首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The excess heat capacity functions (ΔCp) associated with the main phase transition of large unilamellar vesicles (LUVs) and multilamellar vesicles (MLVs) are very different. Two explanations are possible. First, the difference in vesicle size (curvature) results in different gel-fluid interactions in the membrane; those interactions have a large effect on the cooperativity of the phase transition. Second, there is communication between the bilayers in an MLV when they undergo the gel-fluid transition; this communication results in thermodynamic coupling of the phase transitions of the bilayers in the MLV and, consequently, in an apparent increase in the cooperativity of the transition. To test these hypotheses, differential scanning calorimetry was performed on giant unilamellar vesicles (GUVs) of pure dipalmitoylphosphatidylcholine. The ΔCp curve of GUVs was found to resemble that of the much smaller LUVs. The transition in GUVs and LUVs is much broader (half-width ∼1.5°C) than in MLVs (∼0.1°C). This similarity in GUVs and LUVs indicates that their size has little effect on gel-fluid interactions in the phase transition. The result suggests that coupling between the transitions in the bilayers of an MLV is responsible for their apparent higher cooperativity in melting.  相似文献   

2.
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter approximately 0.1 and 0.2 microm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 degrees C, this temperature corresponding closely to the heat capacity maxima (T(em)) of DNPC MLVs and LUVs (T(em) approximately 21 degrees C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of T(em). This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain trans-->gauche isomerization.  相似文献   

3.
R E Brown  K J Hyland 《Biochemistry》1992,31(43):10602-10609
The spontaneous incorporation of II3-N-acetylneuraminosylgangliotetraosylceramide (GM1) from its micelles into phospholipid bilayer vesicles has been investigated to determine whether curvature-induced changes in membrane lipid packing influence ganglioside uptake. Use of conventional liquid chromatography in conjunction with technically-improved molecular sieve gels permits ganglioside micelles to be separated from phospholipid vesicles of different average size including vesicles with diameters smaller than 40 nm and, thus, allows detailed study of native ganglioside GM1 incorporation into model membranes under conditions where complicating processes like fusion are readily detected if present. At 45 degrees C, the spontaneous transfer rate of GM1 from its micelles to small unilamellar vesicles (SUVs) comprised of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) is at least 3-fold faster than that to similar composition large unilamellar vesicles (LUVs) prepared by octyl glucoside dialysis. Careful analysis of ganglioside GM1 distribution among vesicle populations of differing average size reveals that GM1 preferentially incorporates into the smaller vesicles of certain populations. This behavior is observed in SUVs as well as in LUV-SUV mixtures and actually serves as a sensitive indicator for the presence of trace quantities of SUVs in various LUV preparations. Analysis of the results shows that both differences in the diffusional collision frequency between GM1 monomers and either SUVs or LUVs and curvature-induced changes in the interfacial lipid packing in either SUVs or LUVs can dramatically influence spontaneous ganglioside uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
M E Haque  A J McCoy  J Glenn  J Lee  B R Lentz 《Biochemistry》2001,40(47):14243-14251
The effects of hemagglutinin (HA) fusion peptide (X-31) on poly(ethylene glycol)- (PEG-) mediated vesicle fusion in three different vesicle systems have been compared: dioleoylphosphatidylcholine (DOPC) small unilamellar vesicles (SUV) and large unilamellar vesicles (LUV) and palmitoyloleoylphosphatidylcholine (POPC) large unilamellar perturbed vesicles (pert. LUV). POPC LUVs were asymmetrically perturbed by hydrolyzing 2.5% of the outer leaflet lipid with phospholipase A(2) and removing hydrolysis products with BSA. The mixing of vesicle contents showed that these perturbed vesicles fused in the presence of PEG as did DOPC SUV, but unperturbed LUV did not. Fusion peptide had different effects on the fusion of these different types of vesicles: fusion was not induced in the absence of PEG or in unperturbed DOPC LUV even in the presence of PEG. Fusion was enhanced in DOPC SUV at low peptide surface occupancy but hindered at high surface occupancy. Finally, fusion was hindered in proportion to peptide concentration in perturbed POPC LUV. Contents leakage assays demonstrated that the peptide enhanced leakage in all vesicles. The peptide enhanced lipid transfer between both fusogenic and nonfusogenic vesicles. Peptide binding was detected in terms of enhanced tryptophan fluorescence or through transfer of tryptophan excited-state energy to membrane-bound diphenylhexatriene (DPH). The peptide had a higher affinity for vesicles with packing defects (SUV and perturbed LUV). Quasi-elastic light scattering (QELS) indicated that the peptide caused vesicles to aggregate. We conclude that binding of the fusion peptide to vesicle membranes has a significant effect on membrane properties but does not induce fusion. Indeed, the fusion peptide inhibited fusion of perturbed LUV. It can, however, enhance fusion between highly curved membranes that normally fuse when brought into close contact by PEG.  相似文献   

5.
Abstract

Multilamellar vesicles (MLVs) containing the cationic lipid DOTAP were used as vectors to lipofect a number of culture cell lines in the presence of serum. The lipofection efficiency of lipoplexes made of MLVs and the plasmid pSV-β galactosidase are much less sensitive to the lipofection-inhibitory effect of serum than the conventionally used lipoplexes made of sonicated small unilamellar vesicles (SUVs). In order to determine the factors favoring the lipofection efficiency of MLVs, we measured the size, as well as the cellular association and uptake of MLV and SUV lipoplexes containing DOTAP alone or DOTAP:DOPE (1:1). Electron microscope images of these complexes were taken to confirm their structure and size. The single most important factor that correlates with transfection efficiency in serum is the size of the lipoplex. SUV lipoplexes remain smaller than 300 nm in the presence of serum, and the lipofection efficiencies are low. MLV lipoplexes are larger (>300 nm) and the lipofection efficiency, as well as cellular association and uptake, are much higher than those of SUV lipoplexes. Exceptions are those lipoplexes made of MLVs of DOTAP and DOPE (1:1) combined with DNA at higher charge ratios, which form hexagonal structures and show poor lipofection as well as cellular association and uptake, even if their lipoplex size exceeds 300 nm. This finding lends credence to our theory of the serum inhibition effect upon lipofection, and suggests ways to improve the transfection efficiency in the presence of serum, by fabricating lipoplexes of defined sizes.  相似文献   

6.
Summary The potential of antibody-linked SUVs containing MTX in anticancer therapy was investigated. The SUVs, mean diameter 50±20 nm, were prepared by probe sonication of MTX-containing MLVs and were covalently linked either to a RAMG or NRG. After incubation with M21 melanoma cells for 2 h, RAMG-linked SUVs showed 2 and 4 times more binding than NRG-linked MTX-containing SUVs or MTX-containing SUVs unlinked to any Ig. Furthermore, on incubating M21 melanoma cells with RAMG-linked 3H MTX-containing SUVs for 2, 4, and 8 h at 4° C or 37° C, a higher radioactivity was associated with cells at 37° C than at 4° C. Membrane immunofluorescence revealed aggregation of and cap formation by RAMG-linked SUVs after 2 h (37° C) and endocytosis at 4 and 8 h at 37° C. Electron microscopic and autoradiographic studies confirmed aggregation of 3H MTX-containing SUVs around and on the surface of M21 cells. Electron microscopy also revealed these SUVs inside invaginations of and under the plasma membrane of melanoma cells. A colony inhibition assay showed that RAMG-linked, MTX-containing SUVs were 60 times, 8 times, and 4.5 times more growth inhibitory than free MTX, NRG-linked MTX-containing SUV, and MTX-containing SUVs unlinked to any Ig, but not toxic to a human kidney cancer line (that did not react with RAMG). Abbreviations used: DPPC, DL- -dipalmitoyl phosphatidylcholine; DTT, dithiothreitol; MTX, methotrexate; (MTX)SUV or MLV, MTX-containing SUV or MLV; MLV, multilamellar vesicle; NRG, normal rabbit immunoglobulin G; RAMG, rabbit antimelanoma IgG; SA, stearylamine; SPDP, N-succinimidy1-3-(2-pyridyldithio)propionate; SUV, small unilamellar vesicle; CHOL, cholesterol; LUV, large unilamellar vesicle; Ig, immunoglobulin; PDP-SA, N-[3-(2-pyridyldithio)-propinyl]stearylamine  相似文献   

7.
Nano-differential scanning calorimetry (nano-DSC) is a powerful tool in the investigation of unilamellar (small unilamellar, SUVs, or large unilamellar, LUVs) vesicles, as well as lipids on supported bilayers, since it measures the main gel-to-liquid phase transition temperature (Tm), enthalpies and entropies. In order to assign these transitions in single component systems, where Tm often occurred as a doublet, nano-DSC, dynamic light scattering and cryo-transmission electron microscopy (cryo-TEM) data were compared. The two Tms were not attributable to decoupled phase transitions between the two leaflets of the bilayer, i.e. nano-DSC measurements were not able to distinguish between the outer and inner leaflets of the vesicle bilayers. Instead, the two Tms were attributed to mixtures of oligolamellar and unilamellar vesicles, as confirmed by cryo-TEM images. Tm for the oligolamellar vesicles was assigned to the peak closest to that of the parent multilamellar vesicle (MLV) peak. The other transition was higher than that of the parent MLVs for 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and increased in temperature as the vesicle size decreased, while it was lower in temperature than that of the parent MLVs for 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and decreased as the vesicle size decreased. These subtle shifts arose due to small differences in the values of ΔH and ΔS, since Tm is determined by their ratio (ΔH/ΔS). It was not possible to completely eliminate oligolamellar structures for MLVs extruded with the 200 nm pore size filter, even after 120 passes, while these structures were eliminated for MLVs extruded through the 50 nm pore size filter.  相似文献   

8.
Differential scanning calorimetry (DSC) has been used to study the effects of repeated freezing and thawing on dipalmitoylphosphatidylcholine (DPPC) vesicles. Aqueous suspensions of both multilamellar vesicles (MLVs) and large unilamellar vesicles (LUVs) were cycled between -37 and 8 degrees C, and for each thawing event, the enthalpy of ice-melting was measured. In the case of MLVs, the enthalpy increased each time the vesicles were thawed until a steady state was attained. In contrast, the enthalpies measured for LUV suspensions were independent of the number of previous thawing events. It was concluded that MLVs in terms of freezing characteristics contain two pools of water, namely bulk water and interlamellar water. Interlamellar water does not freeze under the conditions employed in the present study, and the MLVs therefore experience freeze-induced dehydration, which is the reason for the observed increase in ice-melting enthalpy. Furthermore, the thermodynamic results suggest that the osmotic stress resulting from the freeze-induced dehydration changes the lamellarity of the MLVs.  相似文献   

9.
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter ∼0.1 and 0.2 μm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 °C, this temperature corresponding closely to the heat capacity maxima (Tem) of DNPC MLVs and LUVs (Tem ≈21 °C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of Tem. This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain transgauche isomerization.  相似文献   

10.
Properties of large unilamellar vesicles (LUV), composed of phosphatidylcholine and prepared by reverse-phase evaporation and subsequent extrusion through Unipore polycarbonate membranes, have been investigated and compared with those of small unilamellar vesicles (SUV) and of multilamellar vesicles (MLV). The unilamellar nature of the LUV is shown by 1H-NMR using Pr3+ as a shift reagent. The gel to liquid-crystalline phase transition of LUV composed of dipalmitoylphosphatidylcholine (DPPC) monitored by differential scanning calorimetry, fluorescence polarization of diphenylhexatriene and 90 degrees light scattering, occurs at a slight lower temperature (40.8 degrees C) than that of MLV (42 degrees C) and is broadened by about 50%. The phase transition of SUV is shifted to considerably lower temperatures (mid-point, 38 degrees C) and extends over a wide temperature range. In LUV a well-defined pretransition is not observed. The permeability of LUV (DPPC) monitored by leakage of carboxyfluorescein, increases sharply at the phase transition temperature, and the extent of release is greater than that from MLV. Leakage from SUV occurs in a wide temperature range. Freeze-fracture electron microscopy of LUV (DPPC) reveals vesicles of 0.1-0.2 micron diameter with mostly smooth fracture faces. At temperatures below the phase transition, the larger vesicles in the population have angled faces, as do extruded MLV. A banded pattern, seen in MLV at temperatures between the pretransition and the main transition, is not observed in the smaller LUV, although the larger vesicles reveal a dimpled appearance.  相似文献   

11.
Large unilamellar vesicles (LUVs) composed of 1-[2H31]palmitoyl-2-oleoyl phosphatidylcholine (POPC-d31), with diameters of approximately 117 +/- 31 and 180 +/- 44 nm, were prepared by extrusion through polycarbonate filters with pore sizes of 0.1 and 0.2 microns, respectively. The 2H nuclear magnetic resonance (NMR) spectra obtained at 21 degrees C contain two components: a broad component (approximately 17 kHz linewidth) corresponding to the methylene groups and a narrower component originating from the methyl groups. Spectra with increasing powder pattern characteristics were obtained by reducing the rate of phospholipid reorientations by addition of glycerol (to increase the solvent viscosity) and by lowering the temperature. Full powder spectra, characteristic of liquid-crystalline bilayers, were obtained for both LUV samples at 0 degrees C in the presence of 50 wt% glycerol. Individual quadrupolar splittings were not resolved in these spectra, due to broader linewidths in the LUVs, which have significantly shorter values for spin-spin relaxation time T2 measured from the decay of the quadrupolar echo (90 microseconds) than the multilmellar vesicles (MLVs; 540 microseconds). Smoothed order parameter profiles (OPPs) were obtained for these samples by integration of the dePaked spectra. The OPPs were very similar to the OPP of POPC-d31 MLVs in 50 wt% glycerol at the same temperature, indicating that orientational order in MLVs and LUVs with a diameter of > or = 100 nm is essentially the same. The presence of 80 wt% glycerol was found to have a disordering effect on the vesicles.  相似文献   

12.
Asymmetry of inner and outer leaflet lipid composition is an important characteristic of eukaryotic plasma membranes. We previously described a technique in which methyl-β-cyclodextrin-induced lipid exchange is used to prepare biological membrane-like asymmetric small unilamellar vesicles (SUVs). Here, to mimic plasma membranes more closely, we used a lipid-exchange-based method to prepare asymmetric large unilamellar vesicles (LUVs), which have less membrane curvature than SUVs. Asymmetric LUVs in which sphingomyelin (SM) or SM + 1-palmitoyl-2-oleoyl-phosphatidylcholine was exchanged into the outer leaflet of vesicles composed of 1,2-dioleoyl-phosphatidylethanolamine (DOPE) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) were prepared with or without cholesterol. Approximately 80–100% replacement of outer leaflet DOPE and POPS was achieved. At room temperature, SM exchange into the outer leaflet increased the inner leaflet lipid order, suggesting significant interleaflet interaction. However, the SM-rich outer leaflet formed an ordered state, melting with a midpoint at ∼37°C. This was about the same value observed in pure SM vesicles, and was significantly higher than that observed in symmetric vesicles with the same SM content, which melted at ∼20°C. In other words, ordered state formation by outer-leaflet SM in asymmetric vesicles was not destabilized by an inner leaflet composed of DOPE and POPS. These properties suggest that the coupling between the physical states of the outer and inner leaflets in these asymmetric LUVs becomes very weak as the temperature approaches 37°C. Overall, the properties of asymmetric LUVs were very similar to those previously observed in asymmetric SUVs, indicating that they do not arise from the high membrane curvature of asymmetric SUVs.  相似文献   

13.
Complement-dependent antibody-mediated damage to multilamellar lipid vesicles (MLVs) normally results in a maximum release of 50-60% of trapped aqueous marker. The most widely accepted explanation for this is that only the outermost lamellae of MLVs are attacked by complement. To test this hypothesis, complement damage to two different types of large unilamellar vesicles (LUVs), large unilamellar vesicles prepared by the reverse-phase evaporation procedure (REVs) and large unilamellar vesicles prepared by extrusion techniques (LUVETs), were determined. In the presence of excess antibody and complement the LUVs released a maximum of only approx. 25 to 40% of trapped aqueous marker, instead of close to 100% that would be expected. Since small unilamellar vesicles apparently differ from LUVs in that they can release 100% of trapped aqueous marker it appeared that the size of the vesicles was an important factor. Because of these observations the influence of MLV size on marker release was examined. Three populations of MLVs of different sizes were separated by a fluorescence activated cell sorter. Assays of the separated MLV populations showed that the degree of complement-dependent marker release was inversely related to MLV size. No detectable glucose was taken up by MLVs when glucose was present only outside the liposomes during complement lysis. Our results can all be explained by the closing, or loss, of complement channels. We conclude that complement channels are only transiently open in liposomes, and that loss of channel patency may be due to either channel closing or to loss of channels.  相似文献   

14.
The aim of the present study was to characterize a liposome-based benzocaine (BZC) formulation designed for topical use on the oral mucosa and to evaluate its in vitro retention and permeation using the Franz-type diffusion cells through pig esophagus mucosa. To predict the effectiveness of new designed formulations during preclinical studies, a correlation between in vitro assays and in vivo efficacy was performed. Liposomal BZC was characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and morphology. Liposomal BZC (BL10) was incorporated into gel formulation and its performances were compared to plain BZC gel (B10) and the commercially available BZC gel (B20). BL10 and B10 presented higher flux and retention on pig esophagus mucosa with a shorter lag time, when compared to B20. BZC flux was strongly correlated with in vivo anesthetic efficacy, but not with topical anesthesia duration. The retention studies did not correlate with any of the in vivo efficacy parameters. Thus, in vitro permeation study can be useful to predict anesthetic efficacy during preclinical tests, because a correlation between flux and anesthetic efficacy was observed. Therefore, in vitro assays, followed by in vivo efficacy, are necessary to confirm anesthetic performance.  相似文献   

15.
We have studied the heme oxidation kinetics of purified human hemoglobin (Hb) in the presence of lipid vesicles of dipalmitoyl phosphatidylcholine and bovine brain phosphatidylserine that exhibited minimal lipid peroxidation. We showed that the lipid vesicles enhanced Hb oxidation and that small unilamellar vesicles (SUVs) exerted a larger effect than large unilamellar vesicles (LUVs). We have determined pseudo first-order rate constants for the initial disappearance of oxygenated ferrous Hb (k0) and for the initial formation of several ferric Hb species (methemoglobin, hemichrome, and choleglobin) in the presence of SUVs and LUVs. k0 and other rate constants depended linearly on lipid-to-hemoglobin molar ratio (lipid/Hb), with k0SUV (h-1) = k0auto (h-1) + 3.7 x 10(-3) x lipid/Hb, and k0LUV (h-1) = k0auto (h-1) + 0.2 x 10(-3) x lipid/hb, where k0auto is the rate constant for Hb autoxidation in the absence of vesicles. Thus, in the absence of lipid peroxidation products, lipid vesicles themselves promote Hb oxidation by enhancing the rate of Hb oxidation. The enhanced oxidation was inhibited by catalase, but not by butylated hydroxytoluene. The rate constants were independent of Hb concentration, in the range of about 3.1 to 100 microM. We suggest that the lipid surface properties, including surface curvature, surface energy, and hydrophobicity, promote hemoglobin oxidation.  相似文献   

16.
Recombinant human interleukin-2 (rhIL-2) was incorporated in liposomes for potential therapeutic applications using a novel process. In this process, rhIL-2 caused the formation of large, unique multilamellar vesicles (MLVs) from small unilamellar vesicles (SUVs) of dimyristoylphosphatidylcholine (DMPC). Vesicle coalescence occurred most rapidly at 19 degrees C, between the pre- and main phase transition temperatures of DMPC, and showed a dependence upon pH (pH <5.5), ionic strength (>50 mM) and the initial size of the unilamellar vesicles (相似文献   

17.
A J Abbott  G L Nelsestuen 《Biochemistry》1987,26(24):7994-8003
Vesicle size can be a very sensitive modulator of protein-membrane association. In addition, reactions at the collisional limit may be characteristic of many types of protein-membrane or protein-receptor interactions. To probe these effects quantitatively, we analyzed the association of blood clotting factor Va light chain (Va-LC) with phospholipid vesicles of 15-150-nm radius. The number of protein binding sites per vesicle was approximately proportional to vesicle surface area. Association rates approached the collisional limit, and the activation energy for the association reaction was 4.5 +/- 0.5 kcal/mol. In agreement with diffusional theory for this type of interaction at the collisional limit, the observed association rate constant for filling all sites was approximately proportional to the inverse of vesicle radius. This general property has important implications for many systems such as blood coagulation including possible slower association rates and higher Km values for reactions involving whole cells relative to those obtained for phospholipid vesicles. Dissociation rate constants for reactions that are near the collisional limit should also be proportional to the inverse of vesicle size if diffusional parameters are the only factors influencing dissociation. However, Va-LC bound to small unilamellar vesicles (SUVs, less than or equal to 15-nm radius) gave slower dissociation rates than Va-LC bound to large unilamellar vesicles (LUVs, greater than or equal to 35-nm radius). This indicated a change in KI, the intrinsic protein-phospholipid affinity constant for LUVs vs SUVs. The cumulative effect of association and dissociation rates resulted in higher affinity of Va-LC for SUVs than LUVs under equilibrium conditions. The latter was corroborated by competition binding studies. Furthermore, the temperature dependence of both rate constants indicated an entirely entropy-driven binding to LUVs but a largely enthalpy-driven binding to SUVs. Interactions which are largely entropic are thought to be ionic in nature. The differences observed between binding to LUVs and SUVs may reflect thermodynamic differences between these types of phospholipid structures.  相似文献   

18.
Using complementary physical-chemical methods including turbidimetry, quasielastic light scattering, gel filtration, and phase analysis, we examined the interactions between dilute concentrations of the common bile salt, taurochenodeoxycholate (TCDC), and uni- and multilamellar vesicles (MLVs) composed of defined molecular species of lecithin (L) and varying contents of cholesterol (Ch). Dissolution rates of MLVs with micellar TCDC, as assessed by turbidimetry, were more rapid with vesicles composed of sn-1 palmitoyl species, typical of biliary L, compared with those composed of the more hydrophobic sn-1 stearoyl species. Incorporation of Ch retarded MLV dissolution rates in proportion to the Ch content, and only at high Ch contents were dissolution rates appreciably influenced by the sn-2 fatty acid composition of L. When MLVs contained Ch in amounts characteristic of intracellular membranes (Ch/L approximately 0.1), the dissolution rates of the individual L species by TCDC accurately predicted the steady state L composition of human bile. TCDC interacted with small unilamellar L/Ch vesicles (SUVs) at concentrations well below, as well as appreciably above, its critical micellar concentration. In accordance with the TCDC-egg yolk L-H2O phase diagram, perimicellar concentrations of TCDC interacted with SUVs to form aggregates that were approximately twice the size of the SUVs. These were consistent with the formation of a dispersed hexagonal (rod-like) phase, which co-existed with aqueous bile salt (BS) monomers and either micellar or unilamellar SUV phases. Micellar TCDC completely solubilized SUVs as mixed micelles, putatively via this transient hexagonal phase. With modest Ch-supersaturation, dissolution was followed by the reemergence of a new vesicle population that coexisted metastably with mixed micelles. With high Ch supersaturation, TCDC extracted L and Ch molecules from SUVs in different proportions to form Ch-supersaturated mixed micelles and Ch-enriched SUVs, in accordance with the metastable phase diagram. These experiments are consistent with the hypothesis that sn-1 palmitoyl L species are subselected for bile, in part, by physical-chemical interactions of intracellular BS concentrations with Ch-poor membranes and that the subsequent evolution of Ch-rich vesicles and Ch-saturated mixed micelles occurs via a transitional hexagonal (rod) phase. These liquid-crystalline states are likely to be transient in Ch-unsaturated biles, but may persist in Ch-supersaturated human biles because of their high Ch contents which retard or inhibit these phase transitions.  相似文献   

19.
Abstract

The effects of adriamycin on the organization of dipalmitoylphosphatidylcholine (DPPC) membranes alone or in the presence of 1 mol% cardiolipin (CL) in the form of single and multibilayer vesicles has been studied by spin-labeling, and by high sensitivity differential scanning calorimetry. With sonicated small unilamellar vesicles (SUVs), adriamycin increased the order parameter of 5-doxylstearate spin-labeled vesicles, an effect primarily observed in the gel phase of DPPC. thermal transition profiles, obtained by high-sensitivity differential scanning calorimetry and by 2,2,6,6-tetramethylpiperidinyl-l-oxy (TEMPO) partitioning studies, indicated that the drug induced aggregation and fusion of SUVs, especially at high drug-lipid molar ratios, and this phenomenon was further verified by negative-staining electron microscopy. the presence of J mol% CL in the lecithin bilayer markedly enhanced the effect of adriamycin on membrain order and fusion, especially under conditions of low ionic strength. the ordering effect of the drug was insensitive to the presence of other acidic phospholipids and was only partially inhibited by Ca2+ or Mg2+. In contrast to the small and highly-curved SUVs, however, the phase behavior of fused unilamellar vesicles (FUVs) or multilamellar vesicles (MLVs) was not significantly affected by the drug, suggesting that the bilayer curvature is an important factor in the interaction of the antibiotic with the corresponding bilayers. these findings demonstrate that changes in the bilayer packing configuration, due to differences in the radii of the curvature of the vesicles, must be considered in studies of adriamycin-lipid membrane interactions, as well as the phospholipid composition of the vesicles.  相似文献   

20.
The interaction of the polyene antibiotic amphotericin B (AmB) (Fig. 1) with large unilamellar vesicles (LUV) was monitored by circular dichroism (CD) and carboxyfluorescein (CF) release. LUV afford a far better model for biological membranes than small unilamellar vesicles (SUV) which have been used until now. With dimyristoyl phosphatidyl choline (DMPC) LUV (i.e., containing saturated acyl chains), a strong and not saturable binding for AmB/lipid ratios up to 0.5 was observed both above and below the phase transition temperature. Incorporation of cholesterol into the vesicles did not significantly change the interaction. With egg PC (EPC) LUV (i.e., containing unsaturated acyl chains), quite a different picture emerged: the binding reached saturation for AmB/lipid ratios of about 5 x 10(-3), a result not observed with EPC SUV. When sterols were introduced into membranes, the CD spectral features obtained in the presence of ergosterol were different from those obtained in the presence of cholesterol. Such a different behavior was not observed with SUV. We suggest that species whose CD spectrum was observed after 15 min in the presence of ergosterol-containing EPC LUV is the particular one which forms wide channels and induces a Ca2+ release. (H. Ramos, A. Attias, B.E. Cohen and J. Bolard, submitted for publication). The CF release from EPC LUV induced by AmB was very low, even at very high concentrations of the antibiotic (3 x 10(-4)M). In contrast, an important release of the fluorescent dye was observed with DMPC LUV at concentrations of approximately 10(-5)M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号