首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in H(II) phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and H(II) phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the H(II) phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

2.
3.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (HII phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the HII phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in HII phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and HII phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the HII phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

4.
Yamamoto HY 《Planta》2006,224(3):719-724
Monogalactosyldiacylglyceride (MGDG) and digalactosyldiacylglyceride (DGDG) are the major membrane lipids of chloroplasts. The question of the specialized functions of these unique lipids has received limited attention. One function is to support violaxanthin de-epoxidase (VDE) activity, an enzyme of the violaxanthin cycle. To understand better the properties of this system, the effects of galactolipids and phosphatidylcholines on VDE activity were examined by two independent methods. The results show that the micelle-forming lipid (MGDG) and bilayer forming lipids (DGDG and phosphatidylcholines) support VDE activity differently. MGDG supported rapid and complete de-epoxidation starting at a threshold lipid concentration (10 μM) coincident with complete solubilization of violaxanthin. In contrast, DGDG supported slow but nevertheless complete to nearly complete de-epoxidation at a lower lipid concentration (6.7 μM) that did not completely solubilize violaxanthin. Phosphotidylcholines showed similar effects as DGDG except that de-epoxidation was incomplete. Since VDE requires solubilized violaxanthin, aggregated violaxanthin in DGDG at low concentration must become solubilized as de-epoxidation proceeds. High lipid concentrations had lower activity possibly due to formation of multilayered structures (liposomes) that restrict accessibility of violaxanthin to VDE. MGDG micelles do not present such restrictions. The results indicate VDE operates throughout the lipid phase of the single bilayer thylakoid membrane and is not limited to putative MGDG micelle domains. Additionally, the results also explain the differential partitioning of violaxanthin between the envelope and thylakoid as due to the relative solubilities of violaxanthin and zeaxanthin in MGDG, DGDG and phospholipids. The violaxanthin cycle is hypothesized to be a linked system of the thylakoid and envelope for signal transduction of light stress.  相似文献   

5.
6.
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.  相似文献   

7.
The present study shows that thylakoid membranes of the diatom Cyclotella meneghiniana contain much higher amounts of negatively charged lipids than higher plant or green algal thylakoids. Based on these findings, we examined the influence of SQDG on the de-epoxidation reaction of the diadinoxanthin cycle and compared it with results from the second negatively charged thylakoid lipid PG. SQDG and PG exhibited a lower capacity for the solubilization of the hydrophobic xanthophyll cycle pigment diadinoxanthin than the main membrane lipid MGDG. Although complete pigment solubilization took place at higher concentrations of the negatively charged lipids, SQDG and PG strongly suppressed the de-epoxidation of diadinoxanthin in artificial membrane systems. In in vitro assays employing the isolated diadinoxanthin cycle enzyme diadinoxanthin de-epoxidase, no or only a very weak de-epoxidation reaction was observed in the presence of SQDG or PG, respectively. In binary mixtures of the inverted hexagonal phase forming lipid MGDG with the negatively charged bilayer lipids, comparable suppression took place. This is in contrast to binary mixtures of MGDG with the neutral bilayer lipids DGDG and PC, where rapid and efficient de-epoxidation was observed. In complex lipid mixtures resembling the lipid composition of the native diatom thylakoid membrane, we again found strong suppression of diadinoxanthin de-epoxidation due to the presence of SQDG or PG. We conclude that, in the native thylakoids of diatoms, a strict separation of the MGDG and SQDG domains must occur; otherwise, the rapid diadinoxanthin de-epoxidation observed in intact cells upon illumination would not be possible.  相似文献   

8.
In this study we present evidence that one of two reactions of the xanthophyll cycle, violaxanthin de-epoxidation, may occur in unilamellar egg phosphatidylcholine vesicles supplemented with monogalactosyldiacylglycerol (MGDG). Activity of violaxanthin de-epoxidase (VDE) in this system was found to be strongly dependent on the content of MGDG in the membrane; however, only to a level of 30 mol%. Above this concentration the rate of violaxanthin de-epoxidation decreased. The effect of individual thylakoid lipids on VDE-independent violaxanthin transformation was also investigated and unspecific effects of phosphatidylglycerol and sulphoquinovosyldiacyglycerol, probably related to the acidic character of these lipids, were found. The presented results suggest that violaxanthin de-epoxidation most probably takes place inside MGDG-rich domains of the thylakoid membrane. The described activity of the violaxanthin de-epoxidation reaction in liposomes opens new possibilities in the investigation of the xanthophyll cycle and may contribute to a better understanding of this process.  相似文献   

9.
Based on our recent findings that in the diatom Phaeodactylum tricornutum, chlororespiration in periods of prolonged darkness leads to the accumulation of diatoxanthin (DT), we have elaborated in detail the interdependence between the chlororespiratory proton gradient and the activation of diadinoxanthin de-epoxidase (DDE). The data clearly demonstrates that activation of DDE in Phaeodactylum occurs at higher pH-values compared to activation of violaxanthin de-epoxidase (VDE) in higher plants. In thylakoid membranes as well as in enzyme assays with isolated DDE, the de-epoxidation of diadinoxanthin (DD) is efficiently catalyzed at pH 7.2. In comparison, de-epoxidation of violaxanthin (Vx) in spinach thylakoids is observed below pH 6.5. Phaeodactylum thylakoids isolated from high light grown cells, that also contain the pigments of the violaxanthin cycle, show violaxanthin de-epoxidation at higher pH-values, thus suggesting that in Phaeodactylum, one de-epoxidase converts both diadinoxanthin and violaxanthin. We conclude that the activation of DDE at higher pH-values can explain how the low rates of chlororespiratory electron flow, that lead to the build-up of a rather small proton gradient, can induce the observed accumulation of diatoxanthin in the dark. Furthermore, we show that dark activation of diadinoxanthin de-epoxidation is not restricted to Phaeodactylum tricornutum but was also found in another diatom, Cyclotella meneghiana  相似文献   

10.
Goss R 《Planta》2003,217(5):801-812
The substrate specificity of the enzyme violaxanthin de-epoxidase (VDE) of the primitive green alga Mantoniella squamata (Prasinophyceae) was tested in in vitro enzyme assays employing the following xanthophyll mono-epoxides: antheraxanthin (Ax), diadinoxanthin (Ddx), lutein-epoxide (LE), cryptoxanthin-epoxide (CxE), 9- cis neoxanthin (cNx), all- trans neoxanthin (Nx), and xanthophyll di-epoxides: 9- cis violaxanthin (cVx), all- trans violaxanthin (Vx), cryptoxanthin-di-epoxide (CxDE). The data presented in this study show that the VDE of M. squamata not only exhibits a low affinity for the mono-epoxide Ax, as has been reported by R. Frommolt et al. (2001, Planta 213:446-456), but has a reduced substrate affinity for the mono-epoxides Ddx, LE, CxE, and Nx as well. On the other hand, xanthophylls with a second epoxy-group (Vx, CxDE) can be de-epoxidized with a higher efficiency. Such a preference for xanthophyll di-epoxides cannot be observed for the higher-plant VDE, where, in general, no marked differences in the pigment de-epoxidation rates between xanthophyll mono- and di-epoxides are visible. Despite this substantial difference between the VDEs of M. squamata and S. oleracea there are also features common to both enzymes. Neither VDE is able to convert xanthophylls with a 9- cis configuration in the acyclic polyene chain and both rely on substrates in the all- trans configuration. Both enzymes furthermore exhibit a dependence of enzyme activity on the polarity of the substrate. Highly polar (Nx) or non-polar (CxE) xanthophylls are de-epoxidized with greatly reduced rates in comparison to substrates with an intermediate polarity (Vx, Ax, LE, Ddx). This dependence on substrate polarity becomes more obvious when the higher-plant VDE is examined, as the substrate affinity of the VDE of M. squamata is more strongly influenced by the existence or absence of a second epoxy-group. In summary, the data presented in this study underline the fact that different VDEs, although in general catalyzing the same reaction sequence, are functionally diverse.  相似文献   

11.
Three plant xanthophylls are components of the xanthophyll cycle in which, upon exposure of leaves to high light, the enzyme violaxanthin de-epoxidase (VDE) transforms violaxanthin into zeaxanthin via the intermediate antheraxanthin. Previous work () showed that xanthophylls are bound to Lhc proteins and that substitution of violaxanthin with zeaxanthin induces conformational changes and fluorescence quenching by thermal dissipation. We have analyzed the efficiency of different Lhc proteins to exchange violaxanthin with zeaxanthin both in vivo and in vitro. Light stress of Zea mays leaves activates VDE, and the newly formed zeaxanthin is found primarily in CP26 and CP24, whereas other Lhc proteins show a lower exchange capacity. The de-epoxidation system has been reconstituted in vitro by using recombinant Lhc proteins, recombinant VDE, and monogalactosyl diacylglycerol (MGDG) to determine the intrinsic capacity for violaxanthin-to-zeaxanthin exchange of individual Lhc gene products. Again, CP26 was the most efficient in xanthophyll exchange. Biochemical and spectroscopic analysis of individual Lhc proteins after de-epoxidation in vitro showed that xanthophyll exchange occurs at the L2-binding site. Xanthophyll exchange depends on low pH, implying that access to the binding site is controlled by a conformational change via lumenal pH. These findings suggest that the xanthophyll cycle participates in a signal transduction system acting in the modulation of light harvesting versus thermal dissipation in the antenna system of higher plants.  相似文献   

12.
The xanthophyll cycle is a photoprotective mechanism operating in the thylakoid membranes of all higher plants, ferns, mosses and several algal groups. The occurrence of inverted hexagonal domains of monogalactosyldiacylglycerol (MGDG) in the membrane is postulated as an essential factor involved in violaxanthin de-epoxidation. The violaxanthin de-epoxidation was investigated in high-light illuminated Lemna trisulca at three temperatures (4, 12, and 25°C). The temperature dependence of this reaction was compared with kinetics of violaxanthin de-epoxidation at the same temperatures in MGDG micelles and in phosphatidylcholine (PC)–MGDG unilamellar liposomes. In both model systems and in the illuminated plants, a decrease in temperature resulted in lower zeaxanthin production. We found that the presence of MGDG in PC liposomes was necessary for the de-epoxidation reaction. With the increase in MGDG proportion in liposomes, the percentage of transformed violaxanthin was also increasing. We suggest that the violaxanthin de-epoxidation takes place within lipid matrix of the thylakoid membranes inside the MGDG-rich domains. Presence of the reversed hexagonal phase in the thylakoid membranes has been already reported in our previous papers and by other authors using 31P-NMR and freeze-fracturing techniques.  相似文献   

13.
Frommolt R  Goss R  Wilhelm C 《Planta》2001,213(3):446-456
In vivo the prasinophyceaen alga Mantoniella squamata Manton et Parke uses an incomplete violaxanthin (Vx) cycle, leading to a strong accumulation of antheraxanthin (Ax) under conditions of high light. Here, we show that this zeaxanthin (Zx)-depleted Vx/Ax cycle is caused by an extremely slow second de-epoxidation step from Ax to Zx, and a fast epoxidation from Ax back to Vx in the light. The rate constant of Ax epoxidation is 5 to 6 times higher than the rate constant of Zx formation, implying that Ax is efficiently converted back to Vx before it can be de-epoxidated to Zx. It is, however, only half the rate constant of the first de-epoxidation step from Vx to Ax, thus explaining the observed net accumulation of Ax during periods of strong illumination. When comparing the rate constant of the second de-epoxidation step in M. squamata with Zx formation in spinach (Spinacia oleracea L.) thylakoids, we find a 20-fold reduction in the reaction kinetics of the former. This extremely slow Ax de-epoxidation, which is also exhibited by the isolated Mantoniella violaxanthin de-epoxidase (VDE), is due to a reduced substrate affinity of M. squamata VDE for Ax compared with the VDE of higher plants. Mantoniella VDE, which has a similar Km value for Vx, shows a substantially increased Km for the substrate Ax in comparison with spinach VDE. Our results furthermore explain why Zx formation in Mantoniella cells can only be found at low pH values that represent the pH optimum of VDE. A pH of 5 blocks the epoxidation reaction and, consequently, leads to a slow but appreciable accumulation of Zx.  相似文献   

14.
Zeaxanthin epoxidase (ZE) is an enzyme operating in the violaxanthin cycle, which is involved in photoprotective mechanisms. In this work model systems to study zeaxanthin (Zx) epoxidation were developed. Two assay systems are presented in which epoxidation of Zx was observed. In these assays two mutants of Arabidopsis thaliana which have active only one of the two xanthophyll cycle enzymes were used. The npq1 mutant possesses an active ZE and is thus able to convert Zx to violaxanthin (Vx) but the violaxanthin de-epoxidase (VDE) is inactive, so that Vx cannot be converted to Zx. The other mutant, npq2, possesses an active VDE and can convert exogenous Vx to Zx under strong light conditions but reverse reaction is not possible. The first assay containing thylakoids from npq1 and npq2 mutants of A. thaliana gave positive results and high efficiency of epoxidation reaction was observed. The amount of Zx was reduced by 25%. To optimize high efficiency of epoxidation reaction additional factors facilitating both fusion of the two types of thylakoids and incorporation of Zx to their membranes were also studied. The second kind of assay contained npq1 mutant thylakoids of A. thaliana supplemented with exogenous Zx and monogalactosyldiacylglycerol (MGDG). Experiments with different proportions of Zx and MGDG showed that their optimal ratio is 1:60. In such system, due to epoxidation, the amount of Zx was reduced by 38% of its initial level. The in vitro systems of Zx epoxidation described in this paper enable analysis some properties of the ZE without necessity of its isolation.  相似文献   

15.
J W Jensen  J S Schutzbach 《Biochemistry》1988,27(17):6315-6320
Rat liver dolichyl-phosphomannose synthase (GDP mannose-dolicholphosphate mannosyltransferase; EC 2.4.1.83) was previously shown to catalyze optimal rates of mannosyl transfer to dolichyl-P when the polyprenol acceptor was incorporated into a phosphatidylethanolamine (PE) matrix that has a tendency to adopt a nonbilayer (hexagonal HII) phase [Jensen, J. W., & Schutzbach, J. S. (1985) Eur. J. Biochem. 153, 41-48]. The present investigations now further define the properties of the lipid environment that are essential for mannosyltransferase activity. Monogalactosyl diglyceride (MGDG), a glycoglycerolipid that prefers a nonbilayer-phase organization in isolation, was shown to provide a suitable lipid matrix for synthase activity. By comparison, the enzyme was not activated by digalactosyl diglyceride (DGDG), which forms stable bilayer structures upon hydration. Enzyme activity in MGDG/DGDG mixtures decreased as the proportion of DGDG in the dispersion was increased. Although bilayer-forming phospholipids supported low rates of mannosyl transfer, enzyme activity was stimulated by the addition of MGDG to either phosphatidylcholine (PC) or PE/PC (1:1) membranes. The incorporation of agents known to destabilize bilayer structures including dolichols, ubiquinone, dodecane, and cholesterol into PE/PC (1:1) membranes also increased the rate of mannosyl transfer. Enzyme activity in PC membranes was stimulated by the presence of gramicidin and also by greatly increased concentrations of the substrate, dolichyl-P. The results demonstrate that the enzyme does not have a requirement for PE and suggest that the physical state of the lipid matrix is an important determinant for reconstitution of the synthase and polyprenol phosphate substrate in a productive complex. The formation of an enzyme/lipid complex was demonstrated by sucrose density gradient centrifugation and could be correlated with the lipid requirements for enzyme activity.  相似文献   

16.
The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx was studied in an in vitro assay using partially purified Vx de-epoxidase isolated from spinach thylakoids. All four LHCI proteins exhibited unique de-epoxidation characteristics. An almost complete Vx conversion to Zx was observed only in Lhca3, whereas Zx formation in the other LHCI proteins decreased in the order Lhca4 > Lhca1 > Lhca2. Most likely, these differences in Vx de-epoxidation were related to the different accessibility of the respective carotenoid binding sites in the distinct antenna proteins. The results indicate that Vx bound to site V1 and N1 is easily accessible for de-epoxidation, whereas Vx bound to L2 is only partially and/or with the slower kinetics convertible to Zx. The de-epoxidation properties determined for the monomeric recombinant proteins were consistent with those obtained for isolated native LHCI-730 and LHCI-680 in the same in vitro assay and the de-epoxidation state found under in vivo conditions in native LHCIs.  相似文献   

17.
In the present study, the influence of the phospholipid phase state on the activity of the xanthophyll cycle enzyme violaxanthin de-epoxidase (VDE) was analyzed using different phosphatidylethanolamine species as model lipids. By using (31)P NMR spectroscopy, differential scanning calorimetry and temperature dependent enzyme assays, VDE activity could directly be related to the lipid structures the protein is associated with. Our results show that the gel (L beta) to liquid-crystalline (L alpha) phase transition in these single lipid component systems strongly enhances both the solubilization of the xanthophyll cycle pigment violaxanthin in the membrane and the activity of the VDE. This phase transition has a significantly stronger impact on VDE activity than the transition from the L alpha to the inverted hexagonal (HII) phase. Especially at higher temperatures we found increased VDE reaction rates in the presence of the L alpha phase compared to those in the presence of HII phase forming lipids. Our data furthermore imply that the HII phase is better suited to maintain high VDE activities at lower temperatures.  相似文献   

18.
The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE), belonging to the lipocalin protein family, are engaged in the xanthophyll cycle. VDE requires for its activity ascorbic acid and reversed hexagonal structure formed by monogalactosyldiacylglycerol. ZE, postulated to be a flavoprotein, has not been purified yet and it is known from its gene sequence only. Zeaxanthin epoxidation is dependent on the reducing power of NADPH and presence of additional proteins. The xanthophyll cycle is postulated to play a role in many important physiological processes. Zeaxanthin, formed from violaxanthin under high light conditions, is thought to be a main photoprotector in autotrophic cells due to its ability to dissipate excess of absorbed light energy that can be measured as a non-photochemical quenching. In addition the zeaxanthin formation is important in protection of the thylakoid membranes against lipid peroxidation. Other postulated functions of the xanthophyll cycle, which include regulation of membrane physical properties, blue light reception and regulation of abscisic acid synthesis, are also discussed.  相似文献   

19.
This paper describes violaxanthin de-epoxidation in model lipid bilayers. Unilamellar egg yolk phosphatidylcholine (PtdCho) vesicles supplemented with monogalactosyldiacylglycerol were found to be a suitable system for studying this reaction. Such a system resembles more the native thylakoid membrane and offers better possibilities for studying kinetics and factors controlling de-epoxidation of violaxanthin than a system composed only ofmonogalactosyldiacylglycerol and is commonly used in xanthophyll cycle studies. The activity of violaxanthin de-epoxidase (VDE) strongly depended on the ratio of monogalactosyldiacylglycerol to PtdCho in liposomes. The mathematical model of violaxanthin de-epoxidation was applied to calculate the probability of violaxanthin to zeaxanthin conversion at different phases of de-epoxidation reactions. Measurements of deepoxidation rate and EPR-spin label study at different temperatures revealed that dynamic properties of the membrane are important factors that might control conversion of violaxanthin to antheraxanthin. A model of the molecular mechanism of violaxanthin de-epoxidation where the reversed hexagonal structures (mainly created by monogalactosyldiacylglycerol) are assumed to be required for violaxanthin conversion to zeaxanthin is proposed. The presence of monogalactosyldiacylglycerol reversed hexagonal phase was detected in the PtdCho/monogalactosyldiacylglycerol liposomes membrane by 31P-NMR studies. The availability of violaxanthin for de-epoxidation is a diffusion-dependent process controlled by membrane fluidity. The significance of the presented results for understanding themechanism of violaxanthin de-epoxidation in native thylakoid membranes is discussed.  相似文献   

20.
The dynamics of the xanthophyll cycle relative to non-photochemical quenching (NPQ) were examined in tobacco plants overexpressing violaxanthin de-epoxidase (VDE), PsbS and PsbS+VDE for effects on NPQ and violaxanthin (V) de-epoxidation over a range of light intensities. Induction of de-epoxidation and NPQ increased in overexpressed VDE and PsbS plants, respectively. Surprisingly, under low light, overexpressing PsbS enhanced de-epoxidation in addition to NPQ. The effect was hypothesized as due to PsbS binding zeaxanthin (Z) or inducing the binding of Z within the quenching complex, thus shifting the equilibrium toward higher de-epoxidation states. Studies in model systems show that Z can stereospecifically inhibit VDE activity against violaxanthin. This effect, observed under conditions of limiting lipid concentration, was interpreted as product feedback inhibition. These results support the hypothesis that the capacity of the thylakoid lipid phase for xanthophylls is limited and modulates xanthophyll-cycle activity, in conjunction with the release of V and binding of Z by pigment-binding proteins. These modulating factors are incorporated into a lipid-matrix model that has elements of a signal transduction system wherein the light-generated protons are the signal, VDE the signal receptor, Z the secondary messenger, the lipid phase the transduction network, and Z-binding proteins the targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号