首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate‐driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll‐a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind‐driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll‐a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll‐a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1–3 years, by 3‐ to 19‐fold increased abundances of five ocean‐produced demersal fish and crustaceans and 2.5‐fold increase of summer chlorophyll‐a in the Bay. These changes reflect a slow biological process of estuary–ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate‐mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing patterns of upwelling timing and intensity as the planet continues to warm.  相似文献   

2.
Understanding how patterns and processes relate across spatial scales is one of the major goals in ecology. 1/f models have been applied mostly to time series of environmental and ecological variables, but they can also be used to analyse spatial patterns. Since 1/f noise may display scale‐invariant behaviour, ecological phenomena whose spatial variability shows 1/f type scaling are susceptible to further characterization using fractals or multifractals. Here we use spectral analysis and multifractal techniques (generalized dimension spectrum) to investigate the spatial distribution of epilithic microphytobenthos (EMPB) on rocky intertidal surfaces. EMPB biomass was estimated from calibrated colour‐infrared images that provided indirect measures of rock surface chlorophyll a concentration, along two 8‐m and one 4‐m long transects sampled in January and November 2012. Results highlighted a pattern of spectral coefficient close to or greater than one for EMPB biomass distribution and multifractal structures, that were consistent among transects, implying scale‐invariance in the spatial distribution of EMPB. These outcomes can be interpreted as a result of the superimposition of several biotic and abiotic processes acting at multiple spatial scales. However, the scale‐invariant nature of EMPB spatial patterns can also be considered a hallmark of self‐organization, underlying the possible role of scale‐dependent feedback in shaping EMPB biomass distribution.  相似文献   

3.
Diatoms are one of the dominant groups in phytoplankton communities of the western Antarctic Peninsula (WAP). Although generally well‐studied, little is known about size dependent photophysiological responses in diatom bloom formation and succession. To increase this understanding, four Antarctic diatom species covering two orders of magnitude in cell size were isolated in northern Marguerite Bay (WAP). Fragilariopsis sp., Pseudo‐nitzschia cf. subcurvata, Thalassiosira cf. antarctica, and Proboscia cf. alata were acclimated to three different irradiances after which photophysiology, electron transport, carbon fixation, and growth were assessed. The small species Fragilariopsis sp., Pseudo‐nitzschia cf. subcurvata, and large species Proboscia cf. alata showed similar photoacclimation to higher irradiances with a decrease in cellular chlorophyll a and an increase in chlorophyll a specific absorption and xanthophyll cycle pigments and activity. In contrast, pigment concentrations and absorption remained unaffected by higher irradiances in the large species Thalassiosira cf. antarctica. Overall, the small species showed significantly higher growth rates compared to the large species, which was related to relatively high light harvesting capacity and electron transport rates in the smaller species. However, photophysiological responses related to photoinhibition and photoprotection and carbon fixation showed no relationship with cell size. This study supports the dominance of small diatoms at low irradiances during winter and early spring, but does not provide photophysiological evidence for the dominance of large diatoms during the phytoplankton bloom in the WAP. This suggests that other factors such as grazing and nutrient availability are likely to play a major role in diatom bloom formation.  相似文献   

4.
1. Longitudinal gradients in the epilimnetic waters of stratified reservoirs provide a useful database to study changing environmental conditions. The spatial distribution, assemblage structure and specific adaptations of phytoplankton assemblages can be analysed along these gradients over short time scales. 2. Four reservoirs with a similar typology, located along an altitudinal gradient in the same eco‐region, were sampled along their longitudinal axes. In total, 19 sampling stations provided a trophic spectrum, ranging from oligo‐mesotrophy to hypertrophy, which was quantified by calculating the trophic state index of each sampling station in the four reservoirs. 3. Several patterns in phytoplankton assemblage structure were detected. Total chlorophyll‐a (Chl‐a), biovolume, abundance and the relative biomass contribution of the main algal groups (chlorophytes, cyanobacteria, cryptophytes and diatoms) were highly correlated with their location along the trophic gradient. 4. We also adopted the functional classification of Reynolds et al. (2002) : this effectively summarized differences among phytoplankton assemblages under varying resource‐limiting combinations, especially nutrients and underwater light climate. 5. In terms of relationships with the trophic gradient, diatoms and cyanobacteria exhibited significant opposing trends in both their relative chlorophyll contribution to total Chl‐a and biovolume. Chlorophytes were more abundant at an intermediate position along the trophic spectrum. 6. The identified patterns are consistent with models of self‐organization of phytoplankton assemblages. In particular, light availability was a strong determinant of size and shape diversity, especially in hypertrophic conditions, where ‘R‐strategist’, needle shaped species, dominated the system. In contrast, under decreased availability of nutrients and higher light extinction coefficients (Kd), the system was co‐dominated by C‐ and S‐strategist species, having shapes with a higher surface/volume ratio.  相似文献   

5.
1. Oligotrophic Arctic streams are likely to be sensitive to changes in hydrology and nutrient inputs predicted to occur as a consequence of future climate and land use change. To investigate the potential consequences of nutrient enrichment for low‐order Arctic streams, we added ammonium‐N and phosphorous to a second‐order beaded, tundra stream on Alaska's north slope. We measured responses in nutrient chemistry, chlorophyll a standing crop, and in the breakdown and macroinvertebrate colonisation of leaf litter over a 38‐day summer period. 2. During the addition, nutrient concentrations immediately downstream of the dripper averaged 6.4 μm ammonium‐N and 0.45 μm soluble reactive P. Concentrations upstream of the dripper averaged 0.54 μm ammonium‐N and 0.03 μm soluble reactive P. Uptake of both nutrients was rapid. Concentrations were reduced on average to 28% (ammonium‐N) and 15% (inorganic P) of maximum values within 1500 m. Standing crops of chlorophyll a on standardised samplers were significantly higher by the end of the experiment. Breakdown rates of senescent willow (Salix sp.) and sedge (Carex sp.) litter and associated fungal biomass were also significantly increased by nutrient addition. 3. Fertilisation resulted in four‐ to sevenfold higher macroinvertebrate abundance and two‐ to fourfold higher macroinvertebrate biomass in litter bags, as well as an increase in late‐summer body mass of larval Nemoura stoneflies. 4. Our results are consistent with those of similar studies of larger streams in the high‐Arctic region. Based on our short‐term experiment, increased inputs of nutrients into these ecosystems, whether caused by climate change or more local disturbance, are likely to have profound ecological consequences. Longer‐term effects of enrichment, and their interaction with other components of future change in climate or land use, are more difficult to assess.  相似文献   

6.
1. Shallow lakes may switch from a state dominated by submerged macrophytes to a phytoplankton‐dominated state when a critical nutrient concentration is exceeded. We explore how climate change may affect this critical nutrient concentration by linking a graphical model to data from 83 lakes along a large climate gradient in South America. 2. The data indicate that in warmer climates, submerged macrophytes may tolerate more underwater shade than in cooler lakes. By contrast, the relationship between phytoplankton biomass [approximated by chlorophyll‐a (chl‐a) or biovolume] and nutrient concentrations did not change consistently along the climate gradient. In warmer climates, the correlation between phytoplankton biomass and nutrient concentrations was overall weak, especially at low total phosphorus (TP) concentrations where the chl‐a/ TP ratio could be either low or high. 3. Although the enhanced shade tolerance of submerged plants in warmer lakes might promote the stability of their dominance, the potentially high phytoplankton biomass at low nutrient concentrations suggests an overall low predictability of climate effects. 4. We found that near‐bottom oxygen concentrations are lower in warm lakes than in cooler lakes, implying that anoxic P release from eutrophic sediment in warm lakes likely causes higher TP concentrations in the water column. Subsequently, this may lead to a higher phytoplankton biomass in warmer lakes than in cooler lakes with similar external nutrient loadings. 5. Our results indicate that climate effects on the competitive balance between submerged macrophytes and phytoplankton are not straightforward.  相似文献   

7.
Characterizing patterns of larval dispersal is essential to understanding the ecological and evolutionary dynamics of marine metapopulations. Recent research has measured local dispersal within populations, but the development of marine dispersal kernels from empirical data remains a challenge. We propose a framework to move beyond point estimates of dispersal towards the approximation of a simple dispersal kernel, based on the hypothesis that the structure of the seascape is a primary predictor of realized dispersal patterns. Using the coral reef fish Elacatinus lori as a study organism, we use genetic parentage analysis to estimate self‐recruitment at a small spatial scale (<1 km). Next, we determine which simple kernel explains the observed self‐recruitment, given the influx of larvae from reef habitat patches in the seascape at a large spatial scale (up to 35 km). Finally, we complete parentage analyses at six additional sites to test for export from the focal site and compare these observed dispersal data within the metapopulation to the predicted dispersal kernel. We find 4.6% self‐recruitment (CI95%: ±3.0%) in the focal population, which is explained by the exponential kernel y = 0.915x (CI95%: y = 0.865x, y = 0.965x), given the seascape. Additional parentage analyses showed low levels of export to nearby sites, and the best‐fit line through the observed dispersal proportions also revealed a declining function y = 0.77x. This study lends direct support to the hypothesis that the probability of larval dispersal declines rapidly with distance in Atlantic gobies in continuously distributed habitat, just as it does in the Indo‐Pacific damselfishes in patchily distributed habitat.  相似文献   

8.
Phytoplankton pigments and community composition in Lake Tanganyika   总被引:3,自引:0,他引:3  
1. A 2‐year (2002–2003) survey of chlorophyll and carotenoid pigments is reported for two off‐shore stations of Lake Tanganyika, Kigoma (Tanzania) and Mpulungu (Zambia), and from three cruises between those sites. Chlorophyll a concentrations were low (0.3–3.4 mg m?3) and average chlorophyll a integrated through the 100 m water column were similar for both stations and years (36.4–41.3 mg m?2). Most pigments were located in the 0–60 m layer and decreased sharply downward. Chlorophyll a degradation products (phaeophytins and phaeophorbides) were detected at 100 m depth, whereas carotenoids became undetectable. Temporal and seasonal variation of the vertical distribution of pigments was high. 2. The biomass of phytoplankton groups was calculated from marker pigment concentrations over the 0–100 m water column using the CHEMTAX software. On average for the study period, chlorophytes dominated in the northern station, followed by cyanobacteria T1 (type 1, or Synechococcus pigment type), whereas cyanobacteria T1 dominated in the south. Cyanobacteria T2 (type 2, containing echinenone), presumably corresponding to filamentous taxa, were detected in the rainy season. Diatoms (and chrysophytes) developed better in the dry season conditions, with a deep mixed layer and increased nutrient availability. Very large variation in the vertical distribution of algal groups was observed. 3. Our observations on phytoplankton composition are broadly consistent with those from previous studies. Our pigment data provide evidence for the lake‐wide importance of picocyanobacteria and high interannual variation and spatial heterogeneity of phytoplankton in Lake Tanganyika, which may render difficult assessment of long‐term changes in phytoplankton driven by climate change.  相似文献   

9.
Understanding how spatial patterning relates to ecological processes is fundamental to define important species–environment associations at broader scales. Analyses targeting habitat structure (i.e. composition and configuration) in terrestrial landscapes are increasing, but similar studies in marine landscapes are still relatively uncommon. In this study, we explored how seascape structure and complexity (determined from significant spatial pattern metrics) influenced summer and autumn fish assemblage composition in 30 seagrass (Zostera marina) meadows along the west coast of Sweden. Species density was not influenced by seascape structure in any season. In contrast, the majority of significant fish assemblage variables were influenced by seascape structure during the summer (i.e. abundance and proportion of juveniles, abundance of Labridae and abundance of occasional shallow‐water visitors) whilst fewer in the autumn (i.e. abundance of occasional shallow‐water visitors and Synganthidae). For instance, less complex seascapes were more suitable for juvenile assemblages in summer, as these seascapes exhibit larger patch sizes of appropriate habitat (e.g. Z. marina) and less edge boundaries providing refuges from predators and food resources. Abundances of migrating fish, such as the sea trout Salmo trutta, also responded positively to a less complex seascape in the summer though perhaps ecological processes, such as prey availability, were additional contributing factors driving this relationship. High complexity seascapes only had a positive influence on the abundance of taxa using multiple habitats (Labridae during the summer). Our study shows that fish assemblages in temperate marine environments are significantly linked to spatial habitat patterning and seascape complexity. This offers valuable insights into species–habitat–seascape linkages, information important for coastal conservation and marine spatial planning.  相似文献   

10.
Concentrations of chlorophyll a/freshweight (Chl a FW) and photosynthetic pigments/chlorophyll a were studied during one growing season in the current year's (CYN) and last year's needles (LYN) from Norway spruce (Picea abies (L.) Karst.) grown under natural or close‐to‐natural climate. Climate regimes differed in photosynthetic active radiation (PAR), temperature (T) and UV‐B radiation. Pigments were not affected by UV‐B but most of the differences between climate regimes, and also seasonal variations within climate regimes, could be related to PAR and T. Generally, two types of response to climate were observed: firstly, pigments reacted primarily to PAR without marked sensitivity to T and exhibited slow response times (> 30 d), and, secondly, pigments were affected by the combined action of PAR and T and responded faster than 20 d. The Chl a FW and chlorophyll b/chloprophyll a ratio exhibited slow‐type response in CYN and fast‐type response in LYN. Higher amplitudes in CYN than in LYN were observed for the latter two parameters, which are known to be associated with levels of pigment–protein complexes. It is suggested that slow response in CYN ensures that the high investments in proteins in these needles occur only in response to longer‐lasting climate episodes.  相似文献   

11.
Phenotypic distribution within species can vary widely across environmental gradients but forecasts of species’ responses to environmental change often assume species respond homogenously across their ranges. We compared predictions from species and phenotype distribution models under future climate scenarios for Andropogon gerardii, a widely distributed, dominant grass found throughout the central United States. Phenotype data on aboveground biomass, height, leaf width, and chlorophyll content were obtained from 33 populations spanning a ~1000 km gradient that encompassed the majority of the species’ environmental range. Species and phenotype distribution models were trained using current climate conditions and projected to future climate scenarios. We used permutation procedures to infer the most important variable for each model. The species‐level response to climate was most sensitive to maximum temperature of the hottest month, but phenotypic variables were most sensitive to mean annual precipitation. The phenotype distribution models predict that A. gerardii could be largely functionally eliminated from where this species currently dominates, with biomass and height declining by up to ~60% and leaf width by ~20%. By the 2070s, the core area of highest suitability for A. gerardii is projected to shift up to ~700 km northeastward. Further, short‐statured phenotypes found in the present‐day short grass prairies on the western periphery of the species’ range will become favored in the current core ~800 km eastward of their current location. Combined, species and phenotype models predict this currently dominant prairie grass will decline in prevalence and stature. Thus, sourcing plant material for grassland restoration and forage should consider changes in the phenotype that will be favored under future climate conditions. Phenotype distribution models account for the role of intraspecific variation in determining responses to anticipated climate change and thereby complement predictions from species distributions models in guiding climate adaptation strategies.  相似文献   

12.
Recent anthropogenic climate change and the exponential increase over the past few decades of Saharan dust deposition, containing ecologically important inputs of phosphorus (P) and calcium (Ca), are potentially affecting remote aquatic ecosystems. In this study, we examine changes in cladoceran assemblage composition and chlorophyll‐a concentrations over the past ~150 years from high‐resolution, well‐dated sediment cores retrieved from six remote high mountain lakes in the Sierra Nevada Mountains of Southern Spain, a region affected by Saharan dust deposition. In each lake, marked shifts in cladoceran assemblages and chlorophyll‐a concentrations in recent decades indicate a regional‐scale response to climate and Saharan dust deposition. Chlorophyll‐a concentrations have increased since the 1970s, consistent with a response to rising air temperatures and the intensification of atmospheric deposition of Saharan P. Similar shifts in cladoceran taxa across lakes began over a century ago, but have intensified over the past ~50 years, concurrent with trends in regional air temperature, precipitation, and increased Saharan dust deposition. An abrupt increase in the relative abundance of the benthic cladoceran Alona quadrangularis at the expense of Chydorus sphaericus, and a significant increase in Daphnia pulex gr. was a common trend in these softwater lakes. Differences in the magnitude and timing of these changes are likely due to catchment and lake‐specific differences. In contrast with other alpine lakes that are often affected by acid deposition, atmospheric Ca deposition appears to be a significant explanatory factor, among others, for the changes in the lake biota of Sierra Nevada that has not been previously considered. The effects observed in Sierra Nevada are likely occurring in other Mediterranean lake districts, especially in softwater, oligotrophic lakes. The predicted increases in global temperature and Saharan dust deposition in the future will further impact the ecological condition of these ecosystems.  相似文献   

13.
The temporal and spatial dynamics of primary and secondary biomass/production in the Barents Sea since the late 1990s are examined using remote sensing data, observations and a coupled physical-biological model. Field observations of mesozooplankton biomass, and chlorophyll a data from transects (different seasons) and large-scale surveys (autumn) were used for validation of the remote sensing products and modeling results. The validation showed that satellite data are well suited to study temporal and spatial dynamics of chlorophyll a in the Barents Sea and that the model is an essential tool for secondary production estimates. Temperature, open water area, chlorophyll a, and zooplankton biomass show large interannual variations in the Barents Sea. The climatic variability is strongest in the northern and eastern parts. The moderate increase in net primary production evident in this study is likely an ecosystem response to changes in climate during the same period. Increased open water area and duration of open water season, which are related to elevated temperatures, appear to be the key drivers of the changes in annual net primary production that has occurred in the northern and eastern areas of this ecosystem. The temporal and spatial variability in zooplankton biomass appears to be controlled largely by predation pressure. In the southeastern Barents Sea, statistically significant linkages were observed between chlorophyll a and zooplankton biomass, as well as between net primary production and fish biomass, indicating bottom-up trophic interactions in this region.  相似文献   

14.
At least half of the world's population resides in the coastal zone and the livelihoods of billions of people are affected either directly or indirectly by the production and sustainability of nearshore fisheries. Landscape change, specifically development of tree plantations, is accelerating worldwide as developing countries integrate into global markets to sell goods, offer climate‐mitigation services (carbon), and/or provide renewable energy. These changes can release excess nutrients into adjacent coastal waters causing eutrophication that alters the structure and function of coastal ecosystems. This study examined the relationship between coastal drainage basin land use/land cover change (LCLUC), specifically development of tree plantations, patterns of chlorophyll‐a in nearshore coastal waters, and the biological condition of commercially important shellfish, Concholepas concholepas (loco) in southern Chile. Locos (N = 1374) were sampled across 13 watersheds (35 853 km2) and 42 fisheries management areas (spanning 250 km of coastline). Locos harvested from management areas influenced by tree plantations had approximately 30% more endobiont (shell‐boring) phoronids, almost twice as many endobiont polychaetes and twice as many epibiont (shell‐attaching) barnacles than locos from areas in close proximity to watersheds dominated by native forests (15–20% of the watershed). Phoronid infested locos from coastal waters adjacent to watersheds with tree plantations were of relatively poor biological condition (smaller and narrower in width) and of reduced market value. Our study suggests that tree plantations result in indirect ecological impacts to coastal fisheries (more nutrients and higher phytoplankton biomass, resulting in smaller, low quality locos), and costs are born by coastal fishers (lower prices for locos). Increases in tree plantations could thus potentially significantly impact coastal fisheries worldwide and such problems should be managed as an interconnected network of land use change, oceanic ecosystems, and economic systems that are considered an integrated socio‐ecological system.  相似文献   

15.
One of the major factors limiting biomass productivity in algae is the low thermodynamic efficiency of photosynthesis. The greatest thermodynamic inefficiencies in photosynthesis occur during the conversion of light into chemical energy. At full sunlight the light‐harvesting antenna captures photons at a rate nearly 10 times faster than the rate‐limiting step in photosynthetic electron transport. Excess captured energy is dissipated by non‐productive pathways including the production of reactive oxygen species. Substantial improvements in photosynthetic efficiency have been achieved by reducing the optical cross‐section of the light‐harvesting antenna by selectively reducing chlorophyll b levels and peripheral light‐harvesting complex subunits. Smaller light‐harvesting antenna, however, may not exhibit optimal photosynthetic performance in low or fluctuating light environments. We describe a translational control system to dynamically adjust light‐harvesting antenna sizes for enhanced photosynthetic performance. By expressing a chlorophyllide a oxygenase (CAO) gene having a 5′ mRNA extension encoding a Nab1 translational repressor binding site in a CAO knockout line it was possible to continuously alter chlorophyll b levels and correspondingly light‐harvesting antenna sizes by light‐activated Nab1 repression of CAO expression as a function of growth light intensity. Significantly, algae having light‐regulated antenna sizes had substantially higher photosynthetic rates and two‐fold greater biomass productivity than the parental wild‐type strains as well as near wild‐type ability to carry out state transitions and non‐photochemical quenching. These results have broad implications for enhanced algae and plant biomass productivity.  相似文献   

16.
1. Temperate regions with fish communities dominated by cold‐water species (physiological optima <20 °C) are vulnerable to the effects of warming temperatures caused by climate change, including displacement by non‐native cool‐water (physiological optima 20–28 °C) and warm‐water fishes (physiological optima >28 °C) that are able to establish and invade as the thermal constraints on the expression of their life history traits diminish. 2. England and Wales is a temperate region into which at least 38 freshwater fishes have been introduced, although 14 of these are no longer present. Of the remaining 24 species, some have persisted but failed to establish, some have established populations without becoming invasive and some have become invasive. The aim of the study was to predict the responses of these 24 non‐native fishes to the warming temperatures of England and Wales predicted under climate change in 2050. 3. The predictive use of climate‐matching models and an air and water temperature regression model suggested that there are six non‐native fishes currently persistent but not established in England and Wales whose establishment and subsequent invasion would benefit substantially from the predicted warming temperatures. These included the common carp Cyprinus carpio and European catfish Silurus glanis, fishes that also exert a relatively high propagule pressure through stocking to support angling and whose spatial distribution is currently increasing significantly, including in open systems. 4. The potential ecological impacts of the combined effects of warming temperatures, current spatial distribution and propagule pressure on the establishment and invasion of C. carpio and Sglanis were assessed. The ecological consequences of Ccarpio invasion were assessed as potentially severe in England and Wales, with impacts likely to relate to habitat destruction, macrophyte loss and increased water turbidity. However, evidence of ecological impacts of Sglanis elsewhere in their introduced range was less clear and so their potential impacts in England and Wales remain uncertain.  相似文献   

17.
A two-dimensional microscale (5 cm resolution) sampler was used over the course of a phytoplankton spring bloom dominated by Phaeocystis globosa to investigate the structural properties of chlorophyll a and seawater excess viscosity distributions. The microscale distribution patterns of chlorophyll a and excess viscosity were never uniform nor random. Instead they exhibited different types and levels of aggregated spatial patterns that were related to the dynamics of the bloom. The chlorophyll a and seawater viscosity correlation patterns were also controlled by the dynamics of the bloom with positive and negative correlations before and after the formation of foam in the turbulent surf zone. The ecological relevance and implications of the observed patchiness and biologically induced increase in seawater viscosity are discussed and the combination of the enlarged colonial form and mucus secretion is suggested as a competitive advantage of P. globosa in highly turbulent environments where this species flourishes.  相似文献   

18.
Summary

An analysis of covariance performed on chlorophyll a distribution data from the Sundays River estuary identified five persistent water masses with significantly different chlorophyll a contents. These corresponded to different hydrodynamic regions within the estuary. The relationship between salinity and chlorophyll a was used to identify a transition zone between the low-salinity upper estuary and the brackish riverine inflow. Chlorophyll a concentrations ranged from <6 μg 1?1 near the mouth to >100 μg 1?1 in the middle and upper reaches. High variance of chlorophyll a data in this region was the result of temporal chlorophyll a fluctuations in two time scales. The first related to the daily ebb/tide and the second to the lunar spring/neap tidal cycle. Unlike its importance in larger and deeper estuaries, light played only a minor role in the horizontal distribution of chlorophyll a. The presence of a chlorophyll a maximum in the turbid low salinity region is explained in terms of the relatively constant photic depth/mixed depth ratio along the estuary and the high residence time of water in this region.  相似文献   

19.
Although chlorophyll degradation pathways in higher plants have been well studied, little is known about the mechanisms of chlorophyll degradation in microalgae. In this article, we report the occurrence of a chlorophyll a derivative that has never been discovered in photosynthetic organisms. This chlorophyll derivative emits no fluorescence and has a peculiar absorbance peak at 425, 451, 625, and 685 nm. From these features, it was identified as 132,173‐cyclopheophorbide a enol (cPPB‐aE), reported as a degradation product of chlorophyll a derived from prey algal cells in heterotrophic protists. We discovered cPPB‐aE in six benthic photosynthetic dinoflagellates that are phylogenetically separated into four clades based on SSU rDNA molecular phylogeny. This is the first report of this chlorophyll derivative in photosynthetic organisms and we suggest that the derivative is used to quench excess light energy.  相似文献   

20.
1. Pigment analysis by high‐performance liquid chromatography (HPLC) combined with data analysis using the CHEMTAX program has proven to be a fast and precise method for determining the abundance of phytoplankton groups in marine environments. To determine whether CHEMTAX is applicable also to freshwater phytoplankton, 20 different species of freshwater algae were cultured and their pigment/chlorophyll a (Chl a) ratios determined for exponential growth at three different light intensities and for stationary growth at one light intensity. 2. The different treatments had a relatively insignificant impact on the absolute values of the diagnostic pigment/Chl a ratios, with the exception of cyanobacteria and cryptophytes for which the zeaxanthin/Chl a and alloxanthin/Chl a ratios varied considerably. 3. The pigment ratios were tested on samples collected in six different eutrophic Danish lakes during two summer periods using the CHEMTAX program to calculate the biomass of the phytoplankton groups as Chl a. The CHEMTAX‐derived seasonal changes in Chl a biomass corresponded well with the volume of the microscopically determined phytoplankton groups. More phytoplankton groups were detected by the pigment method than by the microscopic method. 4. Applying the pigment ratios developed in this study, the pigment method can be used to determine the abundance of the individual phytoplankton groups, which are useful as biological water quality indicators when determining the ecological status of freshwater lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号