/15LOX −/− mice and treated with DHA, LA, 12(S)-HETE, and RvD1 for 4, 8, 12, and 24 hr. LA, DHA, 12(S)-HETE, and RvD1 elicited mRNA expression of proinflammatory markers; tumor necrosis factor-α ( Tnf-α), interleukin 6 ( IL-6), chemokine (C–C motif) ligand 2  (Ccl2), and IL-1β in wild type (WT) and in 12/15LOX −/− macrophages at early time point (4 hr). Bioactive immunoresolvent RvD1 lowered the levels of Tnf-α, IL-6, and IL-1β at 24 hr time point. Both DHA and RvD1 stimulated the proresolving markers such as arginase 1 ( Arg-1), chitinase-like protein 3 ( Ym-1), and mannose receptor C-type 1 in WT macrophage. RvD1 induced proresolving phenotype Arg-1 expression in both WT 12/15LOX −/− macrophages even in presence of 12(S)-HETE. RvD1 peaked 5LOX expression in both WT and 12/15LOX −/− at 24 hr time point compared with DHA. RvD1 diminished cyclooxygenase-2 but upregulated 5LOX expression in fibroblast compared with DHA. In summary, the feed-forward enzymatic interaction with fatty acids substrates and direct mediators (RvD1 and 12(S)-HETE) are responsive in determining macrophages phenotype and cardiac fibroblast plasticity. Particularly, macrophages and fibroblast phenotypes are responsive to milieu and RvD1 governs the milieu-dependent chemokine signaling in presence or absence of 12/15LOX enzyme to resolve inflammation.  相似文献   

3.
Bone homeostasis is maintained by active remodeling through the balance between resorption (by osteoclasts) and synthesis (by osteoblasts). In this study, we examined the effects of polyunsaturated fatty acids (PUFAs) and their metabolites on sRANKL-induced differentiation of bone marrow-derived macrophages (BMMs) into osteoclasts in vitro. Docosahexaenoic acid (DHA) strongly inhibited osteoclastogenesis; however, dihomo-γ-linolenic acid (DGLA), arachidonic acid (AA) and eicosapentaenoic acid (EPA) enhanced it. The enhancement effect of PUFAs on osteoclastogenesis was mediated predominantly by cyclooxygenase (COX) products, because the effect was inhibited by a COX inhibitor. It was also found that COX products of PUFAs, prostaglandin E1, E2, and E3, clearly increased in osteoclastogenesis. The inhibitory effect of DHA on osteoclastogenesis was reversed by treatment with a lipoxygenase (LOX) inhibitor. Furthermore, resolvin D1, a LOX product of DHA, significantly inhibited osteoclastogenesis. Quantitative analysis of specific mRNA levels revealed that DHA-mediated attenuation of osteoclastogenesis might be due to a decrease in DC-STAMP expression. These results suggested that the effect of DHA on osteoclastogenesis is, at least in part, mediated by lipoxygenase products. This study showed a distinct mechanism of the effect of PUFAs on osteoclastogenesis and will provide evidence for therapeutic treatment with DHA in osteoporotic patients.  相似文献   

4.
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a product of the cytochrome P450 (CYP)-catalyzed ω-hydroxylation of arachidonic acid, induces oxidative stress and, in clinical studies, is associated with increased body mass index (BMI) and the metabolic syndrome. This study was designed to examine the effects of exogenous 20-HETE on mesenchymal stem cell (MSC)-derived adipocytes. The expression levels of CYP4A11 and CYP4F2 (major 20-HETE synthases in humans) in MSCs decreased during adipocyte differentiation; however, exogenous administration of 20-HETE (0.1–1 μM) increased adipogenesis in a dose-dependent manner in these cells (P < 0.05). The inability of a 20-HETE analog to reproduce these effects suggested the involvement of a metabolic product of 20-HETE in mediating its pro-adipogenic effects. A cyclooxygenase (COX)-1 selective inhibitor enhanced, whereas a COX-2 selective or a dual COX-1/2 inhibitor attenuated adipogenesis induced by 20-HETE. The COX-derived metabolite of 20-HETE, 20-OH-PGE2, enhanced adipogenesis and lipid accumulation in MSCs. The pro-adipogenic effects of 20-HETE and 20-OH-PGE2 resulted in the increased expression of the adipogenic regulators PPARγ and β-catenin in MSC-derived adipocytes. Taken together we show for the first time that 20-HETE-derived COX-2-dependent 20-OH-PGE2 enhances mature inflamed adipocyte hypertrophy in MSC undergoing adipogenic differentiation.  相似文献   

5.
Arachidonic acid (AA) metabolism in the non-pregnant sheep uterus was studied in vitro using conventional chromatographic and HPLC techniques. High expression of both lipoxygenase (LOX) as well as cyclooxygenase (COX) enzymes and their activities was found in the uterine tissues. On incubation of uterine enymes with AA, the LOX products formed were identified as 5-hydroperoxyeicosatetraenoic acid (5-HPETE), 12- and 15-hydroxyeicosatetraenoic acids (12- and 15-HETEs), based on their separation on TLC and HPLC. By employing differential salt precipitation techniques, the LOXs generating products 5-HPETE (5-LOX), 12-HETE and 15-HETE (12- and 15-dual LOX) were isolated. Based on their analysis on TLC, the COX products formed were identified as prostaglandins - PGF2alpha and prostacyclin derivative 6-keto PGF1alpha. The study forms the first report on the comprehensive analysis on the metabolism of AA in sheep uterus in vitro via the LOX and COX pathways.  相似文献   

6.
Oocyte maturation (meiosis reinitiation) in starfish is induced by the natural hormone 1-methyladenine. This induction of meiotic divisions can be triggered also by four fatty acids: 5,8,11-20:3; 5,8,11,14-20:4 (arachidonic acid); 6,9,12,15-20:4; 5,8,11,14,17-20:5, all other fatty acids being completely inactive. This maturation triggered by eicosanoids occurs in the micromolar range and is facilitated by the presence of calcium. A variety of arachidonic acid derivatives (esters, epoxides, etc.) and metabolites (cyclooxygenase and lipoxygenase products) has been tested; the biological activity is restricted to 8-hydroxyeicosatetraenoic acid (8-HETE), other mono- and poly-HETEs being completely inactive. Maturation triggered by 8-HETE occurs around 10 nM and is insensitive to the presence of calcium. 8-HETE methyl ester and 8-hydroperoxyeicosatetraenoic acid are able to induce maturation at higher concentrations. Both (8S) and (8R) stereoisomers have been tested; the biological activity is strictly restricted to the (8R) isomer. 8-HETE triggers a complete maturation, i.e. maturation-promoting factor appearance, germinal vesicle breakdown, emission of the polar bodies, and formation of a female pronucleus. (8R)-HETE, but not (8S)-HETE, triggers the typical decrease in cyclic AMP concentration induced by 1-methyladenine and the burst of protein phosphorylation associated with maturation. Starfish oocytes oxidize exogenous arachidonic acid into 8-HETE and other HETEs. 8-HETE was identified, after high pressure liquid chromatography purification, by gas chromatography mass spectrometry. Furthermore, it was found that the starfish oocytes only produce the (8R)-HETE isomer. This highly stereospecific induction of oocyte maturation by (8R)-HETE suggests that this fatty acid, or a very closely related fatty acid, may play a role in the transduction of the 1-methyladenine message at the plasma membrane level.  相似文献   

7.
Candida bombicola (ATCC 22214) and C. apicola (ATCC 96134), grown on glucose (100 g l–1) and arachidonic acid (5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid; AA), 1.25 g l–1, synthesized sophorolipid up to 0.93 g l–1. Acid hydrolysis of sophorolipid yielded 19-hydroxy-5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid (19-HETE) and 20-hydroxy-5Z, 8Z, 11Z, 14Z-eicosatetraenoic acid (20-HETE) which were identified by TLC and GC-MS; the ratio of synthesis was 73:27, respectively. Conversion of AA by immobilized Candida bombicola, suspended in beads of 2% (w/v) calcium alginate for 96 h, gave an 83% conversion of 1 g AA l–1 to 19- and 20-HETE. There was no significant loss in the efficiency of the immobilized cells after ten uses.  相似文献   

8.
Three cDNA from the pyloric ceca of the starfish Asterina pectinifera, (namely, cDNA 1, 2, and 3), encoding phospholipase A2 (PLA2), were isolated and sequenced. These cDNAs were composed of 415 bp with an open reading frame of 414 bp at nucleotide positions 1–414, which encodes 138 amino acids including N-terminal Met derived from the PCR primer. The amino acid sequence deduced from the cDNA 1 was completely consistent with the sequence determined with the starfish PLA2 protein, while those deduced from cDNA 2 and cDNA 3 differed at one and twelve amino acid residual positions, respectively, from the sequence of the PLA2 protein, suggesting the presence of multiple forms in the starfish PLA2. All of the sequences deduced from cDNA 1, 2, and 3 required two amino acid deletions in pancreatic loop region, and sixteen insertions and three deletions in β-wing region when aligned with the sequence of mammalian pancreatic PLA2. In phylogenetic tree, the starfish PLA2 should be classified into an independent group, but hardly to the established groups IA and IB. The characteristic structure in the pancreatic loop and β-wing regions may account for the specific properties of the starfish PLA2, e.g. the higher activity and characteristic substrate specificity compared with commercially available PLA2 from porcine pancreas.  相似文献   

9.
Lipoxygenases (LOXs) constitute a family of lipid-peroxidizing enzymes that catalyze the oxidation of unsaturated fatty acid containing a (1Z,4Z)-pentadiene structural unit, leading to formation of conjugated (Z,E)-hydroperoxydienoic acid. LOXs are known to be widely distributed in plants and animals. Recently, several microbial LOXs were reported to be involved in the production of hydroperoxy fatty acids. Among the microorganisms that produce hydroxy fatty acids, Pseudomonas aeruginosa PR3 is known to convert linoleic acid to trihydroxy fatty acid, which suggests the involvement of a LOX enzyme. Based on these reports, we identified a novel thermostable LOX from P. aeruginosa PR3 strain. The protein was purified 34.3-fold with a recovery rate of 5.14%. The Km and Vmax values of the purified enzyme were 3.57 mM and 0.73 μmol/min//mg, respectively. Heat stability of the purified enzyme was unexpectedly high with an LD50 of 90 min at 80°C, although P. aeruginosa PR3 is known as a mesophilic bacterium. Substrate specificity of the purified enzyme was restricted only to unsaturated fatty acids carrying a (1Z,4Z)-pentadiene unit.  相似文献   

10.
The work deals with analysis of changes of cellular defense factors in the starfish Asterias rubens in response to injection of human erythrocytes (HE). The number of circulating coelomocytes, dynamics of their production of active oxygen forms, activity of peroxidase, and dynamics of elimination of human hemoglobin from coelomic fluid were estimated before immunization with HE as well as at 6–144 h. The number of coelomocytes was counted in Goryaev chamber, production of active oxygen forms was determined in the test of spontaneous and zymosan-induced reduction of Tetrazolium Nitro Blue, peroxidase activity—in a color enzymatic reaction. Time of human hemoglobin elimination from the coelomic fluid was determined by spectrophotometric method by hemoglobin binding with acetone cyanohydrin with formation of a colored product. It is revealed that injection of human erythrocytes into the starfish Asterias rubens leads to a decrease of the number of coelomocytes in 24–96 h and to an increase of their specific production of active oxygen forms in 96–120 h after the HE injection. In coelomic fluid of Asterias rubens the presence of peroxidase activity is established. The circulation time of human hemoglobin released from erythrocytes in coelomic fluid of these animals does not exceed 24 h. It is suggested that the cellular defense reactions are the major factor of the starfish congenital immunity.__________Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 2, 2005, pp. 107–113.Original Russian Text Copyright © 2005 by Kudryavtsev, D’yachkov, Kazakov, Kanaikin, Kharazova, Polevshchikov.  相似文献   

11.
Arachidonic acid (AA) is an essential fatty acid that is metabolized by cyclooxygenase (COX), lipoxygenase (LOX) or cytochrome P450 (CYP) enzymes to generate eicosanoids which in turn mediate a number of biological activities including regulation of angiogenesis. While much information on the effects of COX and LOX products is known, the physiological relevance of the CYP-derived products of AA are less well understood. CYP enzymes are highly expressed in the liver and kidney, but have also been detected at lower levels in the brain, heart and vasculature. A number of these enzymes, including members of the CYP 4 family, predominantly catalyze conversion of AA to 20-hydroxyeicosatetraenoic acid (20-HETE) while the CYP epoxygenases generate mainly epoxyeicosatrienoic acids (EETs). This review will focus on the emerging roles of inhibitors of eicosanoid production with emphasis on the CYP pathways, in the regulation of angiogenesis and tumor growth. We also discuss current observations describing the protective effects of EETs for survival of the endothelium.  相似文献   

12.
The effects of two polyunsaturated fatty acids, 18:4n-3 and 16:4n-3 purified from the marine algae, Undaria pinnatifida and Ulva pertusa, on icosanoid production in MC/9 mouse mast cells were assessed. Both fatty acids suppressed the production of leukotriene B4 (LTB4), leukotriene C4 (LTC4), and 5-hydroxyeicosatetraenoic acid (5-HETE). The order of the suppressive activity for the two marine algae-derived fatty acids and three other common polyunsaturated fatty acids was as follows; 22:6n-3=18:4n-3=18:3n-3>20:5n-3=16:4n-3 for LTB4; 22:6n-3=18:4n-3=18:3n-3>16:4n-3>20:5n-3 (no suppression) for LTC4; 22:6n-3=18:4n-3>18:3n-3>20:5n-3=16:4n-3 for 5-HETE.  相似文献   

13.
To investigate both seasonal changes and possible intracorporal gradients of phospholipid fatty acid composition, skeletal muscles (n=124), hearts (n=27), and livers (n=34) from free-living brown hares (Lepus europaeus) were analyzed. Phospholipids from both skeletal muscles and heart had a high degree of unsaturation with 66.8±0.63% and 65.7±0.5% polyunsaturated fatty acids, respectively. This is the highest proportion of polyunsaturated fatty acids reported in any mammalian tissue. Polyunsaturated fatty acid content in skeletal muscles was 2.3% greater in winter compared to summer (F1,106=17.7; P=0.0001), which may reflect thermoregulatory adjustments. Arachidonate (C20:4n-6) showed the greatest seasonal increase (+2.5%; F=7.95; P=0.0057). However, there were no pronounced differences in polyunsaturated fatty acid content between skeletal muscles from different locations in the body (m. iliopsoas, m. longissimus dorsi and m. vastus). Total muscle phospholipid polyunsaturated fatty acid content was correlated with polyunsaturated fatty acid content in triacyglycerols from perirenal white adipose tissue depots (r2=0.61; P=0.004). Polyunsaturated fatty acids were enriched in muscle phospholipids (56.8–73.6%), compared to white adipose tissue lipids (20.9–61.2%), and liver phospholipids (25.1–54.2%). We suggest that the high degree of muscle membrane unsaturation is related to hare-specific traits, such as a high maximum running speed.Abbreviations BMR basal metabolic rate - DPA docosapentaenoic acid - DHA docosahexaenoic acid - FA fatty acid - MUFA monounsaturated fatty acid - PC principal component - PUFA polyunsaturated fatty acid - SFA saturated fatty acid - UI unsaturation index - WAT white adipose tissueCommunicated by: G. Heldmaier  相似文献   

14.
The metabolism of radiolabeled arachidonic acid (AA) by the intact bovine retina has been studied. Synthesis of prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETEs), and incorporation of AA into glycerolipids has been measured by reverse-phase and straight-phase high performance liquid chromatography with flow scintillation detection, and by thin-layer chromatography. AA was actively acylated into glycerolipids, particularly triglycerides, phosphatidylcholine and phosphatidylinositol. AA was also converted to the major PGs, PGF, PGE2, PGD2, 6-keto-PGF and TXB2, and to the lipoxygenase reaction products, 12-HETE, 5-HETE, and other monohydroxy isomers. Approximately 6% of the radiolabeled AA was converted to eicosanoids. The synthesis of HETEs was inhibited in a concentration-dependent manner (IC50 = 8.3 NM) by nordihydroguaiaretic acid (NDGA). PG synthesis was inhibited by aspirin (10 μM), indomethacin (1 μM) and NDGA (IC50 = 380 nM). Metabolism of AA via lipoxygenase, cyclooxygenase and activation-acylation was inhibited by boiling retinal tissue prior to incubation. These studies demonstrate an active system for the uptake and utilization of AA in the bovine retina, and provide the first evidence of lipoxygenase-mediated metabolism of AA, resulting in the synthesis of mono-hydroxyeicosatetraenoic acids, in the retina.  相似文献   

15.
Antarctic euphausiids, Euphausia superba, E. tricantha, E. frigida and Thysanoessa macrura were collected near Elephant Island ¦ during 1997 and 1998. Total lipid was highest in E. superba small juveniles (16 mg g−1 wet mass), ranging from 12 to 15 mg in other euphausiids. Polar lipid (56–81% of total lipid) and triacylglycerol (12–38%) were the major lipids with wax esters (6%) only present in E. tricantha. Cholesterol was the major sterol (80–100% of total sterols) with desmosterol second in abundance (1–18%). 1997 T. macrura and E. superba contained a more diverse sterol profile, including 24-nordehydrocholesterol (0.1–1.7%), trans-dehydrocholesterol (1.1–1.5%), brassicasterol (0.5–1.7%), 24-methylenecholesterol (0.1–0.4%) and two stanols (0.1–0.2%). Monounsaturated fatty acids included primarily 18:1(n−9)c (7–21%), 18:1(n−7)c (3–13%) and 16:1(n−7)c (2–7%). The main saturated fatty acids in krill were 16:0 (18–29%), 14:0 (2–15%) and 18:0 (1–13%). Highest eicosapentaenoic acid [EPA, 20:5(n−3)] and docosahexaenoic acid [DHA, 22:6(n−3)] occurred in E. superba (EPA, 15–21%; DHA, 9–14%), and were less abundant in other krill. E. superba is a good source of EPA and DHA for consideration of direct or indirect use as a food item for human consumption. Lower levels of 18:4(n−3) in E. tricantha, E. frigida and T. macrura (0.4–0.7% of total fatty acids) are more consistent with a carnivorous or omnivorous diet as compared with herbivorous E. superba (3.7–9.4%). The polyunsaturated fatty acid (PUFA) 18:5(n−3) and the very-long chain (VLC-PUFA), C26 and C28 PUFA, were not present in 1997 samples, but were detected at low levels in most 1998 euphausiids. Interannual differences in these biomarkers suggest greater importance of dinoflagellates or some other phytoplankton group in the Elephant Island area during 1998. The data have enabled between year comparisons of trophodynamic interactions of krill collected in the Elephant Island region, and will be of use to groups using signature lipid methodology.  相似文献   

16.
The structure of liquid hydrocarbons and fatty acids produced by the green alga Botryococcus was identified. Two representatives of this alga, Botryococcus braunii Kütz, strain IPPAS H-252, introduced into culture earlier and an organism isolated for the first time from the Shira Lake, were used for this identification. Fatty acid composition of B. braunii, strain H-252, lipids was characterized by a high content of trienoic acids of C16–C18 series. The hydrocarbon composition of this strain was represented by straight-chain and branched-chain C14–C28 components; long-chain linear aliphatic C20–C27 hydrocarbons (54.4%) and 2,6,10,14-tetramethylhexadecane (20.5%) predominated among them. The strain H-252 differed in its fatty acid and hydrocarbon composition from the strains described earlier as Botryococcus braunii. The fatty acid composition of the Botryococcus isolate was represented mainly by C12–C32 saturated and monoenoic acids. The hydrocarbons formed by this isolate were represented by dienoic and trienoic components. C29 (48.9–56.3%) and C31 (11.1–16.3%) hydrocarbons predominated among the C23–C31 dienoic hydrocarbons, and C27, C29, and C31 trienoic hydrocarbons comprised 2.5–2.6% of total hydrocarbons. This type of hydrocarbons and the lipid fatty acid composition were characteristic for the race A of B. braunii.  相似文献   

17.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

18.
In the present study, the effects of hypochlorous acid (HOCl), monochloramine (NH(2)Cl), glutamine-chloramine (Glu-Cl) and taurine-chloramine (Tau-Cl) on the formation of 12-lipoxygenase (LOX) metabolite, 12-HETE, and cyclooxygenase (COX) metabolites, TXB(2), and 12-HHT, from exogenous arachidonic acid (AA) in rat platelets were examined. Rat platelets (4x10(8)/ml) were preincubated with drugs for 5min at 37 degrees C prior to the incubation with AA (40microM) for 2min at 37 degrees C. HOCl (50-250microM) showed an inhibition on the formation of LOX metabolite (12-HETE, 5-67% inhibition) and COX metabolites (TXB(2), 33-73% inhibition; 12-HHT, 27-74% inhibition). Although Tau-Cl and Glu-Cl up to 100microM were without effect on the formation of 12-HETE, TXB(2) and 12-HTT, NH(2)Cl showed a strong inhibition on the formation of all three metabolites (10-100microM NH(2)Cl, 12-HETE, 21-92% inhibition; TXB(2), 58-94% inhibition; 12-HHT, 36-92% inhibition). Methionine reversed a reduction of formation of LOX and COX metabolites induced by NH(2)Cl, and taurine restoring that induced by both NH(2)Cl and HOCl. These results suggest that NH(2)Cl is a more potent inhibitor of COX and LOX pathways in platelets than HOCl, and taurine and methionine can be modulators of NH(2)Cl-induced alterations in the COX and LOX pathways in vivo.  相似文献   

19.
Two perfluorinated carboxylic acids (PFCAs), pentadecafluorooctanoic acid (PDFOA) and heptadecafluorononanoic acid (HDFNA), were investigated for potential modulatory effects on the cyclooxygenase (COX) and 12-lipoxygenase (LOX) metabolisms in rat platelets. Both PDFOA and HDFNA dose-dependently inhibited the formation of a COX metabolite, 12-HHT, without any effect on that of a LOX metabolite, 12-HETE, at concentrations ranging from 10 to 100 μM. These two PFCAs up to 100 μM did not affect platelet membrane integrity, and COX-1 and -2 protein expression levels in Caco-2 cells. These results suggest that PDFOA and HDFNA have the potential to modify platelet function by inhibiting the COX pathway at activity level, but not at protein level.  相似文献   

20.
A study of the fatty acid composition was made for 35 Arthrospira strains, concentrating on the most abundant fatty acids, the two polyunsaturated C18 acids, linoleic and γ-linolenic acid, and palmitic acid. When grown at 30 C and low irradiance (10 μmol photon m−2 s−1), these three acids together formed 88–92% of total fatty acids. There were considerable differences in the composition of the two polyunsaturated acids. Depending on the strain, linoleic acid formed 13.1–31.5% and γ-linolenic acid formed 12.9–29.4% total fatty acids. In contrast, the range for palmitic acid was narrow: 42.3–47.6% of total fatty acids. Repeat experiments on several strains under defined conditions led to closely similar results for any particular environment, suggesting that fatty acid composition can be used as an aid in differentiating between strains. Five additional strains, which had apparently originated from the same original stock cultures as 3 of the 35 in the main study, but from different culture collections, were also assayed. With four strains the results were similar, irrespective of culture source, but with one strain marked differences occurred, especially in the polyunsaturated C18 fatty acid fraction. These differences were independent of the age of the culture. In addition, straight morphotypes derived during repeat subcultures of four strains; each showed a similar fatty acid composition to that of the helical morphotypes of the same strains. A decrease in temperature from 30 to 20 C, an increase in irradiance (at 30 C) from 10 to 70 μmol photon m−2 s−1 and transfer to dark heterotrophy all favoured an increase in polyunsaturated C18 fatty acids. The highest γ-linolenic acid content of any conditions was found for three strains grown heterotrophically on glucose in the dark at 30 C. A comparative study of six strains of Spirulina confirmed a previous study showing the absence of γ-linolenic acid in all Spirulina strains, thus permitting the separation of these two genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号