首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Computer simulations are used to predict the behavior of pollen grains with different physical properties within the acceleration field created around the ovules of the gymnosperm Ephedra trifurca. A modelling procedure is given that (1) calculates the number of pollen grains captured by an ovule's pollination-droplet and (2) gives a correlation between pollination efficiency and the physical properties (= mass, size) of different types of pollen. Based on this procedure, the number of Ephedra pollen grains captured by micropyles can be less than the number captured from other species. However, the mass and size of Ephedra pollen grains appear to coincide with those predicted to yield a local maximum of pollination efficiency, i.e. slightly larger or smaller values of either mass or size would decrease the probability of capture. In addition, the properties of Ephedra pollen grains operate synergistically in the aerodynamic environment around ovules and are focused to collide with pollination-droplets. By analogy, the properties of Ephedra pollen coincide with those predicted for a localized adaptive peak. The physical properties of pollen grain types other than E. trifurca that can maximize pollen capture are not generally represented in the aerobiology of Ephedra during the pollination season. Therefore, the phenology of pollen release, community taxonomic-composition, and the physics of particle capture play collectively important roles in the reproductive success of Ephedra trifurca.  相似文献   

2.
The phenology of pollen release and pollen capture by Pistacia vera was studied in the field and laboratory respectively. Inflorescences of Pistacia vera were examined in a wind tunnel to determine whether the behavior of airborne conspecific pollen around receptive flowers differed as a result of changes in the shape and size of the inflorescence. In addition, the behavior of unclumped (single) and clumped pollen grains was studied to determine differences in the probability of their capture. Wind speeds within a commercial orchard during pollen shedding averaged 0.9–2.2 m/sec and atmospheric pollen concentrations were highest between 0900–1100 hr MST. Each of three stages in inflorescence development (defined on the basis of the number of exserted stigmas) was examined under identical ambient airflow conditions with equal concentrations of airborne pollen (1,000 grains/m3). The general pattern of pollen grain motion involves direct inertial collision by windward surfaces and by sedimentation of pollen onto leeward surfaces; clumped pollen rarely sedimented onto leeward surfaces. Small changes in ambient wind speed (0.5 m/sec to 1.0 m/sec) produced significant changes in the pattern of pollen motion around inflorescences and altered the number of pollen grains captured by leeward surfaces. Thus, wind pollination in P. vera is affected both by windspeed and by the shape or size of flower clusters. Differences in the behavior of clumped and unclumped pollen result from their inertial properties and responsiveness to local changes in the direction and speed of airflow. Unclumped pollen has a higher probability of being captured by leeward surfaces. The apparent insensitivity of pollen motion to differences in inflorescence size may ensure equitable pollination during the acropetal development of flowers.  相似文献   

3.
The behavior of pollen grains within the airspace around Ephedra trifurca is described. Vectoral analyses of pollen grains moving around stems and ovules indicate a complex pattern of directional and magnitudinal changes in trajectories that can be related to the geometries of surfaces that obstruct airflow. Pollen grains, passing around cylindrical stems oriented normal to the direction of ambient airflow, are deflected in circumrotating non-laminar flow-patterns. Stems tilted downwind deflect pollen grains into trajectories along leeward surfaces of stems. These trajectories travel acropetally in a spiraling pattern and may intersect airflow patterns created around and by ovules. Computer analyses of pollen motion in the vicinity of ovules indicate that pollen vector-direction is highly canalized and directed toward micropyles. Within the immediate vicinity of micropyles, which produce pollination droplets, analyses indicate that the magnitudinal variance of pollen grain vectors is high (spanning three orders of magnitude). This variance coincides with dramatic changes in the local Reynolds numbers, resulting in a localized region around the micropyle in which neither viscous nor inertial forces predominate. Based on additional aerodynamics parameters (vector curl, vector-divergence, and vector curl-differential) it is shown that the region around the pollination-droplet is characteristically a “pollen sink” (pollen grains collect in this airspace) in which abrupt changes can occur in the angular momenta of airborne pollen grains. These aerodynamic analyses suggest that the morphology of ovules and the stems to which they are attached facilitates pollen capture by creating an aerodynamic “singularity” (= a unique region) around the pollination-droplet.  相似文献   

4.
Pollination in gymnosperms is usually accomplished by means of wind, but some groups are insect‐pollinated. We show that wind and insect pollination occur in the morphologically uniform genus Ephedra (Gnetales). Based on field experiments over several years, we demonstrate distinct differences between two Ephedra species that grow in sympatry in Greece in pollen dispersal and clump formation, insect visitations and embryo formation when insects are denied access to cones. Ephedra distachya, nested in the core clade of Ephedra, is anemophilous, which is probably the prevailing state in Ephedra. Ephedra foeminea, sister to the remaining species of the genus, is entomophilous and pollinated by a range of diurnal and nocturnal insects. The generalist entomophilous system of E. foeminea, with distinct but infrequent insect visitations, is in many respects similar to that reported for Gnetum and Welwitschia and appears ancestral in Gnetales. The Ephedra lineage is well documented already from the Early Cretaceous, but the diversity declined dramatically during the Late Cretaceous, possibly to near extinction around the Cretaceous–Palaeogene boundary. The clade imbalance between insect‐ and wind‐pollinated lineages is larger than expected by chance and the shift in pollination mode may explain why Ephedra escaped extinction and began to diversify again.  相似文献   

5.
  • Cockroaches have rarely been documented as pollinators. In this paper we examine whether this is because they might be inefficient at pollination compared to other pollinators. Clusia blattophila, a dioecious shrub growing on isolated rocky outcrops in French Guiana, is pollinated by Amazonina platystylata cockroaches and provides a valuable system for the study of cockroach pollination efficiency.
  • We examined the species composition of the visitor guild and visitation rates by means of camcorder recordings and visitor sampling. Then, we investigated the capacity for pollen transfer of principal visitors and found correlations between visitation rates and pollen loads on stigmas. In an exclusion experiment we determined the contributions of individual species to pollination success.
  • Amazonina platystylata, crickets and two species of Diptera transferred pollen, but the number of transferred pollen grains was only related to visitation rates in the case of cockroaches. Crickets visited and rarely carried pollen. Dipterans were as frequent as cockroaches, carried similar pollen loads, but transferred much less pollen. An estimated 41% and 17% of ovules were pollinated by cockroaches and dipterans, respectively. The remaining ovules were not pollinated. There was no spatial variation in pollinator guild composition, but cockroaches visited flowers less frequently at the smaller study site.
  • We demonstrate that cockroaches pollinate a large proportion of ovules. Their pollination service is not confined to one study site and, unlike that provided by dipterans, is not limited to certain years. We suggest that cockroach pollination has been overlooked and that cockroach‐pollinated plants, which share certain floral features, possess adaptations to pollination by cockroaches.
  相似文献   

6.
A technique is presented that is capable of predicting the motion of airborne pollen grains and the probability of pollen capture by wind-pollinated plants. Equations for the motion of rigid-walled particles (= pollen grains, spores, or Sephadex beads) in a supporting, compressible fluid (= air) are derived from the first principles of fluid dynamics. These equations are incorporated into a computer program (MODEL) which can be used with a desktop computer. The operation of MODEL requires empirical data on the pattern of airflow or the motion of a pollen species around the surfaces of the taxonomically relevant ovulate plant organ. With this information, MODEL can predict the behavior of any pollen species for which physical properties (size and density) are specified or empirically known. The significance of this procedure lies in the quantification of physical phenomena that influence the mechanics and fluid dynamics of pollen capture in wind pollination. The technique is illustrated and tested by its application to two grass species (Setaria geniculata and Agrostis hiemalis) for which velocity fields of pollen motion have been previously reported.  相似文献   

7.
Observations and experiments were carried out over 5 yr to distinguish between wind and insect pollination in the cycad Encephalartos villosus Lemaire (Zamiaceae). They were also designed to determine whether a pollination mutualism exists between E. villosus and Antliarhinus zamiae (Thunberg) (Coleoptera: Brentidae), an obligate ovule parasite that routinely parasitizes a large proportion of the ovules. The percentage of fertilized ovules dropped slightly when wind was excluded from the megastrobilus. However, when insects were excluded by either net bags or insecticide there was a substantial decrease in the proportion of fertilized ovules. Five beetle species belonging to four families were found on the strobili at the time of pollination. Using data on the effectiveness of pollen transfer to the receptive ovule, as well as data on abundance and pollen loads, a pollinator importance value (PIV) was determined for each beetle species and a pollinator importance index (PII) was determined for each population. PII values showed that an undescribed weevil (Porthetes sp., Curculionidae) was consistently the most important pollinator. A. zamiae and an undescribed beetle species within the Xenoscelinae (Languriidae) played a minor role in pollination, and their contributions varied from year to year and between populations. Two additional beetle species, Metacucujus goodei Endrödy-Younga (Boganiidae) and a second species of Xenoscelinae, had very low PII values and probably had little or no effect on pollination. Low PIV scores for A. zamiae were a result of its low numbers on the microstrobilus and the tendency of the beetles to remain on the outside of the megastrobilus. In the interaction between E. villosus and A. zamiae, the cycad does not appear to benefit significantly from a pollination service and I interpret this to mean that the relationship is antagonistic rather than mutualistic. There is, however, a possible mutualism between Porthetes sp. and E. villosus.  相似文献   

8.
  • Pollen‐pistil interactions are a fundamental process in the reproductive biology of angiosperms and play a particularly important role in maintaining incipient species that exist in sympatry. However, the majority of previous studies have focused on species with syncarpous gynoecia (fused carpels) and not those with apocarpous gynoecia (unfused carpels).
  • In the present study, we investigated the growth of conspecific pollen tubes compared to heterospecific pollen tubes in Sagittaria species, which have apocarpous gynoecia. We conducted controlled pollinations between S. pygmaea and S. trifolia and observed the growth of conspecific and heterospecific pollen tubes under a fluorescence microscope.
  • Heterospecific and conspecific pollen tubes arrived at locules within the ovaries near simultaneously. However, conspecific pollen tubes entered into the ovules directly, whereas heterospecific tubes passed through the carpel base and adjacent receptacle tissue, to ultimately fertilize other unfertilized ovules. This longer route taken by heterospecific pollen tubes therefore caused a delay in the time required to enter into the ovules. Furthermore, heterospecific pollen tubes displayed similar growth patterns at early and peak pollination. The growth pattern of heterospecific pollen tubes at late pollination was similar to that of conspecific pollen tubes at peak pollination.
  • Heterospecific and conspecific pollen tubes took different routes to fertilize ovules. A delayed entry of heterospecific pollen into ovules may be a novel mechanism of conspecific pollen advantage (CPA) for apocarpous species.
  相似文献   

9.
Controlled self- and cross-pollinations were conducted on flowers of five mature Eucalyptus nitens trees. Levels of self-sterility of the trees ranged from 25.8 to 93.6%. Pollen tube numbers in styles and ovule penetration by pollen tubes was investigated 2 weeks after pollination by fluorescence microscopy. There were no significant differences between treatments in the number of pollen tubes present in styles or in the percentage of ovules penetrated by pollen tubes. Embryology of material harvested 2 and 4 weeks after pollination was investigated by bright-field microscopy. Fertilisation had taken place by 2 weeks after pollination with nearly every ovule showing evidence of fertilisation. Cross-pollination resulted in a greater proportion of healthy, developing ovules, at both 2 and 4 weeks after pollination, compared with self-pollination. The proportion of degenerating ovules increased from 2 to 4 weeks after pollination. The reduced ability of E. nitens to set self-pollinated seed compared with cross-pollinated seed appears to be controlled by a post-zygotic mechanism. Differences in ovule size may potentially assist in the identification of trees incapable of setting self-pollinated seed.  相似文献   

10.
Aerodynamic analyses showing characteristic airflow patterns and the potential for wind-mediated pollination are presented for models of Paleozoic (Carboniferous) ovules and ovulate cupules (i.e., Genomosperma kidstoni, G. latens, Salpingostoma dasu, Physostoma elegans, Eurystoma angulare, and Stamnostoma huttonense). Lobes on ovules and cupules are shown to produce localized regions of turbulent flow with a concomitant reduction in airflow velocity. Data based upon models that mimic the characteristics of windborne pollen (= pseudopollen) show that these regions of turbulent flow correspond to those in which suspended pseudopollen impact with ovule and/or cupule surfaces. These data have bearing on a sequence of ovule morphologies purported to show the evolution of the integument by the progressive reduction in length of “preintegumentary” lobes and their acropetal fusion. As the preintegumentary lobes of the models studied consolidate around the megasporangium, regions of turbulent flow and high pseudopollen impact become localized around the pollen chamber or salpinx. The general morphologic trend envisioned for the evolution of the ovule is seen to be associated with an aerodynamic streamlining and an increased potential for wind-mediated pollination. Data for hair-bearing ovules and for ovulate cupules are discussed within the context of possible selective pressures favouring streamlining.  相似文献   

11.
Comparisons are presented between the three-dimensional airflow patterns created around and by a scale model of a conifer ovulate cone and the trajectories of windborne pollen grains around Picea, Larix, and Pinus ovulate cones. Three general components of the airflow pattern around an ovulate cone model are 1) doldrum-like eddies, rotating over the adaxial surfaces of cone scales and directed toward attached ovules, 2) airflow spiralling around the cone axis along cone scale orthostichies and parastichies, and 3) a complex pattern of vortices (“umbilicus”) directed toward the leeward surface of the ovulate cone. The observed trajectories of pollen grains around cones of Picea, Larix, and Pinus conform to two of these three airflow components: 1) pollen grains are seen to roll along cone scales toward the distal scale margin and to become reentrained in airflow directed backward toward attached ovules, and 2) pollen grains passing around the cone are deflected into the “umbilicus” airflow pattern, where they either settle on or impact with cone scales (approach trajectories), or where they approach the leeward cone surface but are deflected away by airflow passing under the cone (Z-shaped trajectories). Vectoral analyses of pollen grain motion reveal a complex pattern of trajectories influenced by boundary layer conditions defined by ovulate cone geometry and ambient airflow speed. Wind tunnel studies of ovulate cones subtended by leaves and stem indicate that leaves circumscribing the cone act as a snowfence, deflecting windborne pollen toward the cone. Vectoral analyses of airflow patterns and pollen grain trajectories close to ovulate cones indicate that wind pollination in conifers is a non-stochastic aerodynamic process influenced by cone-leaf morphology and the behavior of pollen grains as windborne particles.  相似文献   

12.
Pollination biology of two Gnetum species was studied in a lowland mixed dipterocarp forest in Sarawak, Malaysia. A dioecious shrub species, G. gnemon var. tenerum, flowered in the evening and its strobili emitted a stinking odor. Pollination droplets were secreted from ovules on female strobili and from sterile ovules on male strobili in the evening. These strobili were visited by nectar-seeking moths of Pyralidae and Geometridae. Sticky pollen was attached on proboscides and antennae of these moths. A dioecious woody climber, G. cuspidatum, had cauline strobili on woody stems near the forest floor. Its male strobili emitted a funguslike odor in the evening and secreted nectar on collars that subtended “flower” rings. The strobili were visited by small flies of Lauxaniidae (Diptera), onto the antennae and legs of which pollen was attached. Evaporation of the exposed droplet/nectar of these Gnetum flowers seemed to be minimized by nocturnal flowering near the tropical rain forest floor. Another floral-structural constraint of gymnosperms, i.e., lack of showy petals, was compensated for by floral fragrancy. The prevalence of entomophily in the Gnetales (i.e., Gnetum, Ephedra, and Welwitschia) may suggest that unspecialized insect pollination originated before the divergence between the Gnetales and angiosperms.  相似文献   

13.
Wind tunnel analyses of Simmondsia chinensis (Link) Schneider or “jojoba” were conducted to quantify the behavior of airborne pollen grains around individual branches and leaves and near individual carpellate flowers. Field data (wind velocity) were used to ensure a correspondence between wind tunnel and natural conditions. Based upon the visualization of individual pollen grain trajectories, it is concluded that pollen deposition on stigmatic surfaces is influenced by large-scale aerodynamic patterns, generated by foliage leaves, and small-scale airflow patterns, formed around and by floral parts and stigmas. Leaves are seen to deflect airborne pollen grains into trajectories that can intersect ambient airflow at 90° angles, showering decumbent carpellate flowers with pollen. Similarly, flowers can deflect pollen upward and downwind, toward other flowers. The extent of floral bract and sepal recurvature is shown to influence the extent of pollen deposition by determining the characteristic airflow pattern around stigmas. Available evidence concerning the relatively recent evolutionary transition to anemophily in Simmondsia is interpreted within the context of morphological adaptations and exaptations favoring wind pollination.  相似文献   

14.
Although plant species with either animal or wind pollination modes are widespread and usually sympatric in nature, the degree of pollen interference from wind‐pollinated species on animal‐pollinated species remains little known. Conifer trees generally release a huge number of pollen grains into the air, floating into our noses and sometimes causing an allergic response. Here we document airborne pollen from two conifers (Pinus densata Mast. and Picea likiangensis (Franch.) E. Pritz.) deposited on the stigmas of eight coflowering insect‐pollinated angiosperms over 2 years in a mountainous forest community, in Shangri‐La, southwest China. Pollen density in the air as well as conifer pollen deposited onto stigmas at short and long distances from the airborne pollen source were quantified. Our results showed that conifer pollen as a proportion of total stigmatic pollen loads in the insect‐pollinated plants varied from 0.16% to 8.67% (3.16% ± 0.41%, n = 735) in 2016 and 0.66% to 5.38% (2.87% ± 0.86%, n = 180), and pollen quantity per unit area was closely related to that of airborne pollen in the air. Conifer pollen deposition on stigmas of insect‐pollinated species decreased greatly with increased distance from the pollen source. In the 10 plant species flowering in summer after conifer pollen release had finished, heterospecific pollen deposited on these stigmas came mainly from other insect‐pollinated flowers, with little contribution from airborne conifer pollen. The results indicate that there might be little interference with coflowering angiosperms by airborne pollen from dominant conifers in natural communities.  相似文献   

15.
 Many plant species exhibit inflorescence morphologies intermediate between pollination syndromes and may therefore employ generalist pollination strategies. We studied how wind and insect pollination are related to inflorescence morphology in the floodplain species Salix alba, S. elaeagnos, S. daphnoides and S. triandra. Insect exclusion experiments showed that all four species were primarily pollinated by insects, but were capable of some seed set when wind was the only pollen vector. Such a generalist pollination system may provide reproductive assurance in these pioneer species. High wind pollination success was associated with slender and divided stigmatic lobes and low ovule number per catkin, which may enhance filtering capacity for airborne pollen. In contrast, species that relied more on insect pollination had robust stigmata and many ovules per catkin, which may reduce the number of insect visits necessary for pollination. Received April 18, 2002; accepted July 23, 2002 Published online: November 28, 2002 Addresses of authors: S. Karrenberg (e-mail: karrenberg@bio.indiana.edu), Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA. P. J. Edwards, Geobotanical Institute, ETH, Zürichbergstrasse 38, CH-8044 Zürich, Switzerland. J. Kollmann, Department of Ecology, Royal Veterinary and Agricultural University, Rolighedsvej 21, DK-1958 Frederiksberg, Denmark.  相似文献   

16.
We studied the relative roles of insects and wind as pollen vectors for the arroyo willow, Salix lasiolepis Benth. through insect exclosure studies at two elevational sites. Insect pollination resulted in production of 99.9% of seeds at a low elevation site (2,130 m) and at a high elevation site (2,450 m) with wind playing an exceedingly small role. Few pollen grains reached individual pistillate catkins despite the presence of abundant airborne willow pollen near male plants. In flowers that showed evidence of receipt of wind transferred pollen, due to their swollen appearance, we found only 1.74 fertilized ovules per flower and that 90.9% of these fertilized ovules were aborted by the maternal plant. In contrast, flowers open to insect visitation possessed 7.00 fertilized ovules per flower, 83.3% of which became filled seeds. We tested for the existence of apomictic seed production through use of closed bags that excluded both insect-and wind-transferred pollen but found no evidence of seed produced in this treatment. Additional control studies documented that wind treatment bags did not impede pollen flow while neither wind or closed bags influenced seed set in our treatments.  相似文献   

17.
Summary Two techniques were useful in overcoming hybrid inviability between N. repanda and N. tabacum. These techniques combine gamma-ray irradiation to pollen or to egg cells (in ovules) with in vitro culture of fertilized ovules. When in vitro culture of fertilized ovules from in situ hybridization of N. repanda x N. tabacum was combined without gamma-ray irradiation to pollen or to egg cells (in ovules), all of the resulting seedlings developed chlorosis and died. Furthermore, in the case of in situ hybridization of N. repanda x N. tabacum with gamma-ray irradiated N. tabacum pollen, no viable seeds were obtained. By using both techniques, combining gamma-ray irradiation to N. tabacum pollen or to egg cells in (N. repanda ovules) with in vitro culture of fertilized ovules, we were successful in obtaining flowering hybrid plants. Thus, it appears that it may be possible to overcome hybrid inviability to a certain extent using both the pollen irradiation technique and the egg cell irradiation technique, i.e., gamma-ray irradiation to pollen or to egg cells (in ovules) before pollination and in vitro culture of fertilized ovules.The research reported in this paper is in partial fulfillment of PhD requirements for the senior author  相似文献   

18.
  • Breeding systems of plants determine their reliance on pollinators and ability to produce seeds following self‐pollination. Self‐sterility, where ovules that are penetrated by self‐pollen tubes that do not develop into seeds, is usually considered to represent either a system of late‐acting self‐incompatibility or strong early inbreeding depression. Importantly, it can lead to impaired female function through ovule or seed discounting when stigmas receive mixtures of self and cross pollen, unless cross pollen is able to reach the ovary ahead of self pollen (‘prepotency’). Self‐sterility associated with ovule penetration by self‐pollen tubes appears to be widespread among the Amaryllidaceae.
  • We tested for self‐sterility in three Cyrtanthus species – C. contractus, C. ventricosus and C. mackenii – by means of controlled hand‐pollination experiments. To determine the growth rates and frequency of ovule penetration by self‐ versus cross‐pollen tubes, we used fluorescence microscopy to examine flowers of C. contractus harvested 24, 48 and 72 h after pollination, in conjunction with a novel method of processing these images digitally. To test the potential for ovule discounting (loss of cross‐fertilisation opportunities when ovules are disabled by self‐pollination), we pollinated flowers of C. contractus and C. mackenii with mixtures of self‐ and cross pollen.
  • We recorded full self‐sterility for C. contractus and C. ventricosus, and partial self‐sterility for C. mackenii. In C. contractus, we found no differences in the growth rates of self‐ and cross‐pollen tubes, nor in the proportions of ovules penetrated by self‐ and cross‐pollen tubes. In this species, seed set was depressed (relative to cross‐pollinated controls) when flowers received a mixture of self and cross pollen, but this was not the case for C. mackenii.
  • These results reveal variation in breeding systems among Cyrtanthus species and highlight the potential for gender conflict in self‐sterile species in which ovules are penetrated and disabled by pollen tubes from self pollen.
  相似文献   

19.
Pollination success and pollen dispersal in natural populations depend on the spatial‐temporal variation of flower abundance. For plants that lack rewards for pollinators, pollination success is predicted to be negatively related to flower density and flowering synchrony. We investigated the relationships between pollination success and flower abundance and flowering synchrony, and estimated pollinia dispersal distance in a rewardless species, Changnienia amoena (Orchidaceae). The results obtained in the present study revealed that male pollination success was negatively influenced by population size but was positively affected by population density, whereas female pollination success was independent of both population size and density. Phenotypic analysis suggested that highly synchronous flowering was advantageous through total pollination success, which is in contrast to previous studies. These results indicate that pollination facilitation rather than competition for pollinator visits occurs in this rewardless plant. The median distance of pollinia dispersal was 11.5 m (mean distance = 17.5 m), which is comparable to that of other rewardless plants but longer than for rewarding plants. However, pollen transfer occured mainly within populations; pollen import was a rare event. Restricted gene flow by pollinia and seeds probably explains the previous population genetic reporting a high degree of genetic differentiation between populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 477–488.  相似文献   

20.
Empirically determined patterns of pollen impaction on the surfaces of pine ovulate cones are correlated with regions of nonlaminar flow created by the spatial arrangement and morphology (aspect ratios) of scale-bract complexes. Results from the serial discharge of pollen, upwind of ovulate cones, indicate that ovules on ovulate cones are preferentially impacted by pollen from their own species. Analyses indicate that while aerodynamic factors dominate the entrapment of pollen by ovulate cones, other factors such as pollen impaction-rebound and rebound-reentrainment are significant. Surface characteristics in addition to the settling velocities of pollen may play important roles in determining pollination efficiency. Wind tunnel analyses of the aerodynamic effects of scale-bract arrangement and aspect ratios indicate that each complex behaves as an aerofoil, deflecting air eddies toward the micropylar ends of ovules. The ovulate cone geometry, as a whole, deflects unidirectional wind into cyclonic vortices around the cone axis, each scale-bract deflecting nonimpacted pollen along orthostichies and parastichies. The morphology of the typical conifer ovulate cone is interpreted as a structure that optimizes anemophilous reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号