首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
BACKGROUND: WWOX (WW domain-containing oxidoreductase) gene, located on chromosome 16q 23.3-24.1 in the region recognized as the common fragile site FRA16D is considered to be a tumor suppressor gene involved in various cancers: breast, ovarian, prostate, esophageal, lung, pancreatic, gastric and hepatic. The aim of this study was to describe (i) putative protein interactions of WWOX (ii) the molecular mechanisms of tumor suppressor activity (iii) present an overview of WWOX in relation to nervous system and breast, prostate and ovarian cancers. METHODS AND RESULTS: WWOX expression is up-regulated in endocrine organs indicating its importance in these tissues. In many cancers WWOX expression is down-regulated and low WWOX expression is related to poor prognosis. CONCLUSION: All the evidence suggest that WWOX can be considered as a new tumor suppressor gene and target for gene therapy due to the association of high WWOX expression with improved disease free survival.  相似文献   

2.
WWOX is a tumour suppressor gene that spans the common fragile site FRA16D. Analysis of the WWOX expression pattern in normal human tissues showed the highest expression in testis, prostate, and ovary. Its altered expression has been demonstrated in different tissues and tumour types. The WWOX gene encodes a 414-amino acids protein, which is the first discovered protein with a short-chain dehydrogenase/reductase (SDR) central domain and two WW domains at the NH2 terminus. Due to its potential role in sex-steroid metabolism, using two bacterial expression systems, we have cloned WWOX fusion proteins showing oxidoreductase activity in a crude extract, defined a course of enzymatic reactions for selected steroid substrates, and determined related Km values. Our results show that the SDR domain of the WWOX protein has dehydrogenase activity and is reactive both in the presence of NAD+ and NADP+ for all examined steroid substrates. On the other hand, with the same substrates and reduced cofactors (NADH and NADPH) reduction activity was not observed.  相似文献   

3.
A novel protein epimorphin has been identified as a mesenchymal signal factor. We reported previously ubiquitous expression of epimorphin in normal skin and a significant increased expression in diseased human skin. The present immunofluorescence study was conducted to determine systematically the distribution of epimorphin in adult human organs with an anti-epimorphin monoclonal antibody. Epimorphin was found to be widely distributed in all human organs examined. It was present in the connective tissue adjacent to or around various epithelial tissues, muscles and vessels. In particular, strong staining was present on the endomysium of muscles, the adventitia of blood vessels, along the sinusoidal lining of hepatocytes and connective tissue around epithelial cells, exocrine and endocrine glands. The results suggest that epimorphin may play a key role in maintaining normal tissue structure and interaction between mesenchymal tissue and epithelial tissue in vivo. ©; 1998 Chapman & Hall  相似文献   

4.
We previously reported that cell lines established from human carcinomas and leukemias/lymphomas expressed high levels of an intracellular membrane-bound protein, Haymaker, whereas cell lines derived from non-malignant connective tissue cells and lymphoid cells expressed low levels of this gene product. To determine whether these findings reflect neoplastic transformation or, alternatively, tissue specificity, we examined by immunohistochemical and molecular methods the expression of Haymaker in gynecologic organs with and without tumor. A highly specific, affinity-purified rabbit polyclonal antibody against a 25-mer Haymaker peptide was used for immunohistochemical staining and morphometric analysis of 85 tissue specimens. Immunohistochemical studies demonstrate, for the first time, that Haymaker protein is highly expressed in epithelial cells of the endometrium of the normal uterus and to a somewhat lesser extent in the mucosa of the normal vagina and cervix, but is poorly expressed or absent in cells of the connective tissue and smooth muscle strata of these organs (p < 0.005). Significant differences in Haymaker expression, as assessed by immunohistochemistry, between malignant and normal gynecologic tissues were not observed (p = 0.27). The expression of Haymaker protein does not appear, therefore, to be a marker of malignant transformation of the epithelium of gynecologic organs but rather distinguishes both normal and malignant epithelial cells from normal connective tissue and smooth muscle cells.  相似文献   

5.
6.
KDR has been implicated for playing an important role in the formation of new blood vessels and in solid tumor growth. It was considered as one of the most important regulators of angiogenesis and a key target in anticancer treatment. In the present study, we characterized KDR mRNA and protein expression in normal tissues of perinatal and adult tissues using One-step Real-Time RT-PCR and immunohistochemistry with a self-made anti-KDR antibody. The expression of KDR mRNA and protein in perinatal internal organs were all higher than in adult organs including brain, kidney, liver, lung and heart, respectively. KDR protein was presented in the cell plasma membrane of human internal tissues. The expression of KDR protein was raised in macrophage of spleen, and decreased in neurons of brain, myocardium, bronchial epithelial cells and alveolar epithelial cell, proximal and distal tubules cells, and hepatic cells with the maturity process of human organs. Notably, the order of KDR protein expression from highest to lowest is as follows: brain, liver, heart, kidney, and lung in adult tissues with statistically significant. It follows that how to balance the potential therapeutic side effect with human internal organs in targeted therapy of over-expressing KDR tumor.  相似文献   

7.
Cyclic nucleotide phosphodiesterase 11A (PDE11A) is the newest member in the PDE family. Although the tissue distribution of PDE11A mRNA has been shown, its protein expression pattern has not been well studied. The goal of this report is to investigate the distribution of PDE11A proteins in a wide range of normal and malignant human tissues. We utilized a polyclonal antibody that recognized all four PDE11A isoforms. Its specificity was demonstrated by Western blot analysis on a recombinant human PDE11A protein and native PDE11A proteins in various human tissues. Immunohistochemistry showed that PDE11A is widely expressed. Various degrees of immunoreactivity were observed in the epithelial cells, endothelial cells, and smooth muscle cells of all tissues examined. The highest expression was in the epithelial, endothelial, and smooth muscle cells of the prostate, Leydig, and spermatogenic cells of the testis, the tubule epithelial cells in the kidney, the epithelial and endothelial cells in the adrenal, the epithelial cells and macrophages in the colon, and the epidermis in the skin. Furthermore, PDE11A expression was also detected in several human carcinomas. Our results suggest that PDE11A might be involved in multiple physiological processes in various organs via its ability to modulate intracellular cAMP and cGMP levels.  相似文献   

8.
WWOX was cloned as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. Deletions affecting WWOX accompanied by loss of expression are frequent in various epithelial cancers. Translocations and deletions affecting WWOX are also common in multiple myeloma and are associated with worse prognosis. Metanalysis of gene expression datasets demonstrates that low WWOX expression is significantly associated with shorter relapse-free survival in ovarian and breast cancer patients. Although somatic mutations affecting WWOX are not frequent, analysis of TCGA tumor datasets led to identifying 44 novel mutations in various tumor types. The highest frequencies of mutations were found in head and neck cancers and uterine and gastric adenocarcinomas.  相似文献   

9.
Calcium-activated nucleotidase 1 (CANT1, belongs to the apyrase family, is widely expressed in various organs. However, the biological function of CANT1 remains poorly explored. In this study, we aimed to investigate the expression profile and functions of CANT1 in clear cell renal cell carcinoma (ccRCC). Our data show that the protein level of CANT1 was significantly higher in tumor tissues than in adjacent normal tissues. CANT1 silencing suppressed cell proliferation, migration, and invasion obviously in 769-P and 786-O cells, arrested cell cycle in S phase and promoted apoptosis in 769-P cells. In conclusion, the present study shows the different expression mode of CANT1 in human ccRCC tumor tissue and adjacent normal tissue, denotes the function of CANT1 in ccRCC cells and provides potential molecular mechanisms and pathways of CANT1 antitumor function in ccRCC.  相似文献   

10.
11.
LRIG1 protein in human cells and tissues   总被引:6,自引:0,他引:6  
We have recently cloned the human LRIG1 gene (formerly LIG1). LRIG1 is a predicted integral cell-surface protein showing similarities to Kekkon-1, the Drosophila melanogaster epidermal growth-factor-receptor antagonist. A specific peptide antibody, LRIG1-151, was raised in rabbits and used to study the LRIG1 protein. LRIG1 migrated in denaturing polyacrylamide gel electrophoresis under reducing conditions as two species with apparent molecular weights of 143 kDa and 134 kDa, and as two fragments corresponding to an N-terminal 111-kDa species and a C-terminal 32-kDa species. Under non-reducing conditions, both apparent monomers and apparent higher molecular weight complexes were evident. Immunoblotting analysis of cell-surface-biotinylated lysates and confocal microscopy revealed that LRIG1 was localized to the cell surface in ZR-75 cells expressing endogenous LRIG1 and in COS-7 cells expressing a synthetic LRIG1-GFP fusion protein. Immunohistochemical analysis of normal human tissues showed staining for LRIG1 in epithelia in various organs, scattered neurons, and muscles. Immunoblotting demonstrated LRIG1 protein in tissue lysates from normal human prostate, mammary epithelial cells, ileum, stomach, lung, and cerebral cortex. These results demonstrate that LRIG1 is an integral cell-surface membrane protein that is expressed by specific cells in various human tissues and that its 143-kDa form might be cleaved into 111-kDa and 32-kDa fragments.  相似文献   

12.
Mutations of integrin-interacting protein Kindlin-1 cause Kindler syndrome and deregulation of Kindlin-1 is implicated in human cancers. The Kindlin-1-related diseases are confined in limited tissue types. However, Kindlin-1 tissue distribution and the dogma that governs Kindlin-1 expression in normal human body are elusive. This study examined Kindlin-1 expression in normal human adult organs, human and mouse embryonic organs by immunohistochemical analyses. We identified a general principle that the level of Kindlin-1 expression in tissues is tightly correlated with the corresponding germ layers from which these tissues originate. We compared the expression of Kindlin-1 with Kindlin-2 and found that Kindlin-1 is highly expressed in epithelial tissues derived from ectoderm and endoderm, whereas Kindlin-2 is mainly expressed in mesoderm-derived tissues. Likewise, Kindlin-1 was also found highly expressed in endoderm/ectoderm-derived tissues in human and mouse embryos. Our findings indicate that Kindlin-1 may play an importance role in the development of endoderm/ectoderm related tissues.  相似文献   

13.
Matriptase is a type II transmembrane serine protease that has been implicated in the progression of epithelium-derived tumors. The role of this protease in the biology of normal epithelial cells remains to be elucidated. Matriptase mRNA has been detected by Northern analysis in tissues rich in epithelial cells, and the protein is expressed in vivo in normal and cancerous breast, ovarian, and colon tissues. However, a systematic analysis of the distribution of matriptase protein and mRNA in normal human tissues rich in epithelium has not been reported. In this study we characterized the expression of the protease in a wide variety of normal human tissues using a tissue microarray and whole tissue specimens. Significant immunoreactivity and mRNA expression were detected in the epithelial components of most epithelium-containing tissues. Matriptase expression was found in all types of epithelium, including columnar, pseudostratified columnar, cuboidal, and squamous. Distinct spatial distributions of reactivity were observed in the microanatomy of certain tissues, however. This suggests that although matriptase is broadly expressed among many types of epithelial cells, its activity within a tissue may be regulated in part at the protein and mRNA levels during the differentiation of selected epithelia.  相似文献   

14.
In this report we describe the expression of the ras proto-oncogene p21 protein in various tissues during normal fetal development. Conventional, formalin fixed and paraffin-embedded sections of normal organs were examined from fetuses ranging 9 to 42 weeks of gestation. Immunohistochemical localization of ras p21 was accomplished using the broadly reactive, mouse monoclonal antibodies RAP-5 and Y13-259. The monoclonal antibody DWP, which is specific for a mutated form of ras p21 having a valine/cysteine at amino acid position 12, was also used. Detectable expression of the p21 protein was seen at different time periods during fetal development depending on the tissue. The expression of ras p21 (as detected by RAP-5 and Y13-259) was noted in a wide range of cell types and tissues; intense immunostaining was noted in epithelial cells of the gastrointestinal tract, exocrine and endocrine pancreas, renal tubules and transitional urotheliem, as well as in other tissues. This immunostaining generally, but not invariably, corresponded with patterns previously reported in benign and/or malignant neoplasms of adult tissues. In most instances ras p21 expression, when present, occurred during periods of rapid growth in given organ systems. However, some actively proliferating fetal tissues such as thymus and spleen, failed to express detectable ras p21 suggesting that factors other than cell cycle may influence its expression. No reactivity with DWP was noted in any of the tissues, suggesting that the mutated forms detected by this monoclonal antibody are not expressed during normal human embryogenesis. These data show that there is regulated expression, and broad distribution of this gene product in normal developing human fetal tissue.  相似文献   

15.
16.
WWOX is a >1Mb gene spanning FRA16D Common Chromosomal Fragile Site, a region of DNA instability in cancer. Consequently, altered WWOX levels have been observed in a wide variety of cancers. In vitro studies have identified a large number and variety of potential roles for WWOX. Although its normal role in vivo and functional contribution to cancer have not been fully defined, WWOX does have an integral role in metabolism and can suppress tumor growth. Using Drosophila melanogaster as an in vivo model system, we find that WWOX is a modulator of TNFα/Egr-mediated cell death. We found that altered levels of WWOX can modify phenotypes generated by low level ectopic expression of TNFα/Egr and this corresponds to altered levels of Caspase 3 activity. These results demonstrate an in vivo role for WWOX in promoting cell death. This form of cell death is accompanied by an increase in levels of reactive oxygen species, the regulation of which we have previously shown can also be modified by altered WWOX activity. We now hypothesise that, through regulation of reactive oxygen species, WWOX constitutes a link between alterations in cellular metabolism observed in cancer cells and their ability to evade normal cell death pathways. We have further shown that WWOX activity is required for the efficient removal of tumorigenic cells from a developing epithelial tissue. Together these results provide a molecular basis for the tumor suppressor functions of WWOX and the better prognosis observed in cancer patients with higher levels of WWOX activity. Understanding the conserved cellular pathways to which WWOX contributes provides novel possibilities for the development of therapeutic approaches to restore WWOX function in cancer.  相似文献   

17.
To examine the localization of von Hippel–Lindau (VHL) protein in human tissues, we produced four novel monoclonal antibodies against human VHL protein. Western blot analysis revealed that two of these antibodies recognized the epitope in amino acid sequence 60–89 of the VHL protein and the others recognized sequences 54–60 and 189–213. In a wild-type VHL gene-transfected cell line, immunocytochemistry and immunoelectron microscopy demonstrated the intracytoplasmic localization of VHL protein, particularly in mitotic cells. In normal human tissues, VHL protein was detected immunohistochemically in epithelial cells covering the body surface and the alimentary, respiratory, and genitourinary tracts; in secretory epithelial cells of exocrine and endocrine organs; in parenchymal cells of visceral organs; in cardiomyocytes; in neurons in nervous tissue; in lymphocytes in lymphoid tissue; and in macrophages. In pathological specimens, VHL protein was expressed in VHL-related tumor, as well as in endothelial cells, fibroblasts, and pericytes, all of which are involved in active angiogenesis. These findings suggest that these monoclonal antibodies can be useful for various immunological assays and that the VHL protein plays fundamental roles in physiological and pathological situations, especially in neovascularization.  相似文献   

18.
The antisecretory factor, AF, is a 41-kDa protein, cloned and sequenced from a human pituitary library. AF is a potent inhibitor of experimental intestinal hypersecretion in rats and pigs. An antiserum against the C-terminal of the truncated, recombinantly produced AF protein was raised in rabbits. The affinity-purified antiserum was used to study the expression of AF in mucosal membranes and in the pituitary gland of the pig; distinctly stained cells were found in lymphoid cells in the connective tissue of all parts of the gastrointestinal, respiratory and urinary tracts. Cytoplasmic AF was demonstrated in endocrine and epithelial cells in the pituitary gland. In situ hybridisation with a digoxigenin-labelled mRNA probe also demonstrated specific cytoplasmic staining in epithelial and lymphoid cells in all of these tissues. The cells stained by either method were similarly distributed topographically within the tissues. The results suggest that a specific defined cell population in these various tissues possesses the capability of both synthesising and storing the AF protein within the cellular cytoplasmic compartment.  相似文献   

19.
The novel antigen K114 (AgK114) has been previously identified in normal hamster skin, and its expression has been up-regulated accompanying tissue damages of the skin, although there is no information on its biological functions. To determine the physiological role of AgK114, we prepared anti-mouse AgK114 monoclonal antibody and studied its tissue distribution in healthy adult mice by immunocytochemistry. A widespread and unique expression of AgK114 peptide was found in the selected organs of various systems (hair follicle cells and sebaceous gland of skin, ciliated epithelial cells of trachea and bronchial tube, striated portion of submandibular gland, distal convoluted tubule cells of kidney, ciliated epithelial cells of oviduct, medulla of adrenal gland and anterior lobe of pituitary gland). Interestingly, dual expression of AgK114 peptide and growth hormone in somatotrophs was found in anterior lobe of pituitary gland by double immunocytochemistry. AgK114 peptide was expressed widely in many regionally well-defined cellular systems in various peripheral tissues, suggesting that AgK114 peptide may have some roles of physiological functions in these organs. The data from our current study have provided a rationale for further studies of functional roles of AgK114 peptide in a variety of organs or tissues under physiological conditions.  相似文献   

20.
研究前列腺组织中神经生长因子(NGF) 的生理学意义。采用原位杂交和免疫组化法, 检测43 例前列腺增生组织, 8 例腺癌组织和8 例正常组织中β-NGFm RNA及其蛋白的表达及分布。结果显示β-NGFm RNA 在正常组织及增生组织中定位于间质细胞, 偶见于上皮细胞中; 而在癌组织中, 上皮细胞和间质细胞有同样强度的β-NGFm RNA染色。其蛋白在良性组织中表达主要着色在间质细胞中,上皮细胞呈弱表达,而癌组织中上皮细胞见着色明显增强(P< 0.05)。NGF的自分泌异常可见是前列腺组织由良性向恶性转变的原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号