首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A number of workers have studied the effect of follicular fluid (FF) on the secretion of follicular stimulating hormone (FSH) but little is known about its potential as a regulator of ovarian activity, including ovulation rate. This paper describes the effect of charcoal treated-buffalo follicular fluid (buFF) treatment on follicular growth and ovulation rate in guinea pigs. Eighteen guinea pigs in three groups of 6 each were given 0.2 ml buFF at 12 hr interval for 3 days at different stages of estrous cycle viz., early-luteal, mid-luteal or follicular phase. One control group received equal volume of saline. Estrus was monitored every morning and evening by inspection of the opening of vaginal membrane and its cytology. All animals were sacrificed at 24 hr after the onset of estrus. Both the ovaries were dissected out, weighed and number of ovulation points recorded. One ovary from each animal was processed for histological examination to determine the population of healthy and atretic follicles. In early-luteal and follicular phase-treated animals the onset of estrus was delayed (P < 0.01) and ovulation rate was not affected. However, estrus occurred at normal when the treatment was initiated at midluteal stage and 50% animals failed to ovulate in this group. The total follicle population at metestrus increased significantly in all treated animals because of increase in number of follicles of size class II (400 to < 600 microns diam.). Atresia was also declined due to treatment. These results demonstrated that the buFF contained some inhibitory substances that delayed the onset of estrus in guinea pigs.  相似文献   

2.
The present study evaluates the effect of the presence of a large growing follicle at the onset of superovulatory treatment on follicular recruitment and ovulatory response in dairy goats. The treatment consisted of six equal doses of pFSH given every 12 h (total dose: 200 mg NIH-FSH-P1) which was initiated at Day 0 (Group D0) or Day 3 (Group D3) postovulation. Two half-doses of an analogue of prostaglandin F2alpha (delprostenate, 80 microg each) were administered together with the last two FSH doses to ensure luteolysis. A dose of a GnRH analogue (busereline acetate, 10.5 microg) was administered at the onset of estrus. Ovarian changes were evaluated twice a day by transrectal ultrasonography. Follicles were classified according to follicular diameter as small (3 to < 4 mm), medium (4 to < 5 mm) and large follicles (> or = 5 mm). The number of corpora lutea (CL) was recorded after laparotomy performed 6 days after estrus. The work was conducted in replicates. In the first trial, the does were assigned to either the D0 (n = 4) or D3 group (n = 4) and in the second replicate, each goat was assigned to the alternate group. No large follicles were recorded and the diameter of the largest follicle was 3.3 +/- 0.1 mm (mean +/- S.E.M.) at the initiation of the treatment in D0-treated goats. In contrast, a growing large follicle was present (6.7 +/- 0.4 mm, P < 0.01) when the treatment was initiated in D3-treated goats. In these goats, the number of small follicles increased 24 h after ovulation but then declined 48 h later, temporally correlated with the growth of the largest follicle of the first follicular wave. The number of small follicles recruited by the FSH treatment was significantly higher and occurred earlier in D0- than in D3-treated goats (9.0 +/- 1.3 versus 5.6 +/- 1.1 follicles; P < 0.05; and 24 h versus 48 h from the onset of the treatment, respectively). The number of large follicles at the onset of estrus was higher in D0- than in D3-treated goats (14.4 +/- 1.9 versus 10.3 +/- 1.3; P < 0.05). Consequently, the number of CL recorded 6 days after estrus were higher in D0- than in D3-treated goats (13.6 +/- 1.9 versus 10.4 +/- 1.9; P < 0.05, respectively). These results demonstrate that the presence of a dominant follicle at the time of initiation of super-stimulatory treatment is detrimental to ovulatory response. This study supports the advantages of the so-called Day 0 protocol, e.g. treatment starting soon after ovulation, when the emergence of the first follicular wave takes place and there are no dominant follicles.  相似文献   

3.
The effect of buffalo follicular fluid (buFF) on follicular development, estrus response and luteal function was investigated in anoestrous does. Treatment with buFF (18 ml/doe) had no significant effect on the number of antral follicles of all class categories during the period of administration. However, after cessation of buFF treatment, the number of total antral follicles increased significantly with time (P < 0.003) as well as due to the treatment × time interaction (P < 0.02), without any influence on follicle size. Injection of buFF also caused a marked increase (P < 0.049) with time in the number of medium-sized follicles at cessation. Approximately 60 and 20% of buFF-treated anoestrous does showed behavioural and silent estrus, respectively, compared to none in the control. The mean interval between cessation of buFF treatment to onset of oestrus and oestrus duration was 67.0 ± 18.5 and 17.0 ± 3.6 h, respectively. Corpus lutea size varied between 4.6 and 5.8 mm with an average diameter of 5.2 ± 0.3 mm. Only 33.3% of does showed serum progesterone levels above 1 ng/ml, while the remainder (66.7%) had below 0.5 ng/ml. Our results indicate that exogenous administration of buFF causes enhanced follicular activity following cessation of treatment, which results in behavioural oestrus and corpus luteum (CL) development in anoestrous does. CL development and its function is, however, inadequate in buFF-treated anoestrous does.  相似文献   

4.
Fertility of Holstein cows has been decreasing for years and, to a lesser extent, the fertility of heifers too but more recently. A hypothesis to explain this phenomenon may be that the chronology of events leading to ovulation is different for those animals bred nowadays when compared to what was reported previously; this would result in an inappropriate time of insemination. Therefore, two experiments were designed to investigate the relationships among estrus behavior, follicular growth, hormonal events and time of ovulation in Holstein cows and heifers. In the first experiment, the onset of estrus, follicular growth, patterns of estradiol-17beta, progesterone and LH, and the time of ovulation were studied in 12 cyclic Holstein heifers that had their estrus synchronized using the Crestar method; this was done twice, 3 weeks apart. The intervals between estrus and ovulation, estrus and the LH peak, and between the LH peak and ovulation were, respectively, 38.5 h +/-3.0, 9.1 +/- 2.0 and 29.4 h +/-1.5 (mean+/- S.E.M). The variation in the interval between estrus and the LH peak explained 80.6% of the variation in the interval between estrus and ovulation. The intervals between estrus and the LH peak, and estrus and ovulation were correlated with estradiol-17beta peak value (r=-0.423, P <0.04 and r=-0.467, P<0.02, respectively). Positive correlation coefficients for the number of follicle larger than 5 mm, and negative correlation coefficients for the size of the preovulatory follicle with the intervals between estrus and LH peak, LH peak and ovulation, and estrus and ovulation suggest an ovarian control of these intervals. In respect to its role to explain the variation in the interval between estrus and ovulation, the variation in the interval between estrus and the LH peak was evaluated further in a second set of experiments utilizing 12 pubertal Holstein heifers and 35 Holstein cows. The duration of the interval between the beginning of estrus and the LH peak was longer in heifers than in cows (4.15 h versus -1.0 h; P <0.002); the variation for this interval was higher in cows than in heifers (S.E.M.= 1.2 h versus 0.8 h; P=0.01). According to the results of these studies it can be proposed that estradiol and other product(s) of ovarian origin regulate not only the duration of intervals between the onset of estrus and the LH surge but also between the LH surge and ovulation. From the results obtained in the first experiment, it may be postulated that differences observed between cows and heifers for the duration of the interval between onset of estrus and the LH surge as well as for the variation of this interval would be observed also for the interval between the onset of estrus and ovulation. Therefore, on a practical point of view, the long interval between the onset of estrus and ovulation and the high variation of this interval, especially in cows, may be a source of low fertility and should be considered when analysing reproductive disorders.  相似文献   

5.
Sexual behavior, follicular development and ovulation, and concentrations of circulating gonadotropins during the estrous cycle were studied during the summer in 7 jennies. Mean behavioral estrous length was 6.4 +/- 0.6 days (mean +/- SEM, n=19; 5.6 +/- 0.5 days preovulatory and 0.8 +/- 0.2 days post-ovulatory). Mean diestrous length was 19.3 +/- 0.6 days (n=14). Females in estrus typically showed posturing, mouth clapping, clitoral winking, urinating and tail raising. Mouth clapping began approximately one day sooner and lasted approximately one day longer than winking and tail raising, so that the total duration of clapping was significantly greater than for the other two signs. Follicular changes and concentrations of gonadotropins were determined for 14 estrous cycles (2 per jenny). The follicular end points [diameter of the largest follicle and number of large (>25 mm), medium (20-24 mm), and small follicles (<20 mm)] showed a significant day effect. The diameter of the largest follicle and the number of large follicles began to increase significantly 7 days prior to ovulation with a maximum value the day before ovulation. Medium follicles reached a maximum number 4 days prior to ovulation, and small follicles decreased significantly prior to ovulation. After ovulation, all follicular end points, except the number of small follicles, remained low for the next 12 days. Mean values of FSH were low during estrus and high during diestrus with 2 significant peaks, one 3 days and one 9 days after ovulation. In contrast, mean levels of LH were low during diestrus and high during estrus with a maximum value the day after ovulation. The LH profile showed a more prolonged gradual increase prior to ovulation, than that which has been reported for ponies and horses.  相似文献   

6.
The purpose of the present study was to investigate the effects of exogenous ovarian steroid treatment, which is known to induce follicular cyst experimentally in cows, on ovarian activity in goats. Eleven female Shiba goats with the length of the normal oestrous cycle (approximately 21 days) received subcutaneously either 1 ml of ethanol (control group, n=4) or 4 mg of progesterone and 2mg of oestradiol (treatment group, n=7) daily for 7 days beginning on day 14 of the oestrous cycle (day 0=ovulation). Ultrasonographic images of the ovary and blood samples were collected daily to monitor the ovarian activity. Ovulation was observed before 1 day after the end of treatment in the control group. In the treatment group, no detectable structures of follicles or corpus luteum (static ovarian condition) were found for 6.0+/-1.4 days (mean+/-S.D.) after the end of treatment. Then, detectable follicles appeared and ovulation was observed in all animals of the treatment group. There was no significant difference in the maximum diameter of the ovulatory follicle between the control and treatment group (4.7+/-0.4mm versus 5.1+/-0.7 mm). The large non-ovulatory follicles, which grew more than 10mm in diameter were observed after the static ovarian condition in one goat of the treatment group, whereas no turnover of the cystic follicular structures was found. The length of the inter-ovulatory intervals in the treatment group was significantly longer than that in the control group (38.4+/-7.4 days versus 20.3+/-0.5 days, P<0.05). The present results demonstrated that the exogenous treatment of progesterone and oestradiol, which was adapted from the follicular cyst model in cows, did not induce follicular cysts in goats, suggesting that there is/are different mechanism(s) mediating the occurrence of follicular cysts between cows and goats.  相似文献   

7.
Follicular growth in the feline ovary is usually detected indirectly, through behavior observation, vaginal smears, or more invasively, by estradiol assay in blood. This study was designed to describe follicular dynamics by transabdominal ultrasonography. Secondly, the stage of follicular growth was associated to behavioral and vaginal changes. Ovarian ultrasonography was performed during nine anovulatory and 12 ovulatory cycles. Forty-eight follicles were followed during anovulatory cycles: on the first day of estrus behavior, 4.8 ± 0.2 follicles (2 to 7 per female) of 2.3 ± 0.01 mm mean diameter were present. Follicular growth continued at a rate of 0.2 ± 0.04 mm per day. At least one follicle in the cohort reached a diameter greater than 3.0 mm. Maximal follicular growth (when one follicle of the cohort reached the maximal diameter observed for the whole estrus) was reached 3.8 ± 0.3 days after the onset of estrus with the largest follicle reaching a diameter of 3.5 ± 0.04 mm. Growth of the various follicles within a cohort was not exactly synchronous. When no ovulation took place, the follicular diameter decreased by 0.1 ± 0.01 mm per day until the end of estrus. The first day after the end of behavioral estrus, the diameter of the largest follicle in each cohort was 2.7 ± 0.05 mm. No correlation was found between follicular development and either vaginal smear characteristics, or time elapsed since the onset of estrus. When ovulations were mechanically induced after one follicle had reached 3.0 mm in diameter, artificial insemination produced normal pregnancy rate and litter size: four pregnant females out of nine, and 2 to 4 kittens per litter. Ultrasonography proved thus to allow the monitoring of follicular growth in the female cat, with low correlation with behavior and vaginal smear modifications. Further studies are needed to evaluate the interest of an ultrasonographic ovarian follow-up to determine the optimal moment for ovulation induction prior to artificial insemination.  相似文献   

8.
Ovarian follicular dynamics and fertility are unaffected by the presence or absence of a corpus luteum during synchronization of estrus with progestins in goats. On day 5 of the estrous cycle (estrus= day 0), a gestagen-containing sponge was inserted in the vagina for 11 days. To remove corpora lutea, one group of goats (CL-, n=41) received 7.5 mg of luprostiol on days 7 and 8 of the estrous cycle. The second group of goats retained the CL (CL+, n=38). Growth and development of follicles > or =4 mm in diameter were measured daily from onset of estrus to 2 days after subsequent ovulation in seven goats from each group, using rectal ultrasonography. Estrus was detected by the use of a reproductively sterilized buck and estrous does were subsequently mated. The number of waves of follicular development (CL- =3.57+/-0.2 versus CL+ =3.14+/-0.14; P>0.05) did not differ between groups. The second wave of follicular development was present at the time of progesterone decline in the CL- group and neither its duration (CL- =4.8+/-0.4 versus CL+=5.6+/-0.7 days; P>0.05) nor the day of commencement of the third wave of follicular development (CL -=11.6+/-0.7 versus CL+=11.8+/-0.6; P>0.05) were altered by the concentration of endogenous progesterone. The pregnancy rate was similar between the two groups. (CL-=68.29% versus CL+=65.79%; P>0.05). Thus, in goats, ovarian follicular dynamics and fertility were not altered by the presence or absence of a corpus luteum during estrous synchronization.  相似文献   

9.
The growth, selection, regression and ovulation of ovarian follicles was ultrasonically monitored in 30 Murrah buffalo throughout a spontaneous estrous cycle during the breeding season (autumn). Examinations revealed that follicular growth during the estrous cycle occurs in waves; the buffalo showed 1-wave (3.3%, n = 1), 2-wave (63.3%, n = 19) or 3-wave (33.3%, n = 10) follicular growth. The first wave began at 1.00, 1.16 +/-0.50 and 1.10 +/- 0.32 d in buffalo with 1, 2 and 3 waves, respectively (ovulation = Day 0). The second wave appeared at 10.83 +/- 1.09 and 9.30 +/- 1.25 d (P < 0.01) for the 2 and 3 wave cycle animals, respectively. The third wave started at 16.80 +/- 1.22 d. Structural persistence of the first dominant follicle was longer in the 2- than 3-wave cycles (20.67 +/- 1.18 vs 17.90 +/- 3.47 d ; P < 0.05). The duration of the growth and static phases of the first dominant follicle differed between the 2 and 3 wave cycles (P < 0.05), whereas there were no differences in linear growth rates (cm/d). Two and three wave cycles differed (P < 0.05) with respect to the maximum diameter of both the first dominant follicle (1.51 +/- 0.24 vs 1.33 +/- 0.18 cm) and the ovulatory follicles (1.55 +/- 0.16 vs 1.34 +/- 0.13 cm). No relationship was found between dominant follicle development and the presence of either a CL or a previous dominant follicle in either ovary. Two and three wave cycles also differed with respect to the mean length of intervals between ovulation (22.27 +/- 0.89 vs 24.50 +/- 1.88 d; P < 0.01) and the mean length of luteal phases (10.40 +/- 2.11 vs 12.66 +/- 2.91 d; P < 0.05). These results demonstrate that buffalo have estrous cycles with 1, 2 or 3 follicular waves; that 2-wave cycles are the most common; and that the number of waves in a cycle is associated with the luteal phase and with estrous cycle length.  相似文献   

10.
Ovarian activity and follicular populations were studied in guinea pigs (Cavia porcellus) following administration of antisera against buffalo follicular fluid (buFF). Antibodies were raised in rabbits and the titre tested by immunodiffusion assay. Fourteen guinea pigs cycling normally were randomized into two groups. Animals in Group I (n=8) were treated (i.p.) with 0.5 ml antisera and in Group II (control, n=6) with the same volume of normal rabbit serum at 12 h intervals on the 10th and 11th day of their oestrous cycle. They were sacrificed 24 h after onset of estrus when ovulation points were counted and ovaries processed for microscopical examination. Treatment with buFF-antisera increased ovulation rate (3.6 vs. 2.0; p<0.01) but had no significant effect on the total number of follicles. However, the treatment reduced the percentages of atretic follicles in all size classes. These results indicated that the administration of a buFF-antisera produced in the rabbits increased ovulation rate in guinea pigs by reducing the incidence of atresia.  相似文献   

11.
The objective was to determine the pattern of IGFBP-2, -3 and -4 gene expression and follicular fluid concentrations of IGFBP-2, -3, -4 and -5 during emergence, selection and dominance of the first follicle wave of the estrous cycle in cattle and during exogenous steroid treatment. Heifers (n = 35) were ovariectomized at 36 (n = 7), 66 (n = 8), 84 (n = 12) and 108 (n = 8) h after the onset of estrus. Heifers in the 84 h ovariectomy group were sub-divided to receive either no treatment (n = 6) or were treated with a progesterone-releasing intravaginal device (n = 6, PRID) and 0.75 mg estradiol benzoate i.m. at the approximate time of ovulation, 30 h post estrus until ovariectomy. Within heifers the four largest follicles recovered following ovariectomy were ranked on size (F1, F2, F3 and F4). At 36 h IGFBP gene expression and follicular fluid IGFBP concentrations were similar in all follicles (F1-F4). Mean diameter of the F1 follicle increased (P < 0.05) between 36 and 84 h with no difference between 84 and 108 h. The F1 follicle had the highest (P < 0.05) concentration of estradiol compared with the F2, F3 and F4 at 84 and 108 h. There was no granulosa cell IGFBP-2 mRNA in F1 follicles at 84 or 108 h. Intrafolliclar IGFBP-2 concentrations were lower (P < 0.05) in the F1 compared with F3 and F4 follicles at 108 h. There was no difference in theca cell IGFBP-4 mRNA expression at 108h, but amounts of follicular fluid IGFBP-4 were lower (P < 0.05) in F1 follicles compared with F3 and F4 follicles at 108 h. IGFBP-3 mRNA was localized in the theca layer of all follicles examined with no difference in expression or follicular fluid concentrations during emergence, selection and dominance of the first follicle wave. IGFBP-5 concentrations were higher (P < 0.05) in follicular fluid of F3 follicles at 108 h compared with the F3 at 36 h. In conclusion follicular dominance was associated with low or decreased follicular fluid concentrations of IGFBP-4 and -5, increased estradiol and differential regulation of IGFBP production.  相似文献   

12.
The current study characterized the timing of emergence of ovulatory follicles during the follicular phase of the estrous cycle in polyovulatory does and assessed whether selection may influence ovulation rate through differences in ovarian follicular dynamics, by characterizing preovulatory follicular emergence and growth in two ecotypes of Neuquen-Criollo Argentinean goats (Short-Hair, n=11 and Long-Hair, n=9). During the breeding season, the time of estrus was synchronized in all does with two doses of a prostaglandin analogue. Ovarian laparoscopies were performed on days 17 and 19 after the induced estrus (day 0) and 7-15 h after the beginning of the subsequent estrus. Results indicate that both ecotypes of goats have common features in the ovarian follicular population and in the patterns of preovulatory follicular enlargement. In all the goats, most of the preovulatory follicles arose from the pool of follicles present in the ovary between days 17 and 19 of the estrous cycle. These follicles were all larger than 2mm at emergence, being the largest growing follicle present in the ovaries on days 17 and 19 in 56.5 and 78.6% of the does, respectively. The appearance of new follicles remained unaffected, while the mean number of small growing follicles decreased (P<0.05) during the follicular phase, indicating that preovulatory follicles do not suppress the emergence of new follicles but inhibit the growth of small follicles. A separate analysis of single and double ovulating does showed that 75% of the second ovulatory follicles in polyovulatory goats was present on the ovarian surface between days 17 and 19 of the estrous cycle, but appeared later in the other 25% of the estrous cycles. These findings support the hypothesis that follicular dominance effects are exerted during the preovulatory period, when the growth of follicles other than the ovulatory is inhibited, and that increases in ovulation rate in small ruminants are related to a reduced incidence of follicular atresia and an extended period of ovulatory follicle recruitment.  相似文献   

13.
Baril G  Vallet JC 《Theriogenology》1990,34(2):303-311
Alpine dairy goats were induced to superovulate at the end of a progestagen treatment with porcine follicle stimulating hormone (pFSH) during the breeding season (n = 10 goats) and out of the breeding season (n = 10 goats). Occurrence of estrus and of the luteinizing hormone (LH) peak were checked every 4 h. Ovulations were determined every 6 h by ovarian laparoscopic examination. Among the parameters studied, the mean interval from sponge removal to the onset of estrus did not differ whatever the season of treatment, but the variability was higher for females treated out of the breeding season. Ovulations began during the laparoscopic control period for nine of ten goats during the breeding season vs seven of ten goats out of the breeding season. For these 16 females, on which the LH peak and beginning of ovulation were known, the season did not affect the intervals between the onset of estrus and the LH peak and between the LH peak and the beginning of ovulation. When ovulations are observed by laparoscopy every 6 h, for any given goat 54.9% of total ovulations (counted 7 d after estrus) occurs in less than 6 h, and 87.1% in less than 12 h. Although the interval between the LH peak and the ovulation is quite constant, the additive variabilities of the intervals between the sponge removal and the onset of estrus and between the onset of estrus and the LH peak precluded the determination of an optimal time for artificial insemination (AI) by timing sponge removal or onset of estrus.  相似文献   

14.
15.
In bovines characterization of biochemical and molecular determinants of the dominant follicle before and during different time intervals after gonadotrophin surge requires precise identification of the dominant follicle from a follicular wave. The objectives of the present study were to standardize an experimental model in buffalo cows for accurately identifying the dominant follicle of the first wave of follicular growth and characterize changes in follicular fluid hormone concentrations as well as expression patterns of various genes associated with the process of ovulation. From the day of estrus (day 0), animals were subjected to blood sampling and ultrasonography for monitoring circulating progesterone levels and follicular growth. On day 7 of the cycle, animals were administered a PGF(2alpha) analogue (Tiaprost Trometamol, 750 microg i.m.) followed by an injection of hCG (2000 IU i.m.) 36 h later. Circulating progesterone levels progressively increased from day 1 of the cycle to 2.26+/-0.17 ng/ml on day 7 of the cycle, but declined significantly after PGF(2alpha) injection. A progressive increase in the size of the dominant follicle was observed by ultrasonography. The follicular fluid estradiol and progesterone concentrations in the dominant follicle were 600+/-16.7 and 38+/-7.6 ng/ml, respectively, before hCG injection and the concentration of estradiol decreased to 125.8+/-25.26 ng/ml, but concentration of progesterone increased to 195+/-24.6 ng/ml, 24h post-hCG injection. Inh-alpha and Cyp19A1 expressions in granulosa cells were maximal in the dominant follicle and declined in response to hCG treatment. Progesterone receptor, oxytocin and cycloxygenase-2 expressions in granulosa cells, regarded as markers of ovulation, were maximal at 24h post-hCG. The expressions of genes belonging to the super family of proteases were also examined; Cathepsin L expression decreased, while ADAMTS 3 and 5 expressions increased 24h post-hCG treatment. The results of the current study indicate that sequential treatments of PGF(2alpha) and hCG during early estrous cycle in the buffalo cow leads to follicular growth that culminates in ovulation. The model system reported in the present study would be valuable for examining temporo-spatial changes in the periovulatory follicle immediately before and after the onset of gonadotrophin surge.  相似文献   

16.
Profound hormonally controlled tissue remodelling occurs in the equine ovary for follicle growth and development, and also for the alteration in follicle shape directed towards the ovulation fossa, the site where ovulation occurs. The aim of this study was to examine the spatial and temporal regulation of matrix metalloproteinases (MMP)-2 and MMP-9, important enzymes in tissue remodelling, during follicle growth, and ovulation. Using gelatin substrate zymography, we measured these MMPs in follicular fluid of large anovulatory follicles collected during spring transition, early dominant follicles (> 23 mm), and at oestrus in follicles approximately 3 days prior to ovulation, and post-hCG treatment when ovulation was predicted in approximately 4 h. The most abundant activity detected in follicular fluid was MMP-2, although there were no changes in secretion or activation in association with ovulation. The activity of MMP-9 was detected in lower amounts, with no changes prior to ovulation, although it decreased significantly (P < 0.05) post-hCG treatment. At oestrus, when different regions of the ovary were maintained in explant culture for 24 h, there were no significant changes in either MMP-2 or MMP-9 secretion by stromal tissues collected at the ovarian fossa, adjacent to the preovulatory follicle but away from the fossa, and a further site remote from the preovulatory follicle. Over this same time period, follicular progesterone (P < 0.01) and oestradiol (P < 0.05) increased significantly, although oestradiol tended to decrease after hCG administration. These findings indicate that MMP-2 and MMP-9 are not key acute regulators for the changes in follicle shape immediately prior to ovulation.  相似文献   

17.
Thirty-two beef heifers were induced to superovulate by the administration of follicle stimulating hormone-porcine (FSH-P). All heifers received 32 mg FSH-P (total dose) which was injected twice daily in decreasing amounts for 4 d commencing on Days 8 to 10 of the estrous cycle. Cloprostenol was administered at 60 and 72 h after the first injection of FSH-P. Heifers were observed for estrus every 6 h and were slaughtered at known times between 48 to 100 h after the first cloprostenol treatment. The populations of ovulated and nonovulated follicles in the ovaries were quantified immediately after slaughter. Blood samples were taken at 2-h intervals from six heifers from 24 h after cloprostenol treatment until slaughter and the plasma was assayed for luteinizing hormone (LH) concentrations. The interval from cloprostenol injection to the onset of estrus was 41.3 +/- 1.25 h (n = 20). The interval from cloprostenol injection to the preovulatory peak of LH was 43.3 +/- 1.69 h (n = 6). No ovulations were observed in animals slaughtered prior to 64.5 h after cloprostenol (n = 12). After 64.5 h, ovulation had commenced in all animals except in one animal slaughtered at 65.5 h. The ovulation rate varied from 4 to 50 ovulations. Approximately 80% of large follicles (> 10 mm diameter) had ovulated within 12 h of the onset of ovulation. Onset of ovulation was followed by a dramatic decrease in the number of large follicles (> 10 mm) and an increase in the number of small follicles (相似文献   

18.
The objectives were to describe in detail ovarian follicular growth characteristics and to establish the interval between successive large follicles in unmated alpacas. The ovarian follicular status of 16 non-pregnant, non-lactating mature alpacas was recorded using ultrasound every second day for between 46 and 100 days. An inverse relationship was observed between the diameter of the largest follicle and the total number of follicles indicating that follicular growth in alpacas occurs in waves. There were 15/38 (39%) inter-wave intervals of 12 days and 12/38 (32%) intervals of 16 days. The maximum follicular diameter in each follicular wave was 8.8±0.3 mm (n=38). Inter-wave intervals of longer duration were associated with a larger maximum follicle diameter (P<0.001). However, the growth rate of dominant follicles was consistent over the first 10 days after emergence. They reached a diameter capable of ovulation by this time, regardless of subsequent inter-wave interval. The latter observation suggested that the optimal time of mating might be predicted in alpacas, provided that the emergence of ovarian follicular waves was controlled.  相似文献   

19.
During spring transition, when estrus may be exhibited for prolonged periods, it is important for veterinarians and stud farm personnel to be able to predict whether a large follicle will ovulate or regress. It is thought that the presence of ultrasonically detectable uterine edema indicates that a follicle will ovulate, however, there is little evidence to support this. In the present study, 16 mares were regularly examined by transrectal ultrasonography to follow growth and regression of follicles from seasonal anestrus in February until second ovulation. Blood samples were collected daily for measurement of estradiol concentrations when a large ovarian follicle was present. Estrous-like uterine edema was detected during 7 of 11 (64%) anovulatory follicle waves, in 12 of 14 (86%) mares before their first ovulation, and in 100% of mares before their second ovulation. Uterine edema was first detected 43+/-6.7 days before first ovulation. Large anovulatory follicles tended to be present for longer periods of time than ovulatory follicles. Uterine edema was present for a significantly greater proportion of time in the presence of a large follicle at second ovulation than at first ovulation (P<0.05) or for anovulatory follicles (P<0.01). Peak plasma estradiol concentrations and mean plasma estradiol concentrations were significantly higher (P<0.001) when a dominant preovulatory follicle was present compared with a dominant anovulatory follicle, but there was no difference in estradiol concentrations between first and second ovulations. It was apparent, therefore, that uterine edema was not a reliable indicator of follicular steroidogenic competence, or of whether the follicle would ovulate.  相似文献   

20.
The objective of this study was to monitor and compare follicle populations and follicular development in pregnant and nonpregnant sows from Day 3 to Day 20 after breeding. Twenty-four sows were paired within parity on the day of artificial insemination and were randomly allocated within pair for insemination with either killed (n=12) or live spermatozoa (n=12). All the sows were artificially inseminated with the pooled ejaculate of the same boar. From Day 3 through Day 20 post estrus, ovarian follicles were scanned daily by ultrasonography. Ultrasound images were recorded on videotape and were retrospectively analyzed. Follicles were mapped to indentify the existence of follicular waves. The follicles were then classified as small (< 3 mm), medium (3-5 mm), or large (>/=5 mm). Pregnancy diagnosis was performed on Day 21 by ultrasonography. Pregnant sows maintained a constant proportion of the follicle population in the small, medium and large follicle categories. However, in the nonpregnant sows, the proportion of follicles in the various size categories remained constant until Day 15. Thereafter, the proportion of small follicles decreased (P < 0.05) from Day 15 to 20, and the proportions of medium and large follicles increased (P < 0.05). The predictability of pregnancy status on Day 20 based on follicle populations in any of the 3 follicle categories was low. Moreover, there was no evidence of follicular waves during the estrous cycle or early pregnancy. In conclusion, the proportion of small follicles decreased while medium and large follicle increased from Day 15 through Day 20 of the estrous cycle, but not during a similar stage of pregnancy. This latter finding concurs with follicle recruitment from the pool of small follicles for ovulation following PGF2alpha secretion to induce luteolysis, which reduces progesterone concentrations and thereby allows for the stimulation of the pool of small follicles by gonadotropins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号