首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate whether rhythmic arm swing modulates the long latency effect of transcranial magnetic stimulation (TMS) on soleus motoneuron pool excitability. Ten healthy humans rhythmically swung the left arm back and forth in a sitting position. The soleus H-reflex was evoked when the arm was in the backward swing phase. Conditioning TMS was delivered over the motor cortex 8 ms before the soleus H-reflex was evoked. The soleus H-reflex amplitude in both legs was depressed by the rhythmic arm swing. In contrast, rhythmic arm swing enhanced the facilitatory effect of conditioning TMS over the motor cortex contralateral to the arm swing side on the soleus H-reflex ipsilateral to the arm swing side. This finding indicates that rhythmic arm swing enhances some polysynaptic facilitatory pathways from the motor cortex contralateral to the arm swing side to the soleus motoneuron pool ipsilateral to the arm swing side.  相似文献   

2.
The objective of the present study was to investigate the effects of rhythmic arm swing on ipsilateral and contralateral soleus motoneuron pool excitability. Ten healthy human subjects participated in this study. Soleus H-reflexes were recorded from the ipsilateral and contralateral soleus muscles while the subject swung the right arm anteroposteriorly as if during gait. The soleus H-reflex was depressed throughout the whole arm swing cycle except in the ipsilateral leg during the onset of the backward arm swing, and in the contralateral leg during the last half of the backward arm swing and the onset of the forward arm swing. The depression was cyclically modulated in accordance with the time course of the arm swing periods, and the pattern of the modulation was reciprocal between the ipsilateral and contralateral legs. This cyclical and reciprocal modulation may be related to the regulation of soleus motoneuron pool excitability during gait.  相似文献   

3.
The objective of the present study was to investigate the effects of rhythmic arm swing on ipsilateral and contralateral soleus motoneuron pool excitability. Ten healthy human subjects participated in this study. Soleus H-reflexes were recorded from the ipsilateral and contralateral soleus muscles while the subject swung the right arm anteroposteriorly as if during gait. The soleus H-reflex was depressed throughout the whole arm swing cycle except in the ipsilateral leg during the onset of the backward arm swing, and in the contralateral leg during the last half of the backward arm swing and the onset of the forward arm swing. The depression was cyclically modulated in accordance with the time course of the arm swing periods, and the pattern of the modulation was reciprocal between the ipsilateral and contralateral legs. This cyclical and reciprocal modulation may be related to the regulation of soleus motoneuron pool excitability during gait.  相似文献   

4.
Locomotion of mammals, including humans, is based on the rhythmic activity of spinal cord circuitries. The functioning of these circuitries depends on multimodal afferent information and on supraspinal influences from the motor cortex. Using the method of transcranial magnetic stimulation (TMS) of arm muscle areas in the motor cortex, we studied the motor evoked potentials (MEP) in the upper arm muscles in stationary conditions and during voluntary and vibration-evoked arm movements. The study included 13 healthy subjects under arm and leg unloading conditions. In the first series of experiments, with motionless limbs, the effect of vibration of left upper arm muscles on motor responses in these muscles was evaluated. In the second series of experiments, MEP were compared in the same muscles during voluntary and rhythmic movements generated by left arm m. triceps brachii vibration (the right arm was stationary). Motionless left arm vibration led to an increase in MEP values in both vibrated muscle and in most of the non-vibrated muscles. For most target muscles, MEP was greater with voluntary arm movements than with vibration-evoked movements. At the same time, a similar MEP modulation in the cycle of arm movements was observed in the same upper arm muscles during both types of arm movements. TMS of the motor cortex significantly potentiated arm movements generated by vibration, but its effect on voluntary movements was weaker. These results indicate significant differences in the degree of motor cortex involvement in voluntary and evoked arm movements. We suppose that evoked arm movements are largely due to spinal rather than central mechanisms of generation of rhythmic movements.  相似文献   

5.
Galvanic vestibular stimulation (GVS) is a research tool used to activate the vestibular system in human subjects. When a low-intensity stimulus (1-4 mA) is delivered percutaneously to the vestibular nerve, a transient electromyographic response is observed a short time later in lower limb muscles. Typically, galvanically evoked responses are present when the test muscle is actively engaged in controlling standing balance. However, there is evidence to suggest that GVS may be able to modulate the activity of lower limb muscles when subjects are not in a free-standing situation. The purpose of this review is to examine 2 studies from our laboratory that examined the effects of GVS on the lower limb motoneuron pool. For instance, a monopolar monaural galvanic stimulus modified the amplitude of the ipsilateral soleus H-reflex. Furthermore, bipolar binaural GVS significantly altered the onset of activation and the initial firing frequency of gastrocnemius motor units. The following paper examines the effects of GVS on muscles that are not being used to maintain balance. We propose that GVS is modulating motor output by influencing the activity of presynaptic inhibitory mechanisms that act on the motoneuron pool.  相似文献   

6.
Increased excitability of the spinal motor system has been observed after loud and unexpected acoustic stimuli (AS) preceding H-reflexes. The paradigm has been proposed as an electrophysiological marker of reticulospinal tract activity in humans. The brainstem reticular formation also maintains dense anatomical interconnections with the cortical motor system. When a startling AS is delivered, prior to transcranial magnetic stimulation (TMS), the AS produces a suppression of motor evoked potential (MEP) amplitude in hand and arm muscles of healthy subjects. Here we analyzed the conditioning effect of a startling AS on MEP amplitude evoked by TMS to the primary motor leg area. Ten healthy volunteers participated in two experiments that used a conditioning-test paradigm. In the first experiment, a startling AS preceded a suprathreshold transcranial test stimulus. The interstimulus interval (ISI) varied between 20 to 160 ms. When given alone, the test stimulus evoked a MEP amplitude of approximately 0.5 mV in the slightly preinervated soleus muscle (SOL). In the second experiment, the startling AS was used to condition the size of the H-reflex in SOL muscle. Mean MEP amplitude was calculated for each ISI. The conditioning AS suppressed MEP amplitude at ISIs of 30-80 ms. By contrast, H-reflex amplitude was augmented at ISIs of 100-200 ms. In conclusions, acoustic stimulation exerts opposite and ISI-specific effects on the amplitude of MEPs and H-reflex in the SOL muscle, indicating different mechanism of auditory-to-motor interactions at cortical and spinal level of motor system.  相似文献   

7.
The effect of continuous Achilles tendon vibration on the soleus H-reflex amplitude was quantified over the entire H-reflex recruitment trajectory in 30 controls and 33 patients with spasticity in the lower limbs. The results show that with increasing stimulus intensities, vibratory inhibition of the Hreflex initially increases, then subsequently decreases. This is probably a direct consequence of how the activation thresholds of the motoneurons are distributed over the motoneuron pool. In patients, vibratory inhibition of the H-reflex was less over the entire recruitment trajectory than in controls. The decrease in vibratory inhibition in spasticity is commonly attributed to a decrease in presynaptic inhibition or post-activation depression. However, the average Hreflex threshold was lower in the patients, suggesting a decrease of the motoneuron activation thresholds. A lower reflex threshold in spasticity, therefore, may contribute to the observed reduction of vibratory inhibition.  相似文献   

8.
The facilitatory effects evoked on the motor periphery by the activation of neuronal pools in cerebellar nuclei were analized in 13 cats. The aim of the work was to compare the frequency and the characteristics of the motor facilitations induced on the ipsilateral forelimb by the microstimulation of cerebellar foci in the fastigial (CBM or in the interposital (NIA) nucleus. CBM or NIA sites, previously identified for the motor effects, were microstimulated, together with the contralateral motor cortex, to give evidence of the facilitations. It was observed that 51% of the NIA motor sites, 46% of the rostral and 33% of the caudal CBM ones, were able, when activated, to evoke facilitatory effects on at least one muscle. The most frequent motor pattern observed following NIA microstimulation was the contraction of a proximal muscle and simultaneously the facilitation of a distal one. Similar responses were detected upon activation of neuronal pools in both zones of CBM. A good number of CBM foci (39% in the rostral division and 33% in the caudal one), however, was unable to induce facilitation, eliciting, upon stimulation, only massive axial movements. Distal muscles were involved by facilitatory effects in a higher number of cases following NIA stimulation (61% of all the facilitatory responses) than CBM rostral (39%) or caudal (43%) one. Furthermore, a particular characteristic of a good percentage of CBM facilitating foci (36% in rostral and 28% in caudal CBM) was the capability to elicit motor activity in the contralateral side and simultaneously facilitation in the ipsilateral one.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The purpose of this study was to investigate how gravity level affects the excitability of the soleus muscle (SOL) motoneuron pool to la afferent input while erect posture is maintained in humans. Three healthy male subjects participated in an experiment whereby three different gravity conditions (micro gravity (MG), normal gravity (NG), and hyper gravity) were imposed using a parabolic flight procedure. The SOL H-reflex was evoked every 2 seconds while the subjects kept an erect posture. The background electromyographic activity (BGA) of the SOL was almost absent during MG. The SOL H-reflex amplitude was significantly larger during MG than during NG. These results suggest that the somatosensory systems detecting a load at the lower limbs and/or vertebral column play a role in reducing the excitability of the SOL motoneuron pool to la afferent inputs by presynaptic inhibition.  相似文献   

10.
In healthy human the excitability of spinal alpha-motoneurons under application of vibrostimulation (20-60 Hz) to different leg muscles was investigated both in stationary condition and during stepping movements caused by vibration in the condition of suspended leg. In 15 subjects the amplitude of H-reflex were compared under vibration of rectus femoris (RF) and biceps femoris (BF) muscles of left leg as well during vibration of rectus femoris of contralateral, motionless leg in three spatial positions: upright, supine and on right side of body with suspended left leg. In dynamic conditions the amount of H-reflex was compared during evoked and voluntary stepping at 8 intervals of step cycle. In all body positions the vibration of each ipsilateral leg muscles caused significant suppression of H-reflex, this suppression was more prominent in the air-stepping conditions. The vibration of contralateral leg RF muscle had a weak influence on the amplitude of H-reflex. In 7 subjects the muscle vibration of ipsilateral and contralateral legs generated stepping movements. During evoked "air-stepping" H-reflex had different amplitudes in different phases of step cycle. At the same time the differences between responses under voluntary and non-voluntary stepping were revealed only in stance phase. Thus, different degree of H-reflex suppression by vibration under different body position in space depends on, it seems to be, from summary afferent inflows to spinal cord interneurons, which participate in regulation of posture and locomotion. Seemingly, the increasing of spinal cord neurons excitability occurs under involuntary air-stepping in swing phase, which is necessary for activation of locomotor automatism under unloading leg conditions.  相似文献   

11.
Abstract

Purpose: The present study aimed to investigate whether spinal reflex excitability is influenced by the site of cerebellar transcranial magnetic stimulation (C-TMS).

Materials and methods: Fourteen healthy volunteers (mean age: 24.6?±?6.6?years [11 men]) participated. Participants lay on a bed in the prone position, with both ankle joints fixed to prevent unwanted movement. Right tibial nerve stimulation was provided to elicit the H-reflex in the right soleus muscle. Conditioning transcranial magnetic stimulation (TMS) was delivered at one of the following sites 110?ms prior to tibial stimulation: right, central, or left cerebellum; midline parietal (Pz) region; or sham stimulation. A total of 10 test trials were included for each condition, in random order. The unconditioned and conditioned H-reflexes were measured during random inter-test trials, and the cerebellar spinal facilitation (CSpF) ratios for each site were calculated (the ratio of conditioned to unconditioned H-reflexes). CSpF ratios were compared among TMS sites.

Results: CSpF ratios were significantly higher at cerebellar sites than at the Pz site or during sham stimulation. However, there was no significant difference in CSpF ratio among cerebellar sites.

Conclusions: TMS conditioning over any part of the cerebellum facilitated the excitability of the spinal motoneuron pool. Facilitation of the H-reflex due to C-TMS may involve the effects of the bilateral descending tract of the spinal cord on the spinal motoneuron pool. Alternatively, direct brainstem stimulation may have activated portions of the bilateral descending tract of the spinal cord.  相似文献   

12.
The objective of this study was to assess changes in corticospinal excitability and spinal output following noninvasive transpinal and transcortical stimulation in humans. The size of the motor evoked potentials (MEPs), induced by transcranial magnetic stimulation (TMS) and recorded from the right plantar flexor and extensor muscles, was assessed following transcutaneous electric stimulation of the spine (tsESS) over the thoracolumbar region at conditioning-test (C-T) intervals that ranged from negative 50 to positive 50 ms. The size of the transpinal evoked potentials (TEPs), induced by tsESS and recorded from the right and left plantar flexor and extensor muscles, was assessed following TMS over the left primary motor cortex at 0.7 and at 1.1× MEP resting threshold at C-T intervals that ranged from negative 50 to positive 50 ms. The recruitment curves of MEPs and TEPs had a similar shape, and statistically significant differences between the sigmoid function parameters of MEPs and TEPs were not found. Anodal tsESS resulted in early MEP depression followed by long-latency MEP facilitation of both ankle plantar flexors and extensors. TEPs of ankle plantar flexors and extensors were increased regardless TMS intensity level. Subthreshold and suprathreshold TMS induced short-latency TEP facilitation that was larger in the TEPs ipsilateral to TMS. Noninvasive transpinal stimulation affected ipsilateral and contralateral actions of corticospinal neurons, while corticocortical and corticospinal descending volleys increased TEPs in both limbs. Transpinal and transcortical stimulation is a noninvasive neuromodulation method that alters corticospinal excitability and increases motor output of multiple spinal segments in humans.  相似文献   

13.
The vestibular system has both direct and indirect connections to the soleus motor pool via the vestibulospinal and reticulospinal tracts. The exact nature of how this vestibular information is integrated within the spinal cord is largely unknown. The purpose of this study was to identify whether changes in static otolithic drive altered the amount of presynaptic inhibition in the soleus H-reflex pathway. Changes in static otolithic drive were investigated in sixteen healthy participants using a tilt table. Two presynaptic pathways (common peroneal and femoral) to the soleus H-reflex were tested in three weight conditions (supine, non-weight bearing, and weight bearing). The dependent variable was the peak-to-peak amplitude of the soleus H-reflex. Inhibition to the soleus motor pool through the common peroneal nerve pathway differed significantly during weight conditions and tilt. During tilt and non-weight bearing there was greater inhibition of the soleus H-reflex compared to supine, however, this effect was reversed during tilt and weight bearing. Facilitation from the femoral nerve pathway was reduced by tilt compared to supine, but this reduction was unaffected by weight condition. This supports a role of the vestibular system as providing complex, task-dependent presynaptic input to motoneurons in the lower limbs.  相似文献   

14.
Constraint-induced movement therapy (CIMT), which involves restraint of the nonimpaired arm coupled with physiotherapy for the impaired arm, lessens impairment and disability in stroke patients. Surprisingly, immediate ipsilateral forelimb immobilization exacerbates brain injury in rats. We tested whether immediate ipsilateral restraint for 7 days aggravates injury after a devascularization lesion in rats. Furthermore, we hypothesized that ipsilateral restraint aggravates injury by causing hyperthermia. In experiment 1, each rat received two lesions, one in the motor cortex and one in the visual cortex. Ipsilateral restraint increased only the motor cortex lesion. In additional rats, no differences in core temperature occurred after ipsilateral or contralateral restraint. Thus, ipsilateral restraint does not aggravate injury by a systemic side effect. In experiment 2, we hypothesized that ipsilateral restraint causes hyperthermia in the region surrounding the initial cortical lesion. Brain temperature, measured via telemetry, was significantly higher (approximately 1 degrees C for 24 h) with ipsilateral restraint. A third experiment similarly found that ipsilateral restraint aggravates injury and causes local cortical hyperthermia and that contralateral restraint with externally induced mild hyperthermia aggravates injury. In conclusion, immediate ipsilateral restraint aggravates injury apparently by localized events that include hyperthermia. Caution must be exercised in applying early CIMT to humans, as hyperthermia is detrimental.  相似文献   

15.
We studied the postsynaptic potentials evoked from 76 trigeminal motoneurons by stimulation of the motor (MI) and somatosensory (SI) cortex in the ipsilateral and contralateral hemispheres of the cat. Stimulation of these cortical regions evoked primarily inhibitory postsynaptic potentials (PSP) in the motoneuron of the masseter muscle, but we also observed excitatory PSP and mixed reactions of the EPSP/IPSP type. The average IPSP latent period for the motoneurons of the masseter on stimulation of the ipsilateral cortex was 6.1±0.3 msec, while that on stimulation of the contralateral cortex was 5.2±0.4 msec; the corresponding figures for the EPSP were 7.6±0.5 and 4.5±0.3 msec respectively. Corticofugal impulses evoked only EPSP and action potentials in the motoneurons of the digastric muscle (m. digastricus). The latent period of the EPSP was 7.6 msec when evoked by afferent impulses from the ipsilateral cortex and 5.4 msec when evoked by pulses from the contralateral cortex. The duration of the PSP ranged from 25 to 30 msec. Postsynaptic potentials developed in the motoneurons studied when the cortex was stimulated with a single stimulus. An increase in the number of stimuli in the series led to a rise in the PSP amplitude and a reduction in the latent periods. When the cortex was stimulated with a series of pulses (lasting 1.0 msec), the IPSP were prolonged by appearance of a late slow component. We have hypothesized that activation of the trigeminal motoneurons by corticofugal impulsation is effected through a polysynaptic pathway; each functional group of motoneurons is activated in the same manner by the ipsilateral and contralateral cortex. The excitation of the digastric motoneurons and inhibition of the masseter motoneurons indicates reciprocal cortical control of their activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 5, pp. 512–519, September–October, 1971.  相似文献   

16.
Co-activation of homo- and heterotopic representations in the primary motor cortex (M1) ipsilateral to a unilateral motor task has been observed in neuroimaging studies. Further analysis showed that the ipsilateral M1 is involved in motor execution along with the contralateral M1 in humans. Additionally, transcranial magnetic stimulation (TMS) studies have revealed that the size of the co-activation in the ipsilateral M1 has a muscle-dominant effect in the upper limbs, with a prominent decline of inhibition within the ipsilateral M1 occurring when a homologous muscle contracts. However, the homologous muscle-dominant effect in the ipsilateral M1 is less clear in the lower limbs. The present study investigates the response of corticospinal output and intracortical inhibition in the leg representation of the ipsilateral M1 during a unilateral motor task, with homo- or heterogeneous muscles. We assessed functional changes within the ipsilateral M1 and in corticospinal outputs associated with different contracting muscles in 15 right-handed healthy subjects. Motor tasks were performed with the right-side limb, including movements of the upper and lower limbs. TMS paradigms were measured, consisting of short-interval intracortical inhibition (SICI) and recruitment curves (RCs) of motor evoked potentials (MEPs) in the right M1, and responses were recorded from the left rectus femoris (RF) and left tibialis anterior (TA) muscles. TMS results showed that significant declines in SICI and prominent increases in MEPs of the left TA and left RF during unilateral movements. Cortical activations were associated with the muscles contracting during the movements. The present data demonstrate that activation of the ipsilateral M1 on leg representation could be increased during unilateral movement. However, no homologous muscle-dominant effect was evident in the leg muscles. The results may reflect that functional coupling of bilateral leg muscles is a reciprocal movement.  相似文献   

17.
Binocular interaction in symmetrical centers of the parastriatal cortex in rats was investigated by the evoked potentials method before and after callosotomy. A model was used in which one eye was always stimulated by flashes of average intensity and the other by flashes of average intensity. The presence of contralateral and ipsilateral facilitation, increasing with the strength of the stimulus, was demonstrated; contralateral facilitation was more effective than ipsilateral. Synergism in the development of the contralateral and ipsilateral effects is emphasized, distinguishing them from the corresponding processes in the striatal cortex. After callosotomy the contralateral and ipsilateral facilitatory effects are intensified.Biological Institute, Leningrad University. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 128–132, March–April, 1973.  相似文献   

18.
Neural output from the locomotor system for each arm and leg influences the spinal motoneuronal pools directly and indirectly through interneuronal (IN) reflex networks. While well documented in other species, less is known about the functions and features of convergence in common IN reflex system from cutaneous afferents innervating different foot regions during remote arm and leg movement in humans. The purpose of the present study was to use spatial facilitation to examine possible convergence in common reflex pathways during rhythmic locomotor limb movements. Cutaneous reflexes were evoked in ipsilateral tibialis anterior muscle by stimulating (in random order) the sural nerve (SUR), the distal tibial nerve (TIB), and combined simultaneous stimulation of both nerves (TIB&SUR). Reflexes were evoked while participants performed rhythmic stepping and arm swinging movement with both arms and the leg contralateral to stimulation (ARM&LEG), with just arm movement (ARM) and with just contralateral leg movement (LEG). Stimulation intensities were just below threshold for evoking early latency (<80 ms to peak) reflexes. For each stimulus condition, rectified EMG signals were averaged while participants held static contractions in the stationary (stimulated) leg. During ARM&LEG movement, amplitudes of cutaneous reflexes evoked by combined TIB&SUR stimulation were significantly larger than simple mathematical summation of the amplitudes evoked by SUR or TIB alone. Interestingly, this extra facilitation seen during combined nerve stimulation was significantly reduced when performing ARM or LEG compared to ARM&LEG. We conclude that locomotor rhythmic limb movement induces excitation of common IN reflex pathways from cutaneous afferents innervating different foot regions. Importantly, activity in this pathway is most facilitated during ARM&LEG movement. These results suggest that transmission in IN reflex pathways is weighted according to the number of limbs directly engaged in human locomotor activity and underscores the importance of arm swing to support neuronal excitability in leg muscles.  相似文献   

19.
The purpose of the present study was to investigate effect of un-loading lower limb on H-reflex and motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) during bed rest.  相似文献   

20.
This paper reports the quantitative evaluation of the H-reflex exhibited by parabolic flight with exposure to micro and high-gravity. With respect to previous findings in parabolic flights and short-term space missions, the analysis focused on reflex activity in weightlessness. The aim of this study was to investigate the effect of gravity on H-reflex and motor evoked potentials (MEP) in soleus muscle (SOL) during parabolic flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号