首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:观察大鼠心肌缺血/再灌注损伤对血清和心肌组织瘦素(Leptin)表达的影响,探讨Leptin在心肌缺血/再灌注损伤中的作用。方法:建立大鼠心肌缺血/再灌注模型,检测血清乳酸脱氢酶(LDH)和Leptin浓度,并用HE染色和免疫组织化学观察心肌组织病理学及Lepfin表达水平。结果:缺血组、再灌注组血清LDH水平显著升高(P〈0.05),表明该模型制作成功,造成心肌局部一定程度的损伤。缺血组血清Leptin含量(6.34±2.49)ng/ml显著低于对照组(7.50±2.93ng/ml,P〈0.05);再灌注后Leptin水平缓慢恢复,于再灌注2h时Leptin达到(8.32±1.74)ng/ml,恢复到损伤前水平(8.38±2.56)ng/ml,且随再灌注时间延长有升高趋势。免疫纽化显示与假手术纽心肌Leptin蛋白表达水平相比,其他四组均有显著降低(P〈0.01),按缺血45min后再灌注1h组、缺血45min后再灌注3h组、单纯缺血45min组、缺血45min后再灌注2h组依次递减。结论:Leptin在心肌缺血/再灌注损伤后早期45min血中有明显减少,心肌组织中也明显表达下降。心肌组织病理损伤与Leptin的改变可能有一定的关系。  相似文献   

2.
The effects of intravenous infusion of potassium-magnesium aspartate (K-Mg-Asp), a glucoseinsulin-potassium cocktail (GIK), a combination of glucose, insulin and potassium aspartate (GIKAsp), and insulin (I) alone on metabolism of the risk area (AR) and cardiomyocyte membrane damage have been investigated in rats during reperfusion after myocardial regional ischemia. Acute myocardial infarction (MI) was induced by a 40-min occlusion of the anterior descending coronary artery followed by a 60-min reperfusion. During reperfusion, K-Mg-Asp, GIK, GIKAsp, I or the physiological solution (control) was infused into the jugular vein at a rate of 1 ml/kg/h. After reperfusion, the MI sizes were significantly lower than in control and reduced in the following order: K-Mg-Asp > GIKAsp > I > GIK. By the end of reperfusion with metabolic protectors, ATP and phosphocreatine levels in the AR were 2–2.5 times higher that in the control (56.3 ± 3.4 and 81.8 ± 7.9% of the initial values, respectively). The losses of aspartate and glutamate pool and lactate and glucose accumulation in AR were significantly lower in the experimental groups than in control. At the end of the reperfusion, the total creatine content in the AR decreased to 32.3 ± 2.3% of the initial value in control, but restored after perfusion with GIK, I and K-Mg-Asp to 78.0 ± 5.7, 76.7 ± 5.5, and 62.4 ± 5.6% (of the initial value), respectively. The recovery of most parameters of aerobic metabolism and cell membrane integrity was maximal in the GIK and I groups and insignificantly lower after reperfusion with K-Mg-Asp.The metabolic efficacy of these protectors corresponded to MI size limitation induced by their infusion. The results suggest that myocardial reperfusion with GIK, I and K-Mg-Asp is a promising adjunctive therapy in patients with acute MI.  相似文献   

3.
探讨川芎嗪联用L-精氨酸对心肌缺血/再灌注损伤(MI/RI)时心肌细胞线粒体功能的影响。方法:选用日本大耳白兔50只,随机分为正常对照组(A组)、心肌缺血/再灌注组(B组)、心肌缺血/再灌注+川芎嗪治疗组(C组)、心肌缺血/再灌注+L-精氨酸治疗组(D组)和心肌缺血/再灌注+川芎嗪+L-精氨酸治疗组(E组)。观察心肌线粒体呼吸功能、Ca^2+浓度([Ca^2+]m)、丙二醛浓度(MDA)、超氧化物歧化酶活性(SOD)和心肌组织三磷酸腺苷(ATP)、能荷(EC)的变化。结果:C、D、E组与B组比较,线粒体呼吸控制率(RCR)、Ⅲ态呼吸速率(ST3)、SOD明显升高,Ⅳ态呼吸速率(ST4)、[Ca^2+]m、MDA显著降低,心肌组织ATP、EC均明显增高;且与A组比较,E组上述指标均无明显差异。结论:川芎嗪联用L-精氨酸可通过降低氧自由基水平和减轻钙超载,而改善缺血/再灌注损伤心肌的线粒体功能。  相似文献   

4.
L-精氨酸对大鼠心肌相对缺血/再灌注损伤保护作用的研究   总被引:4,自引:0,他引:4  
目的:探索L-精氨酸(L-Arg)对心肌相对缺血/再灌损伤的保护作用,为研究抗心肌损伤的保护措施提供依据.方法:Wastar大鼠24只,随机分为对照组、相对缺血损伤组和相对缺血损伤 L-精氨酸组.采用高频阈上电刺激大鼠离体心脏建立离体心肌相对缺血/再灌注模型,分别于相对缺血前、缺血后15 min和30 min收集冠脉流出液,测定丙二醛(MDA)含量、肌酸激酶(CK)和乳酸脱氢酶(LDH)活性;采用Pclab生物信号采集处理系统测定相对缺血损伤后5 min、10 min、20 min和30 min时的心率脉压乘积(PRP)、左心室收缩压变化速率( DP/dtmax)和舒张压变化速率(-Dp/dtmAx)的恢复率.结果:L-精氨酸组的PRP、 DP/dtmax和-Dp/dtmax恢复率,明显优于相对缺血损伤组(P<0.05);L-精氨酸组的冠脉流出液和心肌组织中的丙二醛(MDA)含量、肌酸激酶(CK)和乳酸脱氢酶(LDH)活性,低于相对缺血损伤组(P<0.05),而L-精氨酸组的心肌超氧化物歧化酶(SOD)活性高于缺血组(P<0.01).结论:L-精氨酸对心肌相对缺血/再灌损伤具有一定的保护作用.  相似文献   

5.
黑木耳多糖对抗离体心脏缺血/再灌注损伤的研究   总被引:1,自引:0,他引:1  
目的:探讨黑木耳多糖(AAP)对离体大鼠心脏缺血/再灌注(I/R)损伤的防护作用及其机制。方法:健康雄性SD大鼠灌胃黑木耳多糖(50,100,200mg/(kg.d))4周后,采用离体心脏Langendorff灌流方法,全心停灌30min,复灌120min建立I/R模型。测定左心室动力学指标和再灌注各时间点冠脉流出液中乳酸脱氢酶(LDH)含量;实验结束测定心肌组织甲月赞(formazan)、丙二醛(MDA)含量及超氧化物歧化酶(SOD)活性的变化。结果:与单纯I/R组相比,AAP预处理明显提高心肌细胞的formazan含量,降低再灌注期间冠脉流出液中LDH含量,明显增强左室发展压、左心室内压最大上升速率和心率与发展压乘积的恢复,缓解冠脉流量的减少;高剂量AAP改善I/R心肌功能的作用要好于丹参预处理(4ml/(kg.d),gastricperfusion)组。中剂量AAP(100mg/(kg.d))预处理4周后明显抑制I/R心肌MDA的增加和SOD活性的减弱(P0.01),其效果要好于丹参阳性对照组。结论:在大鼠离体心脏灌流模型上,黑木耳多糖预处理具有抗心脏I/R损伤的作用,这种保护作用可能与其增加心肌SOD活性,减少脂质过氧化损伤有关。  相似文献   

6.
We examined whether blocking the MyD88 mediated pathway could protect myocardium from ischemia/reperfusion (I/R) injury by transfecting Ad5-dnMyD88 into the myocardium of rats (n=8) 3 days before the hearts were subjected to ischemia (45min) and reperfusion (4h). Ad5-GFP served as control (n=8). One group of rats was (n=8) subjected to I/R without transfection. Transfection of Ad5-dnMyD88 significantly reduced infarct size by 53.6% compared with the I/R group (15.1+/-3.02 vs 32.5+/-2.59) while transfection of Ad5-GFP did not affect I/R induced myocardial injury (35.4+/-2.59 vs 32.5+/-2.59). Transfection of Ad5-dnMyD88 significantly inhibited I/R-enhanced NFkappaB activity by 50% and increased the levels of phospho-Akt by 35.6% and BCL-2 by 81%, respectively. Cardiac myocyte apoptosis after I/R was significantly reduced by 59% in the Ad5-dnMyD88 group. The results demonstrate that both inhibition of the NFkappaB activation pathway and activation of the Akt signaling pathway may be responsible for the protective effect of transfection of dominant negative MyD88.  相似文献   

7.
A central role for nuclear factor-kappaB (NF-kappaB) in the induction of lung inflammatory injury is emerging. We hypothesized that NF-kappaB is a critical early regulator of the inflammatory response in lung ischemia-reperfusion injury, and inhibition of NF-kappaB activation reduces this injury and improves pulmonary graft function. With use of a porcine transplantation model, left lungs were harvested and stored in cold Euro-Collins preservation solution for 6 h before transplantation. Activation of NF-kappaB occurred 30 min and 1 h after transplant and declined to near baseline levels after 4 h. Pyrrolidine dithiocarbamate (PDTC), a potent inhibitor of NF-kappaB, given to the lung graft during organ preservation (40 mmol/l) effectively inhibited NF-kappaB activation and significantly improved lung function. Compared with control lungs 4 h after transplant, PDTC-treated lungs displayed significantly higher oxygenation, lower PCO(2), reduced mean pulmonary arterial pressure, and reduced edema and cellular infiltration. These results demonstrate that NF-kappaB is rapidly activated and is associated with poor pulmonary graft function in transplant reperfusion injury, and targeting of NF-kappaB may be a promising therapy to reduce this injury and improve lung function.  相似文献   

8.
Sun D  Huang J  Zhang Z  Gao H  Li J  Shen M  Cao F  Wang H 《PloS one》2012,7(3):e33491

Background

The present study was to investigate the effects and mechanism of Luteolin on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in diabetic rats with myocardial ischemia/reperfusion (I/R) injury.

Methodology/Principal Findings

Diabetic rats underwent 30 minutes of ischemia followed by 3 h of reperfusion. Animals were pretreated with or without Luteolin before coronary artery ligation. The severity of myocardial I/R induced LDH release, arrhythmia, infarct size, cardiac function impairment, cardiomyocyte apoptosis were compared. Western blot analysis was performed to elucidate the target proteins of Luteolin. The inflammatory cytokine production were also examined in ischemic myocardium underwent I/R injury. Our results revealed that Luteolin administration significantly reduced LDH release, decreased the incidence of arrhythmia, attenuated myocardial infarct size, enhanced left ventricular ejection fraction and decreased myocardial apoptotic death compared with I/R group. Western blot analysis showed that Luteolin treatment up-regulated anti-apoptotic proteins FGFR2 and LIF expression, increased BAD phosphorylation while decreased the ratio of Bax to Bcl-2. Luteolin treatment also inhibited MPO expression and inflammatory cytokine production including IL-6, IL-1a and TNF-a. Moreover, co-administration of wortmannin and Luteolin abolished the beneficial effects of Luteolin.

Conclusions/Significance

This study indicates that Luteolin preserves cardiac function, reduces infarct size and cardiomyocyte apoptotic rate after I/R injury in diabetic rats. Luteolin exerts its action by up-regulating of anti-apoptotic proteins FGFR2 and LIF expression, activating PI3K/Akt pathway while increasing BAD phosphorylation and decreasing ratio of Bax to Bcl-2.  相似文献   

9.
Interrupted reperfusion reduces ischemia/reperfusion (I/R) injury. This study was designed to determine whether NADPH oxidase participates in the neural protection against global I/R injury after interrupted reperfusion. Mice were randomly divided into five groups: sham (sham-operated), I/R (20-min global I/R), RR (I/R+interrupted reperfusion), Apo (I/R+apocynin administration), and RR+Apo. Behavioral tests (pole test, beam walking, and Morris water maze) and Nissl staining were undertaken in all five groups; superoxide levels, expression of gp91(phox) and p47(phox), p47(phox) translocation, and Rac1 activation were measured in the sham, I/R, and RR groups. The motor coordination, bradykinesia, and spatial learning and memory, as well as the neuron survival rates, were better in the RR, Apo, and RR+Apo groups than in the I/R group. The NADPH oxidase-dependent superoxide levels, p47(phox) and gp91(phox) expression, p47(phox) translocation, and Rac1 activation were lower in the RR group than in the I/R group. In conclusion, the neural protective effect of interrupted reperfusion is at least partly mediated by decreasing the expression and assembly of NADPH oxidase and the levels of NADPH oxidase-derived superoxide. The most striking reduction Rac1-GTP in the RR group suggests that interrupted reperfusion also acts on the activation of assembled NADPH oxidase by reducing the availability of Rac1-GTP.  相似文献   

10.
大鼠肢体缺血/再灌注后的心肌损伤和NO的保护效应   总被引:1,自引:0,他引:1  
目的:探讨大鼠肢体缺血/再灌注(LI/R)后心肌的损伤性变化及NO的保护效应。方法:制备LI/R动物模型,将Wistar大鼠随机分为4组(n=10):C(control)组、I/R组、L-Arg组和L-NAME组。用生物化学方法测定大鼠血浆CK、CK-MB及NO水平,测定心肌组织XOD、SOD、MDA含量。用BL-420生物机能实验系统监测大鼠MAP、LVSP、±dp/dtmax等。结果:LI/R后,血浆CK、CK-MB水平均明显升高(P<0.01);心肌组织SOD活性降低而MDA、XOD含量增加(P<0.01或P<0.05);MAP、LVSP、dp/dtmax、-dp/dtmax均降低(P<0.01或P<0.05);血浆NO水平在L-Arg组明显升高(P<0.01),在L-NAME组显著降低(P<0.05)。结论:大鼠LI/R可引起心肌损伤,机体的氧化应激状态可能是其发生机制之一;提高体内NO水平可在一定程度上减轻LI/R后心肌损伤的程度。  相似文献   

11.
12.
Germacrone (GM) is an anti-inflammatory compound extracted from Rhizoma curcuma. Here, we strived to investigate the neuroprotective effects of GM in rat models of transient middle cerebral artery occlusion/reperfusion injury. Rats immediately after cerebral ischemia were intraperitoneally injected with GM at doses of 5, 10, and 20 mg/kg. After 1 day of reperfusion, the water content in the brain, infarct volume, and neurological deficits were assessed. Hippocampus neurons were histopathologically examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Activities of glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-PX) in brain tissue were detected. Real-time PCR and Western blotting were utilized to quantify the expression of apoptosis markers, such as caspase-3, Bax, and Bcl-2. The content of phospho-Akt (p-Akt) was also measured using Western blotting. GM treatment markedly decreased the brain water content, infarct volume and the neurological deficits, which was corroborated by attenuated histopathologic change. MDA levels were reduced and activities of GSH, SOD, and GSH-PX were elevated after GM treatment. Caspase-3 and Bax were decreased, and Bcl-2 was increased at both messenger RNA and protein levels by GM treatment. The p-Akt expression was increased by GM. Our data indicated that the neuroprotective effects of GM may attenuate the injuries from cerebral ischemia/reperfusion in rats through antioxidative and antiapoptotic mechanisms.  相似文献   

13.
《Autophagy》2013,9(1):140-141
A steady increase in life expectancy has resulted in an equivalent increase in elderly patients who are more susceptible to diseases than young patients. In a recent study, we found that in both in vitro and in vivo models of ischemia/reperfusion (I/R), a loss of ATG4B is causatively associated with the increased sensitivity of the liver to I/R injury with age. Our work suggests that a restoration or enhancement of autophagy is a novel therapeutic modality to ameliorate liver function after I/R to aged livers.  相似文献   

14.
A steady increase in life expectancy has resulted in an equivalent increase in elderly patients who are more susceptible to diseases than young patients. In a recent study, we found that in both in vitro and in vivo models of ischemia/reperfusion (I/R), a loss of ATG4B is causatively associated with the increased sensitivity of the liver to I/R injury with age. Our work suggests that a restoration or enhancement of autophagy is a novel therapeutic modality to ameliorate liver function after I/R to aged livers.  相似文献   

15.
Cardiomyocyte injury following ischemia-reperfusion can lead to cell death and result in cardiac dysfunction. A wide range of cardioprotective factors have been studied to date, but only recently has the cardioprotective role of fatty acids, specifically arachidonic acid (AA), been investigated. This fatty acid can be found in the membranes of cells in an inactive state and can be released by phospholipases in response to several stimuli, such as ischemia. The metabolism of AA involves the cycloxygenase (COX) and lipoxygenase (LOX) pathways, as well as the less well characterized cytochrome P450 (CYP) monooxygenase pathway. Current research suggests important differences with respect to the cardiovascular actions of specific CYP mediated arachidonic acid metabolites. For example, CYP mediated hydroxylation of AA produces 20-hydroxyeicosatetraenoic acid (20-HETE) which has detrimental effects in the heart during ischemia, pro-inflammatory effects during reperfusion and potent vasoconstrictor effects in the coronary circulation. Conversely, epoxidation of AA by CYP enzymes generates 5,6-, 8,9-, 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) that have been shown to reduce ischemia-reperfusion injury, have potent anti-inflammatory effects within the vasculature, and are potent vasodilators in the coronary circulation. This review aims to provide an overview of current data on the role of these CYP pathways in the heart with an emphasis on their involvement as mediators of ischemia-reperfusion injury. A better understanding of these relationships will facilitate identification of novel targets for the prevention and/or treatment of ischemic heart disease, a major worldwide public health problem.  相似文献   

16.
Acute statin treatment has been reported to be critical in protecting the cardiac cells against ischemia/reperfusion injury by activating PI3K/Akt signal pathway. In vitro rat myocardial ischemia/reperfusion model, chronic statin treatment led to upregulation of phosphatase and tensin homolog (PTEN). This has been potentially indicated the correlation in PTEN and protective effect of statin on myocardium. In this current study, we evaluated the role of sodium orthovanadate a nonspecific inhibitor to PTEN and its correlation with atorvastatin on protecting myocardium against ischemia/reperfusion injury. We found a long-term statin treatment could increase the PTEN level, and this process was counteracted in the presence of sodium orthovanadate. However, the phosphotyrosine level was not affected by this statin. Besides, this process was mediated by Akt signaling since phosphorylated Akt level was altered by statin and sodium orthovanadate treatment. In a conclusion, this study showed a potential mechanism underlying PTEN-induced attenuation in long-term statin’s therapeutic effect, which provided the new insight into the synergic role of PTEN and atorvastatin in protecting cardiac cells against ischemia/reperfusion injury.  相似文献   

17.
Quantitative 99mTc-DMSA renal uptake was studied in different renal ischemia/reperfusion (I/R) mice models for the assessment of renal repair capacity. Mice models of nephrectomy, uni- and bi-lateral I/R together with sham-operated mice were established. At 1 h, 1 d, 4 d, 1, 2 and 3 wk after I/R, 99mTc-DMSA (27.7 ± 1.3 MBq) was injected via tail vein and after 3 h post-injection, the mice were scanned for 30 min with pinhole equipped gamma camera. Higher uptake of 99mTc-DMSA was measured in normal kidneys of uni-lateral I/R model and nephrectomized kidney I/R model at 3 wk post-surgery. Comparing the restoration capacities of the affected kidneys of nephrectomy, uni- and bi-lateral I/R models, higher repair capacity was observed in the nephrectomized model followed by bi-lateral then uni-lateral models. The normal kidney may retard the restoration of damaged kidney in uni-lateral I/R model. Moreover, 3 wk after Uni-I/R, the size of injured kidney was significantly smaller than non-ischemic contralateral and sham operated kidneys, while nephrectomy I/R kidneys were significantly enlarged compared to all others at 3 wk post-surgery. Very strong correlation between 99mTc-DMSA uptake and weight of dissected kidneys in I/R models was observed. Consistent with 99mTc-DMSA uptake results, all histological results indicate that kidney recovery after injury is correlated with the amount of intact tubules and kidney sizes. In summary, our study showed good potentials of 99mTc-DMSA scan as a promising non-invasive method for evaluation of kidney restoration after I/R injuries. Interestingly, mice with Bi-I/R injury showed faster repair capacity than those with uni-I/R.  相似文献   

18.
间歇性低氧处理大鼠心肌的抗心律失常与抗氧化效应   总被引:14,自引:3,他引:14  
Zhang Y  Zhong N  Zhu HF  Zhou ZN 《生理学报》2000,52(2):89-92
利用结扎在体大鼠冠脉方法研究不同时间间歇性低氧处理对血、再灌注心律失常以及心肌超氧化物歧化酶(SOD)、丙二醛(MDA)的影响,并与连续性低氧相比较。实验结果如下:⑴间歇性低氧(intermittent hypoxia exposure)28d(IH28)、42d(IH42)、间歇性低氧28d后1周(PIH28-2W)和连续性低氧(comtinued hypoxia exposure)28d(CH  相似文献   

19.
Leukocytes have been implicated in ischemia-reperfusion (IR) injury of the lung, but the individual role of T cells has not been explored. Recent evidence in mice suggests that T cells may play a role in IR injury. Using a syngeneic (Lewis to Lewis) rat lung transplant model, we observed that recipient CD4(+) T cells infiltrated lung grafts within 1 h of reperfusion and up-regulated the expression of CD25 over the ensuing 12 h. Nude rats (rnu/rnu) and heterozygous rats (rnu/+) were used to determine the role of T cells in IR injury. No significant difference in lung function was observed between nude and heterozygous recipient rats after 2 h of reperfusion. However, after 12 h of reperfusion, recipient nude rats had significantly higher oxygenation and lower peak airway pressure than recipient heterozygous rats. This was associated with significantly lower levels of IFN-gamma in transplanted lung tissue of recipient nude rats. Reconstitution of recipient nude rats with T cells from heterozygous rats restored IR injury after 12 h of reperfusion. The effect of T cells was independent of neutrophil recruitment and activation in the transplanted lung. These results demonstrate that recipient T cells are activated and mediate IR injury during lung transplantation in rats.  相似文献   

20.
Leukocytes have been shown to play an important role in the development of tissue injury after ischemia and reperfusion (I/R). In the present study, the effects of tourniquet-ischemia on induction of DNA damage in peripheral leukocytes and on respiratory burst of neutrophils in humans were examined. The DNA damage was measured as increased migration of DNA using the single-cell gel-electrophoresis technique (comet assay). Intracellular production of reactive oxygen species by neutrophils was measured flow-cytometrically using dihydrorhodamine 123 as indicator. Postischemic, significantly increased migration of DNA was found in leukocytes of 20 patients (tourniquet-ischemia of the lower limb for 65-130 min, anterior-cruciate-ligament-reconstruction) and in 10 experiments (1 volunteer, repeated tourniquet-ischemia of the upper limb for 60 min, no operation). DNA effects were most pronounced 5-30 min after tourniquet release, and then declined over a 2 h period, but did not return to preischemic baseline values. A similar time course showed the oxidative status of unstimulated granulocytes during reperfusion. Simultaneously, opposing changes were measured in formyl peptide (f-MLP)- or phorbol ester (PMA)-stimulated granulocytes, which showed a significantly declined respiratory burst reaction after tourniquet-release indicating preactivation of neutrophils by IR. Our data suggest that IR induces genotoxic effects in human leukocytes presumably in response to oxidative stress during reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号