首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pawar RS  Shukla YJ  Khan SI  Avula B  Khan IA 《Steroids》2007,72(6-7):524-534
Hoodigosides A-K (1-11), eleven new oxypregnane glycosides and a previously reported oxypregnane glycoside P57AS3 were isolated from the aerial parts of Hoodia gordonii. The structures of these 12-O-beta-tigloyl isoramanone glycosides were determined on the basis of chemical evidence and extensive spectroscopic methods that include one-dimensional and two-dimensional NMR. Cytotoxicity and antioxidant activities of these compounds were tested in cell based assays where they were found to be inactive.  相似文献   

2.
Pawar RS  Shukla YJ  Khan IA 《Steroids》2007,72(13):881-891
Ten new pregnane glycosides (1, 3-11) were isolated from organic extracts of aerial parts of Hoodia gordonii, which is sold as an appetite suppressant herbal supplement. The aglycone was identified as calogenin, based on the spectroscopic data of products obtained upon chemical and enzymatic degradation of parent glycoside. The structures of the glycosides were established by chemical degradation studies and extensive spectroscopic techniques that included one-dimensional and two-dimensional NMR.  相似文献   

3.
The sense of taste is a chemosensory system responsible for basic food appraisal. Humans distinguish between five primary tastes: bitter, sweet, sour, salty and umami. The molecular events in the perception of bitter taste are believed to start with the binding of specific water-soluble molecules to G-protein-coupled receptors encoded by the TAS2R/T2R family of taste receptor genes. TAS2R receptors are expressed at the surface of taste receptor cells and are coupled to G proteins and second messenger pathways. We have identified, cloned and characterized 11 new bitter taste receptor genes and four new pseudogenes that belong to the human TAS2R family. Their encoded proteins have between 298 and 333 amino acids and share between 23 and 86% identity with other human TAS2R proteins. Screening of a mono-chromosomal somatic cell hybrid panel to assign the identified bitter taste receptor genes to human chromosomes demonstrated that they are located in chromosomes 7 and 12. Including the 15 sequences identified, the human TAS2R family is composed of 28 full-length genes and 16 pseudogenes. Phylogenetic analyses suggest a classification of the TAS2R genes in five groups that may reflect a specialization in the detection of specific types of bitter chemicals.  相似文献   

4.
BACKGROUND: During periods of human expansion into new environments, recognition of bitter natural toxins through taste may have conferred an important selective advantage. The G protein-coupled receptor encoded by TAS2R16 mediates response to salicin, amygdalin, and many bitter beta-glucopyranosides. beta-glucopyranosides are ubiquitous in nature, with many having a highly toxic cyanogenic activity. RESULTS: We examined evidence for natural selection on the human receptor TAS2R16 by sequencing the entire coding region, as well as part of the 5' and 3' UTRs, in 997 individuals from 60 human populations. We detected signatures of positive selection, indicated by an excess of evolutionarily derived alleles at the nonsynonymous site K172N and two linked sites and significant values of Fay and Wu's H statistics in 19 populations. The estimated age range for the common ancestor of the derived N172 variant is 78,700-791,000 years, placing it in the Middle Pleistocene and before the expansion of early humans out of Africa. Using calcium imaging in cells expressing different receptor variants, we showed that N172 is associated with an increased sensitivity to salicin, arbutin, and five different cyanogenic glycosides. CONCLUSION: We have detected a clear signal of positive selection at the bitter-taste receptor gene TAS2R16. We speculate that the increased sensitivity that is shown toward harmful cyanogenic glycosides and conferred by the N172 allele may have driven the signal of selection at an early stage of human evolution.  相似文献   

5.
The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues. However, due to a lack in TAS2R-specifc antibodies the localization of receptor proteins within gustatory tissues has never been analyzed. In the present study we have screened a panel of commercially available antisera raised against human bitter taste receptors by immunocytochemical experiments. One of these antisera was found to be highly specific for the human bitter taste receptor TAS2R38. We further demonstrate that this antibody is able to detect heterologously expressed TAS2R38 protein on Western blots. The antiserum is, however, not able to interfere significantly with TAS2R38 function in cell based calcium imaging analyses. Most importantly, we were able to demonstrate the presence of TAS2R38 protein in human gustatory papillae. Using double immunofluorescence we show that TAS2R38-positive cells form a subpopulation of PLCbeta2 expressing cells. On a subcellular level the localization of this bitter taste receptor is neither restricted to the cell surface nor particularly enriched at the level of the microvilli protruding into the pore region of the taste buds, but rather evenly distributed over the entire cell body.  相似文献   

6.
The demand for diet products is continuously increasing, together with that for natural food ingredients. Stevioside and other steviol glycosides extracted from the leaves of the plant Stevia rebaudiana Bertoni are the first natural high-potency sweeteners to be approved for consumption in the United States and the European Union. However, the sweetness of these compounds is generally accompanied by aversive sensations, such as bitter and off-tastes, which may constitute a limit to their consumption. Moreover, consumers’ differences in sensitivity to high-potency sweeteners are well known, as well as difficulties in characterizing their aftertaste. Recently, TAS2R4 and TAS2R14 have been identified as the receptors that mediate the bitter off-taste of steviol glycosides in vitro. In the present study, we demonstrate that TAS2R4 gene polymorphism rs2234001 and TAS2R14 gene polymorphism rs3741843 are functional for stevioside bitterness perception.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0401-y) contains supplementary material, which is available to authorized users.  相似文献   

7.
The 25 human bitter receptors and their respective genes (TAS2Rs) contain unusually high levels of allelic variation, which may influence response to bitter compounds in the food supply. Phenotypes based on the perceived bitterness of single bitter compounds were first linked to food preference over 50 years ago. The most studied phenotype is propylthiouracil bitterness, which is mediated primarily by the TAS2R38 gene and possibly others. In a laboratory-based study, we tested for associations between TAS2R variants and sensations, liking, or intake of bitter beverages among healthy adults who were primarily of European ancestry. A haploblock across TAS2R3, TAS2R4, and TAS2R5 explained some variability in the bitterness of espresso coffee. For grapefruit juice, variation at a TAS2R19 single nucleotide polymorphism (SNP) was associated with increased bitterness and decreased liking. An association between a TAS2R16 SNP and alcohol intake was identified, and the putative TAS2R38-alcohol relationship was confirmed, although these polymorphisms did not explain sensory or hedonic responses to sampled scotch whisky. In summary, TAS2R polymorphisms appear to influence the sensations, liking, or intake of common and nutritionally significant beverages. Studying perceptual and behavioral differences in vivo using real foods and beverages may potentially identify polymorphisms related to dietary behavior even in the absence of known ligands.  相似文献   

8.
The recognition of potentially harmful food components by the gustatory system is important for survival and well-being of vertebrates. The plethora of structurally diverse bitter substances present in nature is recognized by multiple bitter taste receptors belonging to the taste receptor 2 family (TAS2R) of heptahelical receptors resulting in a highly complex mechanism of bitterness perception. In particular, research on human bitter taste receptors allowed the characterization of the receptive range of most of the 25 TAS2Rs, which was a prerequisite for detailed experiments to elucidate the structure–function relationships of TAS2Rs and for the discovery of the first reasonably specific TAS2R antagonists. These new findings will be the focus of the present review.  相似文献   

9.
Studies conducted at the Council for Scientific and Industrial Research (CSIR, South Africa) identified extracts from Hoodia species, in particular Hoodia pilifera and Hoodia gordonii, as possessing appetite suppressing properties. Two pregnane glycosides were isolated by fractionation of the dried stems of H. gordonii. Their structures were determined as 3beta-[beta-D-thevetopyranosyl-(1-->4)-beta-D- cymaropyranosyl-(1-->4)-beta-D-cymaropyranosyloxy]-12beta-tigloyloxy-14beta-hydroxypregn-5-en-20-one (1) and 3beta-[beta-D-cymaropyranosyl-(1-->4)-beta-D-6-thevetopyranosyl-(1-->4)-beta-D-cymaropyranosyl-(1-->4)-beta-D-cymaropyranosyloxy]-12beta-tigloyloxy-14beta-hydroxypregn-5-en-20-one (2) on the basis of spectroscopic studies and conversion to known compounds. Compounds 1 and 2 were also isolated from H. pilifera. Compound 1 was tested for its appetite suppressant properties in rats by oral gavage at 6.25-50 mg/kg and the results showed that all doses resulted in a decrease of food consumption over an eight day period and a body mass decrease when compared to the control sample receiving only the vehicle. In a comparative study against a fenfluramine control sample, compound 1 resulted in a reduction in food intake over the study period, with a concomitant overall decrease in body weight while fenfluramine resulted in a small decrease in food intake, but an increase in body weight (though less than control group) over the same period of time.  相似文献   

10.
Functional characterization of chemosensory receptors is usually achieved by heterologous expression in mammalian cell lines. However, many chemoreceptor genes, including bitter taste receptors (TAS2Rs), show only marginal cell surface expression. Usually, these problems are circumvented by using chimeric receptors consisting of "export tags" and the receptor sequence itself. It seems likely that chemoreceptor cells express factors for cell surface targeting of native receptor molecules in vivo. For TAS2Rs, however, such factors are still unknown. The present study investigates the influence of RTP and REEP proteins on the functional expression of human TAS2Rs in heterologous cells. We expressed hTAS2Rs in HEK 293T cells and observed dramatic differences in responsiveness to agonist stimulation. By immunocytochemistry we show accumulation of the bitter beta-glucopyranoside receptor hTAS2R16 in the Golgi compartment. Coexpression of RTP and REEP proteins changed the responses of some hTAS2Rs upon agonist stimulation, which is likely due to efficient cell surface localization as demonstrated by cell surface biotinylation experiments. The coimmunoprecipitation of hTAS2R16 and RTP3 or RTP4 suggests that the mechanism by which these cofactors influence hTAS2R16 function might involve direct protein-protein interaction. Finally, expression analyses demonstrate RTP and REEP gene expression in human circumvallate papillae and testis, both of which are sites of TAS2R gene expression.  相似文献   

11.
An HPLC-ESI-MS/MS method using collision induced dissociation - multiple reaction monitoring was developed for the quantification of eight Hoodia gordonii steroid glycosides and their metabolites in porcine plasma samples. The method was validated for the three most important glycosides and was successfully applied also for the related glycosides and metabolites. The limits of quantification were 0.04 ng ml(-1) for the two main steroid glycosides and 0.1 ng ml(-1) for the detiglated metabolites. These limits are sufficiently low to allow monitoring the concentration-time profiles in plasma after feeding H. gordonii. The standard deviations of the intra-day measurements were better than 20% for concentrations below 5 ng ml(-1) and better than 10% for concentrations above 5 ng ml(-1). The method was successfully applied to plasma samples collected from a porcine pharmacokinetics study.  相似文献   

12.
T2Rs (bitter taste-sensing type 2 receptors) are expressed in the oral cavity to prevent ingestion of dietary toxins through taste avoidance. They are also expressed in other cell types, including gut enteroendocrine cells, where their physiological role is enigmatic. Previously, we proposed that T2R-dependent CCK (cholecystokinin) secretion from enteroendocrine cells limits absorption of dietary toxins, but an active mechanism was lacking. In the present study we show that T2R signalling activates ABCB1 (ATP-binding cassette B1) in intestinal cells through a CCK signalling mechanism. PTC (phenylthiocarbamide), an agonist for the T2R38 bitter receptor, increased ABCB1 expression in both intestinal cells and mouse intestine. PTC induction of ABCB1 was decreased by either T2R38 siRNA (small interfering RNA) or treatment with YM022, a gastrin receptor antagonist. Thus gut ABCB1 is regulated through signalling by CCK/gastrin released in response to PTC stimulation of T2R38 on enteroendocrine cells. We also show that PTC increases the efflux activity of ABCB1, suggesting that T2R signalling limits the absorption of bitter tasting/toxic substances through modulation of gut efflux membrane transporters.  相似文献   

13.
The recent advances in the functional expression of TAS2Rs in heterologous systems resulted in the identification of bitter tastants that specifically activate receptors of this family. All bitter taste receptors reported to date exhibit a pronounced selectivity for single substances or structurally related bitter compounds. In the present study we demonstrate the expression of the hTAS2R14 gene by RT-PCR analyses and in situ hybridisation in human circumvallate papillae. By functional expression in HEK-293T cells we show that hTAS2R14 displays a, so far, unique broad tuning towards a variety of structurally diverse bitter compounds, including the potent neurotoxins, (-)-alpha-thujone, the pharmacologically active component of absinthe, and picrotoxinin, a poisonous substance of fishberries. The observed activation of heterologously expressed hTAS2R14 by low concentrations of (-)-alpha-thujone and picrotoxinin suggests that the receptor is sufficiently sensitive to caution us against the ingestion of toxic amounts of these substances.  相似文献   

14.
15.
Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells. Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature. For example, human TAS2R16 (hTAS2R16) responds to β-glucosides such as salicin, and hTAS2R38 responds to thiourea-containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16 point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors, such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid as a pharmacological tool for understanding the cell biology of bitter taste and as a lead for the development of broad specificity bitter blockers to improve nutrition and medical compliance.  相似文献   

16.
Bitter taste receptors (TAS2Rs) on the tongue probably evolved to evoke signals for avoiding ingestion of plant toxins. We found expression of TAS2Rs on human airway smooth muscle (ASM) and considered these to be avoidance receptors for inhalants that, when activated, lead to ASM contraction and bronchospasm. TAS2R agonists such as saccharin, chloroquine and denatonium evoked increased intracellular calcium ([Ca2(+)](i)) in ASM in a Gβγ-, phospholipase Cβ (PLCβ)- and inositol trisphosphate (IP?) receptor-dependent manner, which would be expected to evoke contraction. Paradoxically, bitter tastants caused relaxation of isolated ASM and dilation of airways that was threefold greater than that elicited by β-adrenergic receptor agonists. The relaxation induced by TAS2Rs is associated with a localized [Ca2(+)](i) response at the cell membrane, which opens large-conductance Ca2(+)-activated K(+) (BK(Ca)) channels, leading to ASM membrane hyperpolarization. Inhaled bitter tastants decreased airway obstruction in a mouse model of asthma. Given the need for efficacious bronchodilators for treating obstructive lung diseases, this pathway can be exploited for therapy with the thousands of known synthetic and naturally occurring bitter tastants.  相似文献   

17.
Many physiological functions of the stomach depend on an intact mucosal integrity; function reflects structure and vice versa. Histamine in the stomach is synthesized by histidine decarboxylase (HDC), stored in enterochromaffin-like (ECL) cells, and released in response to gastrin, acting on CCK(2) receptors on the ECL cells. Mobilized ECL cell histamine stimulates histamine H(2) receptors on the parietal cells, resulting in acid secretion. The parietal cells express H(2), M(3), and CCK(2) receptors and somatostatin sst(2) receptors. This review discusses the consequences of disrupting genes that are important for ECL cell histamine release and synthesis (HDC, gastrin, and CCK(2) receptor genes) and genes that are important for "cross-talk" between H(2) receptors and other receptors on the parietal cell (CCK(2), M(3), and sst(2) receptors). Such analysis may provide insight into the functional significance of gastric histamine.  相似文献   

18.
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.  相似文献   

19.
The human bitter taste receptors (TAS2Rs) belong to the GPCR family, while the activation mechanism and how TAS2Rs recognise bitter ligands are poorly understood. In this study, 3D structure of TAS2R16 was constructed using homology modelling complemented with molecular dynamics method. Salicin and probenecid were docked to TAS2R16 receptor to investigate the possible activation mechanism of TAS2R16. The results show that salicin and probenecid locate at the binding pocket made up of transmembrane helices TM3, TM5 and TM7, and the second and third extracellular loops ECL2 and ECL3. Structural analysis reveals that the network interactions at the third intracellular loop ICL3 may play a crucial role in stabilising the inactive state of TAS2R16, and structural change in the intracellular region is correlated with the activation of TAS2R16. The binding energies of salicin and probenecid to TAS2R16 are ?152.81 ± 15.09 and ?271.90 ± 26.97 kJ/mol, respectively, indicating that a potential antagonist should have obviously stronger binding affinity.  相似文献   

20.
Variation in responsiveness to bitter-tasting compounds has been associated with differences in alcohol consumption. One strong genetic determinant of variation in bitter taste sensitivity is alleles of the TAS2R gene family, which encode chemosensory receptors sensitive to a diverse array of natural and synthetic compounds. Members of the TAS2R family, when expressed in the gustatory system, function as bitter taste receptors. To better understand the relationship between TAS2R function and alcohol consumption, we asked if TAS2R variants are associated with measures of alcohol consumption in a head and neck cancer patient cohort. Factors associated with increased alcohol intake are of strong interest to those concerned with decreasing the incidence of cancers of oral and pharyngeal structures. We found a single nucleotide polymorphism (SNP) located within the TAS2R13 gene (rs1015443 [C1040T, Ser259Asn]), which showed a significant association with measures of alcohol consumption assessed via the Alcohol Use Disorders Identification Test (AUDIT). Analyses with other SNPs in close proximity to rs1015443 suggest that this locus is principally responsible for the association. Thus, our results provide additional support to the emerging hypothesis that genetic variation in bitter taste receptors can impact upon alcohol consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号