首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vibration of one hand reduces blood flow in the exposed hand and in the contralateral hand not exposed to vibration, but the mechanisms involved are not understood. This study investigated whether vibration-induced reductions in finger blood flow are associated with vibrotactile perception thresholds mediated by the Pacinian channel and considered sex differences in both vibration thresholds and vibration-induced changes in digital circulation. With force and vibration applied to the thenar eminence of the right hand, finger blood flow and finger skin temperature were measured in the middle fingers of both hands at 30-s intervals during seven successive 4-min periods: 1) pre-exposure with no force or vibration, 2) pre-exposure with force, 3) vibration 1, 4) rest with force, 5) vibration 2, 6) postexposure with force, and 7) recovery with no force or vibration. A 2-N force was applied during periods 2-6 and 125-Hz vibration at 0.5 and 1.5 ms(-2) root mean square (r.m.s.; unweighted) was applied during periods 3 and 5, respectively. Vibrotactile thresholds were measured at the thenar eminence of right hand using the same force, contact conditions, and vibration frequency. When the vibration magnitude was greater than individual vibration thresholds, changes in finger blood flow were correlated with thresholds (with both 0.5 and 1.5 ms(-2) r.m.s. vibration): subjects with lower thresholds showed greater reductions in finger blood flow. Women had lower vibrotactile thresholds and showed greater vibration-induced reductions in finger blood flow. It is concluded that mechanoreceptors responsible for mediating vibration perception are involved in the vascular response to vibration.  相似文献   

2.
Vibrotactile thresholds depend on the characteristics of the vibration, the location of contact with the skin, and the geometry of the contact with the skin. This experimental study investigated vibrotactile thresholds (from 8 to 250?Hz) at five locations on the distal phalanx of the finger with two contactors: (i) a 1-mm diameter circular probe (0.78-mm2 area) with a 1-mm gap to a fixed circular surround (i.e., 7.1-mm2 excitation area), and (ii) a 6-mm diameter circular probe (28-mm2 area) with a 2-mm gap to a fixed circular surround (i.e., 79-mm2 excitation area). With both contactors, especially the smaller contactor at low frequencies (i.e., 8, 16, and 31.5?Hz), thresholds decreased towards the tip of the finger, although there was little variation around the whorl. With low frequencies of vibration, and at all five locations on the finger, similar thresholds were obtained with both contactors, consistent with the NPI channel not changing in sensitivity with a change in the area of stimulation. At high frequencies (i.e., 63, 125, and 250?Hz), thresholds were lower with the larger area of stimulation at all locations, except at the extreme tip of the finger, consistent with spatial summation in the Pacinian channel. It is concluded that with a 6-mm diameter contactor, moderate variations in location around the whorl have little influence on the measured thresholds. With the 1-mm diameter contactor there were greater variations in thresholds and extreme locations, near the nail and the distal interphalangeal joint, may be unsuitable for investigating sensorineural disorders.  相似文献   

3.
Vibrotactile thresholds depend on the characteristics of the vibration, the location of contact with the skin, and the geometry of the contact with the skin. This experimental study investigated vibrotactile thresholds (from 8 to 250 Hz) at five locations on the distal phalanx of the finger with two contactors: (i) a 1-mm diameter circular probe (0.78-mm(2) area) with a 1-mm gap to a fixed circular surround (i.e., 7.1-mm(2) excitation area), and (ii) a 6-mm diameter circular probe (28-mm(2) area) with a 2-mm gap to a fixed circular surround (i.e., 79-mm(2) excitation area). With both contactors, especially the smaller contactor at low frequencies (i.e., 8, 16, and 31.5 Hz), thresholds decreased towards the tip of the finger, although there was little variation around the whorl. With low frequencies of vibration, and at all five locations on the finger, similar thresholds were obtained with both contactors, consistent with the NPI channel not changing in sensitivity with a change in the area of stimulation. At high frequencies (i.e., 63, 125, and 250 Hz), thresholds were lower with the larger area of stimulation at all locations, except at the extreme tip of the finger, consistent with spatial summation in the Pacinian channel. It is concluded that with a 6-mm diameter contactor, moderate variations in location around the whorl have little influence on the measured thresholds. With the 1-mm diameter contactor there were greater variations in thresholds and extreme locations, near the nail and the distal interphalangeal joint, may be unsuitable for investigating sensorineural disorders.  相似文献   

4.
Studies of vibration perception in the glabrous skin of the human hand have identified four mechanoreceptor channels, with each channel showing characteristic variations in thresholds with variations in the frequency of vibration and the area of vibration excitation. To advance understanding of the channels mediating vibration perception on the sole of the foot, this study determined how thresholds depend on the frequency of vibration, the location on the foot (the big toe, the ball of the foot, and the heel), and the gap between a vibrating probe and a fixed surround. Thresholds at the three locations were obtained at the 12 preferred one-third octave centre frequencies from 20 to 250?Hz using a 6-mm diameter probe with both a 10-mm and a 20-mm diameter surround. With the 10-mm surround, the displacement thresholds at all three locations showed flat responses from 20 to 40?Hz. With both the 10-mm and the 20-mm surround, the displacement thresholds at the three locations showed “U-shaped” responses from 40 to 250?Hz. Relative to thresholds obtained with the 20-mm surround, thresholds obtained with the 10-mm surround were lower at the toe and the heel with 20- and 25-Hz vibration, but higher at the ball of the foot with 31.5- to 250-Hz vibration. It is concluded that absolute thresholds for the perception of vibration at the sole of the foot show important variations with location and with contact conditions and tend to be mediated by the NP I channel in the range from about 20 to 40?Hz and the P channel from about 40 to 250?Hz.  相似文献   

5.
Studies of vibration perception in the glabrous skin of the human hand have identified four mechanoreceptor channels, with each channel showing characteristic variations in thresholds with variations in the frequency of vibration and the area of vibration excitation. To advance understanding of the channels mediating vibration perception on the sole of the foot, this study determined how thresholds depend on the frequency of vibration, the location on the foot (the big toe, the ball of the foot, and the heel), and the gap between a vibrating probe and a fixed surround. Thresholds at the three locations were obtained at the 12 preferred one-third octave centre frequencies from 20 to 250 Hz using a 6-mm diameter probe with both a 10-mm and a 20-mm diameter surround. With the 10-mm surround, the displacement thresholds at all three locations showed flat responses from 20 to 40 Hz. With both the 10-mm and the 20-mm surround, the displacement thresholds at the three locations showed "U-shaped" responses from 40 to 250 Hz. Relative to thresholds obtained with the 20-mm surround, thresholds obtained with the 10-mm surround were lower at the toe and the heel with 20- and 25-Hz vibration, but higher at the ball of the foot with 31.5- to 250-Hz vibration. It is concluded that absolute thresholds for the perception of vibration at the sole of the foot show important variations with location and with contact conditions and tend to be mediated by the NP I channel in the range from about 20 to 40 Hz and the P channel from about 40 to 250 Hz.  相似文献   

6.
Thresholds for the perception of vibration vary with location on the body due to the organization of tactile channels in hairy and non-hairy skin, and variations in receptor density. This study determined vibration thresholds at four locations on the body with two different contactors so as to assist the identification of the tactile channel determining the threshold at each location. Vibrotactile thresholds at six frequencies from 8 to 250 Hz were measured on the distal phalanx of the index finger, the volar forearm, the large toe, and the heel with two contactors: (i) a 1-mm diameter circular probe with a 1-mm gap to a fixed circular surround (i.e., 7.1-mm(2) excitation area), and (ii) a 6-mm diameter circular probe with a 2-mm gap to a fixed circular surround (i.e., 79-mm(2) excitation area). At all frequencies and with both contactors, thresholds on the fingertip were lower than thresholds on the volar forearm, the large toe, and the heel, consistent with a greater density of mechanoreceptors at the fingertip. Thresholds with the larger contactor were lower than thresholds with the smaller contactor on the fingertip at high frequencies (63, 125, and 250 Hz), on the large toe (except at 250 Hz), on the heel (at all frequencies), and on the volar forearm at 250 Hz. It is concluded that at least two tactile channels (Pacinian from 63 to 250 Hz, and non-Pacinian from 8 to 31.5 Hz) determined vibrotactile thresholds at the fingertip, whereas non-Pacinian channels had a dominant influence on vibrotactile thresholds at the volar forearm. The role of Pacinian and non-Pacinian channels could not be confirmed at the large toe or the heel despite some evidence of spatial summation.  相似文献   

7.
Psychophysical thresholds for the detection of a 300-Hz burst of vibration applied to the thenar eminence were measured for stimuli applied to the skin through 1.5?cm2 and through 0.05?cm2 contactors. Thresholds were approximately 13?dB lower when the area of the contactor was 1.5?cm2 than when it was 0.05?cm2. The difference between the thresholds measured with the large and small contactors was significantly reduced when only the lowest thresholds obtained in the testing sessions were considered. This result supports the hypothesis that one component of spatial summation in the P channel is probability summation. In addition, threshold measurements within a session were less variable when measured with the 1.5?cm2 contactor. We conclude that spatial summation in the P channel is a joint function of two processes that occur as the areal extent of the stimulus increases: probability summation in which the probability of exceeding the psychophysical detection threshold increases as the number of receptors of varying sensitivities increases, and neural integration in which neural activity originating from separate receptors is combined within the central nervous system rendering the channel more sensitive to the stimulus.  相似文献   

8.
Psychophysical thresholds for the detection of a 300-Hz burst of vibration applied to the thenar eminence were measured for stimuli applied to the skin through 1.5 cm2 and through 0.05 cm2 contactors. Thresholds were approximately 13 dB lower when the area of the contactor was 1.5 cm2 than when it was 0.05 cm2. The difference between the thresholds measured with the large and small contactors was significantly reduced when only the lowest thresholds obtained in the testing sessions were considered. This result supports the hypothesis that one component of spatial summation in the P channel is probability summation. In addition, threshold measurements within a session were less variable when measured with the 1.5 cm2 contactor. We conclude that spatial summation in the P channel is a joint function of two processes that occur as the areal extent of the stimulus increases: probability summation in which the probability of exceeding the psychophysical detection threshold increases as the number of receptors of varying sensitivities increases, and neural integration in which neural activity originating from separate receptors is combined within the central nervous system rendering the channel more sensitive to the stimulus.  相似文献   

9.
Detection thresholds and difference limens were measured for 16 subjects ranging from 19 to 91 years of age. The stimuli were 250-Hz bursts of vibration applied through a 3.0-cm2 contactor to the thenar eminence of the right hand. Detection thresholds were higher in older than in younger subjects, as were the absolute values of difference limens. When the difference limen was expressed in relative terms as the proportion by which two stimuli had to differ in amplitude to be discriminated (δA/A), discriminative capacities were unaffected by aging except for stimuli slightly above the detection threshold, in which case the difference limens of older subjects were significantly higher than those of younger subjects. The results are consistent with the hypothesis that elevations in the detection thresholds of older subjects are the results of reduced afferent input to central brain centers that, with regard to their capacity to detect the presence of threshold-level stimuli and to discriminate differences among suprathreshold stimuli, are relatively unaffected by aging.  相似文献   

10.
Thresholds of the Non-Pacinian I (NP I) channel were measured using a two-interval forced-choice paradigm, a technique independent of the subject's criterion. The studies were performed using the terminal phalanx of the human middle finger with a 40-Hz vibratory stimulus. Unlike most of the previous experiments performed in our laboratory, a contactor surround was not used. This was done to enable comparison with population models of mechanoreceptive fibers in the literature. Since the Pacinian (P) channel and NP I channel have similar vibrotactile thresholds at 40?Hz, a forward-masking procedure was used to elevate the thresholds of the P channel with respect to the NP I channel. While it has been established that the Pacinian fibers are entrained at high stimulus levels, the P channel can be perceptually masked using a 250-Hz stimulus presented prior to the 40-Hz test stimulus. The masking functions were found to be approximately linear on log-log axes and the threshold shifts were found to increase as the masking-stimulus levels increased. The results are discussed in relation to previous studies that were performed at various stimulation sites by using a contactor surround or not. A companion paper presents the variation of NP I-channel thresholds, measured using the methods described herein, and addresses the effects of stimulation along the proximo-distal axis of the phalanx. The companion paper also discusses the predictions of a computational model, recently proposed, in light of the empirical results presented.  相似文献   

11.
Thresholds of the Non-Pacinian I (NP I) channel were measured using a two-interval forced-choice paradigm, a technique independent of the subject's criterion. The studies were performed using the terminal phalanx of the human middle finger with a 40-Hz vibratory stimulus. Unlike most of the previous experiments performed in our laboratory, a contactor surround was not used. This was done to enable comparison with population models of mechanoreceptive fibers in the literature. Since the Pacinian (P) channel and NP I channel have similar vibrotactile thresholds at 40?Hz, a forward-masking procedure was used to elevate the thresholds of the P channel with respect to the NP I channel. While it has been established that the Pacinian fibers are entrained at high stimulus levels, the P channel can be perceptually masked using a 250-Hz stimulus presented prior to the 40-Hz test stimulus. The masking functions were found to be approximately linear on log-log axes and the threshold shifts were found to increase as the masking-stimulus levels increased. The results are discussed in relation to previous studies that were performed at various stimulation sites by using a contactor surround or not. A companion paper presents the variation of NP I-channel thresholds, measured using the methods described herein, and addresses the effects of stimulation along the proximo-distal axis of the phalanx. The companion paper also discusses the predictions of a computational model, recently proposed, in light of the empirical results presented.  相似文献   

12.
This study was designed to identify psychophysical channels responsible for the detection of hand-transmitted vibration. Perception thresholds for vibration (16, 31.5, 63 and 125?Hz sinusoidal for 600?ms) at the distal phalanx of the middle finger and the whole hand were determined with and without simultaneous masking stimuli (1/3 octave bandwidth Gaussian random vibration centered on either 16?Hz or 125?Hz for 3000?ms, varying in magnitude 0 to 30?dB above threshold). At all frequencies from 16 to 125?Hz, absolute thresholds for the hand were significantly lower than those for the finger. Changes in threshold as a function of masker level were used to estimate the thresholds of three psychophysical channels (i.e. P, NP I, and NP II channels). Increased vibrotactile sensitivity of the hand compared to the finger seems to be not entirely due to increased spatial summation via the Pacinian system (P channel); non-Pacinian system (NP I and NP II channels) also contributed to perception. Differing transmission of vibration between the hand and the finger may have also influenced the thresholds.  相似文献   

13.
The detection of vibration applied to the glabrous skin of the hand varies with contact conditions. Three experiments have been conducted to relate variations in the perception of hand-transmitted vibration to previously reported properties of tactile channels. The effects of a surround around the area of contact, the size of the area of contact, the location of the area of contact, the contact force, and the hand posture on perception of thresholds were determined for 8-500 Hz vibration. Removal of a surround around a contact area on the fingertip elevated thresholds of the NP II channel (FA I fibres) at frequencies less than 31.5 Hz and reduced thresholds of the Pacinian channel (FA II fibres) at frequencies greater than about 63 Hz. When no surround was present, thresholds reduced systematically as the contact area increased from the fingertip to the whole hand at frequencies from 16 to 125 Hz, although the decrease was not inversely proportional to the increase in contact area. The results are partly explained by spatial summation in the Pacinian channel (FA II fibres) and the involvement of the NP II channel (SA II) with some influence of biodynamic responses and contact pressures. There were regional differences in sensitivity over the hand within the NP I channel but not within the Pacinian channel: the NP I thresholds (less than 31.5 Hz) decreased from proximal to distal regions of the hand, whereas the Pacinian thresholds (125 Hz) were independent of contact location over the hand.  相似文献   

14.
The goal of this study was to investigate the relationship between the psychophysical vibrotactile thresholds of the Pacinian (P) channel and the mechanical properties of the skin at the fingertip. Seven healthy adult subjects (age: 23–30) participated in the study. The mechanical stimuli were 250-Hz sinusoidal bursts and applied with cylindrical contactor probes of radii 1, 2, and 3.5?mm on three locations at the fingertip. The duration of each burst was 0.5?s (rise and fall time: 50?ms). The subjects performed a two-interval forced-choice task while the stimulus levels changed for tracking the threshold at 75% probability of detection. There were significant main effects of contactor radius and location (two-way ANOVA, values of p?<?0.001). The thresholds decreased as the contactor radius increased (i.e., spatial summation effect) at all locations. The thresholds were lowest near the whorl at the fingertip. Additionally, we measured the mechanical impedance (specifically, the storage and loss moduli) at the contact locations. The storage moduli did not change with the contactor location, but the loss moduli were lowest near the whorl. While the loss moduli decreased, the storage moduli increased (e.g., more springiness) as the contactor radius increased. There was moderate and barely significant correlation between the absolute thresholds and the storage moduli (r?=?0.650, p?=?0.058). However, the correlation between the absolute thresholds and the loss moduli was high and very significant (r?=?0.951, p?<?0.001). The results suggest that skin mechanics may be important for locally shaping psychophysical detection thresholds, which would otherwise be expected to be constant due to uniform Pacinian innervention density at the fingertip.  相似文献   

15.
In a series of experiments designed to explore the processes underlying adaptation of the sense of flutter-vibration, vibrotactile threshold was measured on the pad of the index finger, using Békésy tracking. Unadapted thresholds were first measured, for a number of frequencies (4-90 Hz) and contactor sizes (1-8 mm diameter). As expected, these measurements indicated the presence of (1) a Pacinian system possessing spatial summation and increasing in sensitivity, as frequency was raised, at the rate of 12 dB/octave; and (2) a non-Pacinian system showing little spatial summation, and with a frequency characteristic matching that of the NP I mechanism of Bolanowski et al. (1988). These baseline data of Experiment 1 guided the selection of stimulus parameters for subsequent experiments, in which threshold for a test stimulus was measured before, during, and after periods of vibrotactile adaptation.

In Experiment 2, test stimuli of 10 Hz and 50 Hz were combined factorially with 30-dB SL adapting stimuli of the same two frequencies. When the test stimulus was 10 Hz, the two adapting frequencies were equally effective in raising threshold; however, when the 50-Hz test stimulus was used, the 50-Hz adapting stimulus raised threshold by a greater amount than did the 10-Hz adapter. These results confirm on the finger the independence of adaptation in Pacinian and non-Pacinian channels, a result previously established on the thenar by other workers. For all four frequency combinations, threshold rose exponentially with a time constant of 1.5-2 min.

In Experiment 3, an action spectrum was determined, showing the adapting amplitude needed at each of a series of frequencies to raise the threshold of a 10-Hz stimulus by 10 dB; this spectrum was essentially flat from 30 to 90 Hz. The results, taken in conjunction with what is known about rapidly adapting cutaneous mechanoreceptors, imply that the effectiveness of an adapting stimulus is not determined solely by the amount of activity it generates in first-order afferents.  相似文献   

16.
In a series of experiments designed to explore the processes underlying adaptation of the sense of flutter-vibration, vibrotactile threshold was measured on the pad of the index finger, using Békésy tracking. Unadapted thresholds were first measured, for a number of frequencies (4-90 Hz) and contactor sizes (1-8 mm diameter). As expected, these measurements indicated the presence of (1) a Pacinian system possessing spatial summation and increasing in sensitivity, as frequency was raised, at the rate of 12 dB/octave; and (2) a non-Pacinian system showing little spatial summation, and with a frequency characteristic matching that of the NP I mechanism of Bolanowski et al. (1988). These baseline data of Experiment 1 guided the selection of stimulus parameters for subsequent experiments, in which threshold for a test stimulus was measured before, during, and after periods of vibrotactile adaptation. In Experiment 2, test stimuli of 10 Hz and 50 Hz were combined factorially with 30-dB SL adapting stimuli of the same two frequencies. When the test stimulus was 10 Hz, the two adapting frequencies were equally effective in raising threshold; however, when the 50-Hz test stimulus was used, the 50-Hz adapting stimulus raised threshold by a greater amount than did the 10-Hz adapter. These results confirm on the finger the independence of adaptation in Pacinian and non-Pacinian channels, a result previously established on the thenar by other workers. For all four frequency combinations, threshold rose exponentially with a time constant of 1.5-2 min. In Experiment 3, an action spectrum was determined, showing the adapting amplitude needed at each of a series of frequencies to raise the threshold of a 10-Hz stimulus by 10 dB; this spectrum was essentially flat from 30 to 90 Hz. The results, taken in conjunction with what is known about rapidly adapting cutaneous mechanoreceptors, imply that the effectiveness of an adapting stimulus is not determined solely by the amount of activity it generates in first-order afferents.  相似文献   

17.
This study was designed to identify psychophysical channels responsible for the detection of hand-transmitted vibration. Perception thresholds for vibration (16, 31.5, 63 and 125 Hz sinusoidal for 600 ms) at the distal phalanx of the middle finger and the whole hand were determined with and without simultaneous masking stimuli (1/3 octave bandwidth Gaussian random vibration centered on either 16 Hz or 125 Hz for 3000 ms, varying in magnitude 0 to 30 dB above threshold). At all frequencies from 16 to 125 Hz, absolute thresholds for the hand were significantly lower than those for the finger. Changes in threshold as a function of masker level were used to estimate the thresholds of three psychophysical channels (i.e. P, NP I, and NP II channels). Increased vibrotactile sensitivity of the hand compared to the finger seems to be not entirely due to increased spatial summation via the Pacinian system (P channel); non-Pacinian system (NP I and NP II channels) also contributed to perception. Differing transmission of vibration between the hand and the finger may have also influenced the thresholds.  相似文献   

18.
The ability of observers to detect temporal gaps in bursts of sinusoids or bursts of band-limited noise was measured to assess the temporal acuity of Pacinian (P) and non-Pacinian (NP) tactile information processing channels. The P channel was isolated by delivering high frequency sinusoids or high frequency noise through a large 1.5-cm2 contactor to the thenar eminence. The NP channels were isolated from the P channel by delivering these stimuli as well as stimuli with lower frequencies through a small 0.01-cm2 contactor to the same site. Gap detection thresholds were higher for gaps in noise than for gaps in sinusoids but did not differ among conditions designed to isolate P and NP channels. The finding that temporal acuity does not differ among channels supports the hypothesis that, after termination of a stimulus, the P and NP channels exhibit the same amount of neural persistence. Also consistent with this hypothesis are the earlier findings that the enhancement of the sensation magnitude of a stimulus by a prior stimulus (Verrillo and Gescheider, Percept Psychophys 18: 128-136, 1975) and the duration of sensation after the termination of a stimulus (Gescheider et al., J Acoust Soc Am 91: 1690-1696, 1992) are independent of stimulus frequency. One important implication of this hypothesis, if true, is that the presence of temporal summation in the P channel and its absence in the NP channels, results, not from the lack of neural persistence in the NP channels, but instead, in marked contrast to the P channel, from the lack of a mechanism for integrating persistent neural activity over time.  相似文献   

19.
20.
The ability of observers to detect temporal gaps in bursts of sinusoids or bursts of band-limited noise was measured to assess the temporal acuity of Pacinian (P) and non-Pacinian (NP) tactile information processing channels. The P channel was isolated by delivering high frequency sinusoids or high frequency noise through a large 1.5-cm2 contactor to the thenar eminence. The NP channels were isolated from the P channel by delivering these stimuli as well as stimuli with lower frequencies through a small 0.01-cm2 contactor to the same site. Gap detection thresholds were higher for gaps in noise than for gaps in sinusoids but did not differ among conditions designed to isolate P and NP channels. The finding that temporal acuity does not differ among channels supports the hypothesis that, after termination of a stimulus, the P and NP channels exhibit the same amount of neural persistence. Also consistent with this hypothesis are the earlier findings that the enhancement of the sensation magnitude of a stimulus by a prior stimulus (Verrillo and Gescheider, Percept Psychophys 18: 128–136, 1975) and the duration of sensation after the termination of a stimulus (Gescheider et al., J Acoust Soc Am 91: 1690–1696, 1992) are independent of stimulus frequency. One important implication of this hypothesis, if true, is that the presence of temporal summation in the P channel and its absence in the NP channels, results, not from the lack of neural persistence in the NP channels, but instead, in marked contrast to the P channel, from the lack of a mechanism for integrating persistent neural activity over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号