首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat and drought are two emerging climatic threats to the US maize and soybean production, yet their impacts on yields are collectively determined by the magnitude of climate change and rising atmospheric CO2 concentrations. This study quantifies the combined and separate impacts of high temperature, heat and drought stresses on the current and future US rainfed maize and soybean production and for the first time characterizes spatial shifts in the relative importance of individual stress. Crop yields are simulated using the Agricultural Production Systems Simulator (APSIM), driven by high‐resolution (12 km) dynamically downscaled climate projections for 1995–2004 and 2085–2094. Results show that maize and soybean yield losses are prominent in the US Midwest by the late 21st century under both Representative Concentration Pathway (RCP) 4.5 and RCP8.5 scenarios, and the magnitude of loss highly depends on the current vulnerability and changes in climate extremes. Elevated atmospheric CO2 partially but not completely offsets the yield gaps caused by climate extremes, and the effect is greater in soybean than in maize. Our simulations suggest that drought will continue to be the largest threat to US rainfed maize production under RCP4.5 and soybean production under both RCP scenarios, whereas high temperature and heat stress take over the dominant stress of drought on maize under RCP8.5. We also reveal that shifts in the geographic distributions of dominant stresses are characterized by the increase in concurrent stresses, especially for the US Midwest. These findings imply the importance of considering heat and drought stresses simultaneously for future agronomic adaptation and mitigation strategies, particularly for breeding programs and crop management. The modeling framework of partitioning the total effects of climate change into individual stress impacts can be applied to the study of other crops and agriculture systems.  相似文献   

2.
Without new innovations, present rates of increase in yields of food crops globally are inadequate to meet the projected rising food demand for 2050 and beyond. A prevailing response of crops to rising [CO2] is an increase in leaf area. This is especially marked in soybean, the world's fourth largest food crop in terms of seed production, and the most important vegetable protein source. Is this increase in leaf area beneficial, with respect to increasing yield, or is it detrimental? It is shown from theory and experiment using open‐air whole‐season elevation of atmospheric [CO2] that it is detrimental not only under future conditions of elevated [CO2] but also under today's [CO2]. A mechanistic biophysical and biochemical model of canopy carbon exchange and microclimate (MLCan) was parameterized for a modern US Midwest soybean cultivar. Model simulations showed that soybean crops grown under current and elevated (550 [ppm]) [CO2] overinvest in leaves, and this is predicted to decrease productivity and seed yield 8% and 10%, respectively. This prediction was tested in replicated field trials in which a proportion of emerging leaves was removed prior to expansion, so lowering investment in leaves. The experiment was conducted under open‐air conditions for current and future elevated [CO2] within the Soybean Free Air Concentration Enrichment facility (SoyFACE) in central Illinois. This treatment resulted in a statistically significant 8% yield increase. This is the first direct proof that a modern crop cultivar produces more leaf than is optimal for yield under today's and future [CO2] and that reducing leaf area would give higher yields. Breeding or bioengineering for lower leaf area could, therefore, contribute very significantly to meeting future demand for staple food crops given that an 8% yield increase across the USA alone would amount to 6.5 million metric tons annually.  相似文献   

3.
Free‐air CO2 enrichment (FACE) allows open‐air elevation of [CO2] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta‐analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2] by ca. 200 ppm caused a ca. 18% increase in yield under non‐stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non‐leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2]. A strong correlation of yield response under elevated [CO2] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co‐promoting sustainability and productivity under future elevated [CO2].  相似文献   

4.
The response of wheat crops to elevated CO2 (eCO2) was measured and modelled with the Australian Grains Free‐Air CO2 Enrichment experiment, located at Horsham, Australia. Treatments included CO2 by water, N and temperature. The location represents a semi‐arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 to 10 200 kg ha?1 and 1600 to 3900 kg ha?1, respectively, over various sowing times and irrigation regimes. The mean observed response to daytime eCO2 (from 365 to 550 μmol mol?1 CO2) was relatively consistent for biomass at stem elongation and at anthesis and LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P = 0.10) by eCO2, increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM‐Wheat, APSIM‐Nwheat, CAT‐Wheat, CROPSYST, OLEARY‐CONNOR and SALUS) in simulating crop responses to eCO2 was similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO2. However, under irrigation, the effect of late sowing on response to eCO2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO2, water and temperature is required to resolve these model discrepancies.  相似文献   

5.
Characterization of drought environment types (ETs) has proven useful for breeding crops for drought‐prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat‐induced yield losses of more than 10%, as well as the co‐occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation‐use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co‐occurs with extreme heat.  相似文献   

6.
Accurate estimates of the fertilization effect that elevated carbon dioxide [CO2] has on crop yields are valuable for estimation of future crop production, yet there is still some controversy over these estimates due to possible CO2‐by‐water‐status interactions in chamber studies and the difficulty of conducting field experiments with elevated [CO2]. This study presents a new method to estimate the CO2 fertilization effect (CFE) in dry conditions (CFEdry), based on a combination of historical yield and climatic data and field experiments that do not require elevated [CO2]. It was estimated that approximately 50 years of increasing [CO2] (i.e., a 73 ppm increase) resulted in a 9% and 14% improvement of yield in dry conditions for maize and soybean, respectively, which are similar to estimates derived from free air CO2 enrichment (FACE) studies. The main source of uncertainty in this approach relates to differential effects of technology trends such as new cultivars in wet vs. dry years. Estimates of this technology–water interaction can be refined by further experimentation under ambient [CO2], offering a cost‐effective path for improving CFE estimates. The results should prove useful for modeling future yield impacts of climate change, and the approach could be used to derive estimates for other species using relatively simple yield trials.  相似文献   

7.
The Intergovernmental Panel on Climate Change projects that atmospheric [CO2] will reach 550 ppm by 2050. Numerous assessments of plant response to elevated [CO2] have been conducted in chambers and enclosures, with only a few studies reporting responses in fully open‐air, field conditions. Reported yields for the world's two major grain crops, wheat and rice, are substantially lower in free‐air CO2 enrichment (FACE) than predicted from similar elevated [CO2] experiments within chambers. This discrepancy has major implications for forecasting future global food supply. Globally, the leguminous‐crop soybean (Glycine max (L.) Merr.) is planted on more land than any other dicotyledonous crop. Previous studies have shown that total dry mass production increased on average 37% in response to increasing [CO2] to approximately 700 ppm, but harvestable yield will increase only 24%. Is this representative of soybean responses under open‐air field conditions? The effects of elevation of [CO2] to 550 ppm on total production, partitioning and yield of soybean over 3 years are reported. This is the first FACE study of soybean ( http://www.soyface.uiuc.edu ) and the first on crops in the Midwest of North America, one of the major food production regions of the globe. Although increases in both aboveground net primary production (17–18%) and yield (15%) were consistent across three growing seasons and two cultivars, the relative stimulation was less than projected from previous chamber experiments. As in previous studies, partitioning to seed dry mass decreased; however, net production during vegetative growth did not increase and crop maturation was delayed, not accelerated as previously reported. These results suggest that chamber studies may have over‐estimated the stimulatory effect of rising [CO2], with important implications on global food supply forecasts.  相似文献   

8.
The C4 grass Zea mays (maize or corn) is the third most important food crop globally in terms of production and demand is predicted to increase 45% from 1997 to 2020. However, the effects of rising [CO2] upon C4 plants, and Z. mays specifically, are not sufficiently understood to allow accurate predictions of future crop production. A rainfed, field experiment utilizing free‐air concentration enrichment (FACE) technology in the primary area of global corn production (US Corn Belt) was undertaken to determine the effects of elevated [CO2] on corn. FACE technology allows experimental treatments to be imposed upon a complete soil–plant–atmosphere continuum with none of the effects of experimental enclosures on plant microclimate. Crop performance was compared at ambient [CO2] (354 μ mol mol?1) and the elevated [CO2] (549 μmol mol?1) predicted for 2050. Previous laboratory studies suggest that under favorable growing conditions C4 photosynthesis is not typically enhanced by elevated [CO2]. However, stomatal conductance and transpiration are decreased, which can indirectly increase photosynthesis in dry climates. Given the deep soils and relatively high rainfall of the US Corn Belt, it was predicted that photosynthesis would not be enhanced by elevated [CO2]. The diurnal course of gas exchange of upper canopy leaves was measured in situ across the growing season of 2002. Contrary to the prediction, growth at elevated [CO2] significantly increased leaf photosynthetic CO2 uptake rate (A) by up to 41%, and 10% on average. Greater A was associated with greater intercellular [CO2], lower stomatal conductance and lower transpiration. Summer rainfall during 2002 was very close to the 50‐year average for this site, indicating that the year was not atypical or a drought year. The results call for a reassessment of the established view that C4 photosynthesis is insensitive to elevated [CO2] under favorable growing conditions and that the production potential of corn in the US Corn Belt will not be affected by the global rise in [CO2].  相似文献   

9.
The atmospheric [CO2] in which crops grow today is greater than at any point in their domestication history and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future atmospheric [CO2], we need to identify and study crop cultivars that respond most favorably to elevated [CO2] and understand the mechanisms contributing to their responsiveness. Soybean (Glycine max Merr.) is a widely grown oilseed crop and shows genetic variation in response to elevated [CO2]. However, few studies have studied the physiological basis for this variation. Here, we examined canopy light interception, photosynthesis, respiration and radiation use efficiency along with yield and yield parameters in two cultivars of soybean (Loda and HS93‐4118) previously reported to have similar seed yield at ambient [CO2], but contrasting responses to elevated [CO2]. Seed yield increased by 26% at elevated [CO2] (600 μmol/mol) in the responsive cultivar Loda, but only by 11% in HS93‐4118. Canopy light interception and leaf area index were greater in HS93‐4118 in ambient [CO2], but increased more in response to elevated [CO2] in Loda. Radiation use efficiency and harvest index were also greater in Loda than HS93‐4118 at both ambient and elevated [CO2]. Daily C assimilation was greater at elevated [CO2] in both cultivars, while stomatal conductance was lower. Electron transport capacity was also greater in Loda than HS93‐4118, but there was no difference in the response of photosynthetic traits to elevated [CO2] in the two cultivars. Overall, this greater understanding of leaf‐ and canopy‐level photosynthetic traits provides a strong conceptual basis for modeling genotypic variation in response to elevated [CO2].  相似文献   

10.
Soybean (Glycine max) was grown at ambient and enhanced carbon dioxide (CO2, + 250 μL L?1 above ambient) with and without the presence of a C3 weed (lambsquarters, Chenopodium album L.) and a C4 weed (redroot pigweed, Amaranthus retroflexus L.), in order to evaluate the impact of rising atmospheric carbon dioxide concentration [CO2] on crop production losses due to weeds. Weeds of a given species were sown at a density of two per metre of row. A significant reduction in soybean seed yield was observed with either weed species relative to the weed‐free control at either [CO2]. However, for lambsquarters the reduction in soybean seed yield relative to the weed‐free condition increased from 28 to 39% as CO2 increased, with a 65% increase in the average dry weight of lambsquarters at enhanced [CO2]. Conversely, for pigweed, soybean seed yield losses diminished with increasing [CO2] from 45 to 30%, with no change in the average dry weight of pigweed. In a weed‐free environment, elevated [CO2] resulted in a significant increase in vegetative dry weight and seed yield at maturity for soybean (33 and 24%, respectively) compared to the ambient CO2 condition. Interestingly, the presence of either weed negated the ability of soybean to respond either vegetatively or reproductively to enhanced [CO2]. Results from this experiment suggest: (i) that rising [CO2] could alter current yield losses associated with competition from weeds; and (ii) that weed control will be crucial in realizing any potential increase in economic yield of agronomic crops such as soybean as atmospheric [CO2] increases.  相似文献   

11.
Crops with the C4 photosynthetic pathway are vital to global food supply, particularly in the tropical regions where human well-being and agricultural productivity are most closely linked. While rising atmospheric [CO2] is the driving force behind the greater temperatures and water stress, which threaten to reduce future crop yields, it also has the potential to directly benefit crop physiology. The nature of C4 plant responses to elevated [CO2] has been controversial. Recent evidence from free-air CO2 enrichment (FACE) experiments suggests that elevated [CO2] does not directly stimulate C4 photosynthesis. Nonetheless, drought stress can be ameliorated at elevated [CO2] as a result of lower stomatal conductance and greater intercellular [CO2]. Therefore, unlike C3 crops for which there is a direct enhancement of photosynthesis by elevated [CO2], C4 crops will only benefit from elevated [CO2] in times and places of drought stress. Current projections of future crop yields have assumed that rising [CO2] will directly enhance photosynthesis in all situations and, therefore, are likely to be overly optimistic. Additional experiments are needed to evaluate the extent to which amelioration of drought stress by elevated [CO2] will improve C4 crop yields for food and fuel over the range of C4 crop growing conditions and genotypes.  相似文献   

12.
The rising atmospheric CO2 concentration ([CO2]) can increase crop productivity, but there are likely to be intraspecific variations in the response. To meet future world food demand, screening for genotypes with high [CO2] responsiveness will be a useful option, but there is no criterion for high [CO2] responsiveness. We hypothesized that the Finlay–Wilkinson regression coefficient (RC) (for the relationship between a genotype's yield versus the mean yield of all genotypes in a specific environment) could serve as a pre‐screening criterion for identifying genotypes that respond strongly to elevated [CO2]. We collected datasets on the yield of 6 rice and 10 soybean genotypes along environmental gradients and compared their responsiveness to elevated [CO2] based on the regression coefficients (i.e. the increases of yield per 100 µmol mol?1 [CO2]) identified in previous reports. We found significant positive correlations between the RCs and the responsiveness of yield to elevated [CO2] in both rice and soybean. This result raises the possibility that the coefficient of the Finlay–Wilkinson relationship could be used as a pre‐screening criterion for [CO2] responsiveness.  相似文献   

13.
The impact of elevated [CO2] (e[CO2]) on crops often includes a decrease in their nutrient concentrations where reduced transpiration‐driven mass flow of nutrients has been suggested to play a role. We used two independent approaches, a free‐air CO2 enrichment (FACE) experiment in the South Eastern wheat belt of Australia and a simulation study employing the agricultural production systems simulator (APSIM), to show that transpiration (mm) and nutrient uptake (g m?2) of nitrogen (N), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg) and manganese (Mn) in wheat are correlated under e[CO2], but that nutrient uptake per unit water transpired is higher under e[CO2] than under ambient [CO2] (a[CO2]). This result suggests that transpiration‐driven mass flow of nutrients contributes to decreases in nutrient concentrations under e[CO2], but cannot solely explain the overall decline.  相似文献   

14.
Elevated atmospheric CO2 concentrations ([CO2]) cause direct changes in crop physiological processes (e.g. photosynthesis and stomatal conductance). To represent these CO2 responses, commonly used crop simulation models have been amended, using simple and semicomplex representations of the processes involved. Yet, there is no standard approach to and often poor documentation of these developments. This study used a bottom‐up approach (starting with the APSIM framework as case study) to evaluate modelled responses in a consortium of commonly used crop models and illuminate whether variation in responses reflects true uncertainty in our understanding compared to arbitrary choices of model developers. Diversity in simulated CO2 responses and limited validation were common among models, both within the APSIM framework and more generally. Whereas production responses show some consistency up to moderately high [CO2] (around 700 ppm), transpiration and stomatal responses vary more widely in nature and magnitude (e.g. a decrease in stomatal conductance varying between 35% and 90% among models was found for [CO2] doubling to 700 ppm). Most notably, nitrogen responses were found to be included in few crop models despite being commonly observed and critical for the simulation of photosynthetic acclimation, crop nutritional quality and carbon allocation. We suggest harmonization and consideration of more mechanistic concepts in particular subroutines, for example, for the simulation of N dynamics, as a way to improve our predictive understanding of CO2 responses and capture secondary processes. Intercomparison studies could assist in this aim, provided that they go beyond simple output comparison and explicitly identify the representations and assumptions that are causal for intermodel differences. Additionally, validation and proper documentation of the representation of CO2 responses within models should be prioritized.  相似文献   

15.
In order to predict the potential impacts of global change, it is important to understand the impact of increasing global atmospheric [CO2] on the growth and yield of crop plants. The objectives of this study were to determine the interaction of N fertilization rates and atmospheric [CO2] on radiation interception and radiation-use efficiency of rice (Oryza sativa L. cv. IR72) grown under tropical field conditions. Rice plants were grown inside open top chambers in a lowland rice field at the International Rice Research Institute in the Philippines at ambient (about 350 μmol mol-1) or elevated (about 600 μmol mol-1 during the 1993 wet season and 700 μmol mol-1 during the 1994 dry season) in combination with three levels of applied N (0, 50 or 100 kg N ha-1 in the wet season; 0, 90 or 200 kg N ha-1 in the dry season). Light interception was not directly affected by [CO2], but elevated [CO2] indirectly increased light interception through increasing total absorbed N. Plant N requirement for radiation interception was similar for rice grown under ambient [CO2] or elevated [CO2] treatments. The conversion efficiency of intercepted radiation to dry matter, radiation-use efficiency (RUE), was about 35% greater at elevated [CO2] than at ambient [CO2]. The relationship between leaf N and RUE was curvilinear. At ambient [CO2], RUE was fairly stable across levels of leaf N, but leaf N less than about 2.5% resulted in lower RUE for plants grown with elevated [CO2] than for plant grown at ambient [CO2]. Decreased leaf N with increased [CO2], therefore decreased RUE of rice plants grown at elevated [CO2]. When predicting responses of rice to elevated [CO2], RUE should be adjusted with a decrease in leaf N. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Maize, in rotation with soybean, forms the largest continuous ecosystem in temperate North America, therefore changes to the biosphere‐atmosphere exchange of water vapor and energy of these crops are likely to have an impact on the Midwestern US climate and hydrological cycle. As a C4 crop, maize photosynthesis is already CO2‐saturated at current CO2 concentrations ([CO2]) and the primary response of maize to elevated [CO2] is decreased stomatal conductance (gs). If maize photosynthesis is not stimulated in elevated [CO2], then reduced gs is not offset by greater canopy leaf area, which could potentially result in a greater ET reduction relative to that previously reported in soybean, a C3 species. The objective of this study is to quantify the impact of elevated [CO2] on canopy energy and water fluxes of maize (Zea mays). Maize was grown under ambient and elevated [CO2] (550 μmol mol?1 during 2004 and 2006 and 585 μmol mol?1 during 2010) using Free Air Concentration Enrichment (FACE) technology at the SoyFACE facility in Urbana, Illinois. Maize ET was determined using a residual energy balance approach based on measurements of sensible (H) and soil heat fluxes, and net radiation. Relative to control, elevated [CO2] decreased maize ET (7–11%; P < 0.01) along with lesser soil moisture depletion, while H increased (25–30 W m?2; P < 0.01) along with higher canopy temperature (0.5–0.6 °C). This reduction in maize ET in elevated [CO2] is approximately half that previously reported for soybean. A partitioning analysis showed that transpiration contributed less to total ET for maize compared to soybean, indicating a smaller role of stomata in dictating the ET response to elevated [CO2]. Nonetheless, both maize and soybean had significantly decreased ET and increased H, highlighting the critical role of elevated [CO2] in altering future hydrology and climate of the region that is extensively cropped with these species.  相似文献   

17.
18.
Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and TE simulation model shows wheat yield advantage of a high‐TE cultivar (cv. Drysdale) over its almost identical low‐TE parent line (Hartog), from about ?7 to 558 kg/ha (mean 187 kg/ha) over the rainfed cropping region in Australia (221–1,351 mm annual rainfall), under the present‐day climate. The smallest absolute yield response occurred in the more extreme drier and wetter areas of the wheat belt. However, under elevated CO2 conditions, the response of Drysdale was much greater overall, ranging from 51 to 886 kg/ha (mean 284 kg/ha) with the greatest response in the higher rainfall areas. Changes in simulated TE under elevated CO2 conditions are seen across Australia with notable increased areas of higher TE under a drier climate in Western Australia, Queensland and parts of New South Wales and Victoria. This improved efficiency is subtly deceptive, with highest yields not necessarily directly correlated with highest TE. Nevertheless, the advantage of Drysdale over Hartog is clear with the benefit of the trait advantage attributed to TE ranging from 102% to 118% (mean 109%). The potential annual cost‐benefits of this increased genetic TE trait across the wheat growing areas of Australia (5 year average of area planted to wheat) totaled AUD 631 MIL (5‐year average wheat price of AUD/260 t) with an average of 187 kg/ha under the present climate. The benefit to an individual farmer will depend on location but elevated CO2 raises this nation‐wide benefit to AUD 796 MIL in a 2°C warmer climate, slightly lower (AUD 715 MIL) if rainfall is also reduced by 20%.  相似文献   

19.
The effects of elevated [CO2] on 25 variables describing soybean physiology, growth and yield are reviewed using meta‐analytic techniques. This is the first meta‐analysis to our knowledge performed on a single crop species and summarizes the effects of 111 studies. These primary studies include numerous soybean growth forms, various stress and experimental treatments, and a range of elevated [CO2] levels (from 450 to 1250 p.p.m.), with a mean of 689 p.p.m. across all studies. Stimulation of soybean leaf CO2 assimilation rate with growth at elevated [CO2] was 39%, despite a 40% decrease in stomatal conductance and a 11% decrease in Rubisco activity. Increased leaf CO2 uptake combined with an 18% stimulation in leaf area to provide a 59% increase in canopy photosynthetic rate. The increase in total dry weight was lower at 37%, and seed yield still lower at 24%. This shows that even in an agronomic species selected for maximum investment in seed, several plant level feedbacks prevent additional investment in reproduction, such that yield fails to reflect fully the increase in whole plant carbon uptake. Large soil containers (> 9 L) have been considered adequate for assessing plant responses to elevated [CO2]. However, in open‐top chamber experiments, soybeans grown in large pots showed a significant threefold smaller stimulation in yield than soybeans grown in the ground. This suggests that conclusions about plant yield based on pot studies, even when using very large containers, are a poor reflection of performance in the absence of any physical restriction on root growth. This review supports a number of current paradigms of plant responses to elevated [CO2]. Namely, stimulation of photosynthesis is greater in plants that fix N and have additional carbohydrate sinks in nodules. This supports the notion that photosynthetic capacity decreases when plants are N‐limited, but not when plants have adequate N and sink strength. The root : shoot ratio did not change with growth at elevated [CO2], sustaining the charge that biomass allocation is unaffected by growth at elevated [CO2] when plant size and ontogeny are considered.  相似文献   

20.
The rising concentration of atmospheric carbon dioxide (CO2) is known to increase the total aboveground biomass of several C3 crops, whereas C4 crops are reported to be hardly affected when water supply is sufficient. However, a free‐air carbon enrichment (FACE) experiment in Braunschweig, Germany, in 2007 and 2008 resulted in a 25% increased biomass of the C4 crop maize under restricted water conditions and elevated CO2 (550 ppm). To project future yields of maize under climate change, an accurate representation of the effects of eCO2 and drought on biomass and soil water conditions is essential. Current crop growth models reveal limitations in simulations of maize biomass under eCO2 and limited water supply. We use the coupled process‐based hydrological‐plant growth model Catchment Modeling Framework‐Plant growth Modeling Framework to overcome this limitation. We apply the coupled model to the maize‐based FACE experiment in Braunschweig that provides robust data for the investigation of combined CO2 and drought effects. We approve hypothesis I that CO2 enrichment has a small direct‐fertilizing effect with regard to the total aboveground biomass of maize and hypothesis II that CO2 enrichment decreases water stress and leads to higher yields of maize under restricted water conditions. Hypothesis III could partly be approved showing that CO2 enrichment decreases the transpiration of maize, but does not raise soil moisture, while increasing evaporation. We emphasize the importance of plant‐specific CO2 response factors derived by use of comprehensive FACE data. By now, only one FACE experiment on maize is accomplished applying different water levels. For the rigorous testing of plant growth models and their applicability in climate change studies, we call for datasets that go beyond single criteria (only yield response) and single effects (only elevated CO2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号