首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diverse intercropping system has been used to control disease and improve productivity in the field. In this research, the bacterial communities in salt–alkali soils of monoculture and intercropping mulberry and soybean were studied using 454‐pyrosequencing of the 16S rDNA gene. The dominant taxonomic groups were Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Gemmatimonadetes and these were present across all samples. However, the diversity and composition of bacterial communities varied between monoculture and intercropping samples. The estimated bacterial diversity (H') was higher with intercropping soybean than in monoculture soybean, whereas H' showed an opposite pattern in monoculture and intercropping mulberry. Populations of Actinobacteria, Acidobacteria, and Proteobacteria were variable, depending on growth of plants as monoculture or intercropped. Most of Actinobacteria and Chloroflexi were found in intercropping samples, while Acidobacteria and Proteobacteria were present at a higher percentage in monoculture samples. The plant diversity of aboveground and microbial diversity of belowground was linked and soil pH seemed to influence the bacterial community. Finally, the specific plant species was the major factor that determined the bacterial community in the salt–alkali soils.  相似文献   

2.
Long‐term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long‐term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long‐term N and NPK fertilization on soil bacterial diversity and community composition using meta‐analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long‐term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long‐term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro‐ecosystems worldwide.  相似文献   

3.
The increasing input of anthropogenically derived nitrogen (N) to ecosystems raises a crucial question: how does available N modify the decomposer community and thus affects the mineralization of soil organic matter (SOM). Moreover, N input modifies the priming effect (PE), that is, the effect of fresh organics on the microbial decomposition of SOM. We studied the interactive effects of C and N on SOM mineralization (by natural 13C labelling adding C4‐sucrose or C4‐maize straw to C3‐soil) in relation to microbial growth kinetics and to the activities of five hydrolytic enzymes. This encompasses the groups of parameters governing two mechanisms of priming effects – microbial N mining and stoichiometric decomposition theories. In sole C treatments, positive PE was accompanied by a decrease in specific microbial growth rates, confirming a greater contribution of K‐strategists to the decomposition of native SOM. Sucrose addition with N significantly accelerated mineralization of native SOM, whereas mineral N added with plant residues accelerated decomposition of plant residues. This supports the microbial mining theory in terms of N limitation. Sucrose addition with N was accompanied by accelerated microbial growth, increased activities of β‐glucosidase and cellobiohydrolase, and decreased activities of xylanase and leucine amino peptidase. This indicated an increased contribution of r‐strategists to the PE and to decomposition of cellulose but the decreased hemicellulolytic and proteolytic activities. Thus, the acceleration of the C cycle was primed by exogenous organic C and was controlled by N. This confirms the stoichiometric decomposition theory. Both K‐ and r‐strategists were beneficial for priming effects, with an increasing contribution of K‐selected species under N limitation. Thus, the priming phenomenon described in ‘microbial N mining’ theory can be ascribed to K‐strategists. In contrast, ‘stoichiometric decomposition’ theory, that is, accelerated OM mineralization due to balanced microbial growth, is explained by domination of r‐strategists.  相似文献   

4.
森林土壤融化期异养呼吸和微生物碳变化特征   总被引:1,自引:0,他引:1  
采用室内土柱培养的方法,研究在不同湿度(55%和80%WFPS,土壤充水孔隙度)和不同氮素供给(NH_4Cl和KNO_3,4.5 g N/m~2)条件下,外源碳添加(葡萄糖,6.4 g C/m~2)对温带成熟阔叶红松混交林和次生白桦林土壤融化过程微生物呼吸和微生物碳的激发效应。结果表明:在整个融化培养期间,次生白桦林土壤对照CO_2累积排放量显著高于阔叶红松混交林土壤。随着土壤湿度的增加,次生白桦林土壤对照CO_2累积排放量和微生物代谢熵(q_(CO_2))显著降低,而阔叶红松混交林土壤两者显著地增加(P0.05)。两种林分土壤由葡萄糖(Glu)引起的CO_2累积排放量(9.61—13.49 g C/m~2)显著大于实验施加的葡萄糖含碳量(6.4g C/m~2),同时由Glu引起的土壤微生物碳增量为3.65—27.18 g C/m~2,而施加Glu对土壤DOC含量影响较小。因此,这种由施加Glu引起的额外碳释放可能来源于土壤固有有机碳分解。融化培养结束时,阔叶红松混交林土壤未施氮处理由Glu引起的CO_2累积排放量在两种湿度条件下均显著大于次生白桦林土壤(P0.001);随着湿度的增加,两种林分土壤Glu引起的CO_2累积排放量显著增大(P0.001)。单施KNO_3显著地增加两种湿度的次生白桦林土壤Glu引起的CO_2累积排放量(P0.01)。单施KNO_3显著地增加了两种湿度次生白桦林土壤Glu引起的微生物碳(P0.001),单施NH_4Cl显著地增加低湿度阔叶红松混交林土壤Glu引起的微生物碳(P0.001)。结合前期报道的未冻结实验结果,发现冻结过程显著地影响外源Glu对温带森林土壤微生物呼吸和微生物碳的刺激效应(P0.05),并且无论冻结与否,温带森林土壤微生物呼吸和微生物碳对外源Glu的响应均与植被类型、土壤湿度、外源氮供给及其形态存在显著的相关性。  相似文献   

5.
DOM对米槠次生林不同土层土壤微生物呼吸及其熵值的影响   总被引:3,自引:0,他引:3  
吴东梅  郭剑芬  张政  李帅军  杨玉盛 《生态学报》2018,38(11):3806-3815
可溶性有机质(Dissolved organic matter,DOM)作为土壤可溶性有机碳的重要来源,进入土壤之后通过改变土壤微生物数量和活性影响土壤矿化。DOM输入对土壤微生物呼吸和熵值的研究多集中在表层土壤,但对深层土壤微生物呼吸和熵值的影响关注较少。通过室内培养实验(120 d)研究米槠(Castanopsis carlesii)鲜叶DOM添加对表层土壤(0—10 cm)和深层土壤(40—60 cm)微生物呼吸及其土壤代谢熵和微生物熵的影响,为揭示DOM输入对亚热带森林土壤碳过程的影响提供理论依据。结果表明,在培养第1天,添加DOM的表层和深层土壤CO_2瞬时排放速率均显著高于对照(P0.001),分别是对照(不添加DOM)的3.58倍和6.93倍,之后显著下降。就累积排放量而言,无论是DOM添加处理还是对照,表层土壤显著大于深层土壤;在米槠鲜叶DOM添加后,表层土壤累积排放量显著大于对照的表层土壤(P0.001),但DOM添加处理深层土壤累积排放量与对照的深层土壤无明显差异。就微生物生物量碳而言,表层土壤微生物生物量碳含量在培养期间显著大于深层土壤。在整个添加DOM培养期间,表层土壤微生物生物量碳含量显著大于表层对照土壤,深层土壤微生物生物量碳含量显著大于深层对照土壤(第3天除外)。培养结束时(120 d),米槠鲜叶DOM添加处理下,表层土壤和深层土壤有机碳含量与第3天相比分别减少26%和19%。米槠鲜叶DOM添加处理后的深层土壤代谢熵(qCO_2)显著低于对照的深层土壤和DOM添加处理的表层土壤qCO_2(P0.001),说明外源DOM进入深层土壤后提高了土壤微生物对碳的利用效率。米槠鲜叶DOM添加处理后的深层土壤微生物熵是培养第3天的1.58倍,显著大于培养初期(P0.05),而DOM添加处理的表层土壤、对照的表层土壤与深层土壤的微生物熵分别是培养第3天的68%、79%和21%,说明DOM添加提高了深层土壤质量。  相似文献   

6.
This study was set up to identify the long‐term effect of biochar on soil C sequestration of recent carbon inputs. Arable fields (n = 5) were found in Belgium with charcoal‐enriched black spots (>50 m2; n = 14) dating >150 years ago from historical charcoal production mound kilns. Topsoils from these ‘black spots’ had a higher organic C concentration [3.6 ± 0.9% organic carbon (OC)] than adjacent soils outside these black spots (2.1 ± 0.2% OC). The soils had been cropped with maize for at least 12 years which provided a continuous input of C with a C isotope signature (δ13C) ?13.1, distinct from the δ13C of soil organic carbon (?27.4 ‰) and charcoal (?25.7 ‰) collected in the surrounding area. The isotope signatures in the soil revealed that maize‐derived C concentration was significantly higher in charcoal‐amended samples (‘black spots’) than in adjacent unamended ones (0.44% vs. 0.31%; = 0.02). Topsoils were subsequently collected as a gradient across two ‘black spots’ along with corresponding adjacent soils outside these black spots and soil respiration, and physical soil fractionation was conducted. Total soil respiration (130 days) was unaffected by charcoal, but the maize‐derived C respiration per unit maize‐derived OC in soil significantly decreased about half (< 0.02) with increasing charcoal‐derived C in soil. Maize‐derived C was proportionally present more in protected soil aggregates in the presence of charcoal. The lower specific mineralization and increased C sequestration of recent C with charcoal are attributed to a combination of physical protection, C saturation of microbial communities and, potentially, slightly higher annual primary production. Overall, this study provides evidence of the capacity of biochar to enhance C sequestration in soils through reduced C turnover on the long term.  相似文献   

7.
8.
Studies on soil quality of mangrove forests would be of immense use in minimizing soil degradation and in adopting strategies for soil management at degraded sites. Among the various parameters of soil quality, biological and biochemical soil properties are very sensitive to environmental stress and provide rapid and accurate estimates on changes in quality of soils subjected to degradation. In this study, we determined the general and specific biochemical characteristics of soils (0-30 cm) of inter-tidal areas of 10 undisturbed mangrove forest sites of S. Andaman, India. In order to determine the effects of disturbance, soils from the inter-tidal areas of 10 disturbed mangrove forest sites were also included in the study. The general biochemical properties included all the variables directly related to microbial activity and the specific biochemical parameters included the activities of extracellular hydrolytic enzymes that are involved in the carbon, nitrogen, sulfur and phosphorus cycles in soil. The pH, clay, cation exchange capacity, Al2O3 and Fe2O3 levels exhibited minimum variation between the disturbed and undisturbed sites. In contrast, organic C, total N, Bray P and K levels exhibited marked variation between the sites and were considerably lower at the disturbed sites. The study also revealed marked reductions in microbial biomass and activity at the disturbed sites. In comparison to the undisturbed sites, the levels of all the general biochemical parameters viz., microbial biomass C, microbial biomass N, N flush, basal respiration, metabolic quotient (qCO2), ATP, N mineralization rates and the activities of dehydrogenase and catalase were considerably lower at the disturbed sites. Similarly, drastic reductions in the activities of phosphomonoesterase, phosphodiesterase, ß-g1ucosidase, urease, BAA-protease, casein-protease, arylsulfatase, invertase and carboxymethylcellulase occurred at the disturbed sites due mainly to significant reductions in organic matter/substrate levels. The data on CO2 evolution, qCO2 and ATP indicated the dominance of active individuals in the microbial communities of undisturbed soils and the ratios of biomass C:N, ATP:biomass C and ergosterol:biomass C ratios indicated low N availability and the possibility of fungi dominating over bacteria at both the mangrove sites. Significant and positive correlations between soil variables and biochemical properties suggested that the number and activity of soil microorganisms depend mainly on the quantity of mineralizable substrate and the availability of nutrients in these mangrove soils.  相似文献   

9.
Soil microbial physiology controls large fluxes of C to the atmosphere, thus, improving our ability to accurately quantify microbial physiology in soil is essential. However, current methods to determine microbial C metabolism require liquid water addition, which makes it practically impossible to measure microbial physiology in dry soil samples without stimulating microbial growth and respiration (namely, the “Birch effect”). We developed a new method based on in vivo 18O‐water vapor equilibration to minimize soil rewetting effects. This method allows the isotopic labeling of soil water without direct liquid water addition. This was compared to the main current method (direct 18O‐liquid water addition) in moist and air‐dry soils. We determined the time kinetics and calculated the average 18O enrichment of soil water over incubation time, which is necessary to calculate microbial growth from 18O incorporation in genomic DNA. We tested isotopic equilibration patterns in three natural and six artificially constructed soils covering a wide range of soil texture and soil organic matter content. We then measured microbial growth, respiration and carbon use efficiency (CUE) in three natural soils (either air‐dry or moist). The proposed 18O‐vapor equilibration method provided similar results as the current method of liquid 18O‐water addition when used for moist soils. However, when applied to air‐dry soils the liquid 18O‐water addition method overestimated growth by up to 250%, respiration by up to 500%, and underestimated CUE by up to 40%. We finally describe the new insights into biogeochemical cycling of C that the new method can help uncover, and we consider a range of questions regarding microbial physiology and its response to global change that can now be addressed.  相似文献   

10.

Background

Variation in microbial metabolism poses one of the greatest current uncertainties in models of global carbon cycling, and is particularly poorly understood in soils. Biological Stoichiometry theory describes biochemical mechanisms linking metabolic rates with variation in the elemental composition of cells and organisms, and has been widely observed in animals, plants, and plankton. However, this theory has not been widely tested in microbes, which are considered to have fixed ratios of major elements in soils.

Methodology/Principal Findings

To determine whether Biological Stoichiometry underlies patterns of soil microbial metabolism, we compiled published data on microbial biomass carbon (C), nitrogen (N), and phosphorus (P) pools in soils spanning the global range of climate, vegetation, and land use types. We compared element ratios in microbial biomass pools to the metabolic quotient qCO2 (respiration per unit biomass), where soil C mineralization was simultaneously measured in controlled incubations. Although microbial C, N, and P stoichiometry appeared to follow somewhat constrained allometric relationships at the global scale, we found significant variation in the C∶N∶P ratios of soil microbes across land use and habitat types, and size-dependent scaling of microbial C∶N and C∶P (but not N∶P) ratios. Microbial stoichiometry and metabolic quotients were also weakly correlated as suggested by Biological Stoichiometry theory. Importantly, we found that while soil microbial biomass appeared constrained by soil N availability, microbial metabolic rates (qCO2) were most strongly associated with inorganic P availability.

Conclusions/Significance

Our findings appear consistent with the model of cellular metabolism described by Biological Stoichiometry theory, where biomass is limited by N needed to build proteins, but rates of protein synthesis are limited by the high P demands of ribosomes. Incorporation of these physiological processes may improve models of carbon cycling and understanding of the effects of nutrient availability on soil C turnover across terrestrial and wetland habitats.  相似文献   

11.
A positive soil carbon (C)‐climate feedback is embedded into the climatic models of the IPCC. However, recent global syntheses indicate that the temperature sensitivity of soil respiration (RS) in drylands, the largest biome on Earth, is actually lower in warmed than in control plots. Consequently, soil C losses with future warming are expected to be low compared with other biomes. Nevertheless, the empirical basis for these global extrapolations is still poor in drylands, due to the low number of field experiments testing the pathways behind the long‐term responses of soil respiration (RS) to warming. Importantly, global drylands are covered with biocrusts (communities formed by bryophytes, lichens, cyanobacteria, fungi, and bacteria), and thus, RS responses to warming may be driven by both autotrophic and heterotrophic pathways. Here, we evaluated the effects of 8‐year experimental warming on RS, and the different pathways involved, in a biocrust‐dominated dryland in southern Spain. We also assessed the overall impacts on soil organic C (SOC) accumulation over time. Across the years and biocrust cover levels, warming reduced RS by 0.30 μmol CO2 m?2 s?1 (95% CI = ?0.24 to 0.84), although the negative warming effects were only significant after 3 years of elevated temperatures in areas with low initial biocrust cover. We found support for different pathways regulating the warming‐induced reduction in RS at areas with low (microbial thermal acclimation via reduced soil mass‐specific respiration and β‐glucosidase enzymatic activity) vs. high (microbial thermal acclimation jointly with a reduction in autotrophic respiration from decreased lichen cover) initial biocrust cover. Our 8‐year experimental study shows a reduction in soil respiration with warming and highlights that biocrusts should be explicitly included in modeling efforts aimed to quantify the soil C–climate feedback in drylands.  相似文献   

12.
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) via anthropogenic activities with the added N having potentially important impacts on microbially mediated belowground carbon dynamics. However, a comprehensive understanding of how elevated N availability affects soil microbial processes and community dynamics remains incomplete. The mechanisms responsible for the observed responses are poorly resolved and we do not know if soil microbial communities respond in a similar manner across ecosystems. We collected 28 soils from a broad range of ecosystems in North America, amended soils with inorganic N, and incubated the soils under controlled conditions for 1 year. Consistent across nearly all soils, N addition decreased microbial respiration rates, with an average decrease of 11% over the year‐long incubation, and decreased microbial biomass by 35%. High‐throughput pyrosequencing showed that N addition consistently altered bacterial community composition, increasing the relative abundance of Actinobacteria and Firmicutes, and decreasing the relative abundance of Acidobacteria and Verrucomicrobia. Further, N‐amended soils consistently had lower activities in a broad suite of extracellular enzymes and had decreased temperature sensitivity, suggesting a shift to the preferential decomposition of more labile C pools. The observed trends held across strong gradients in climate and soil characteristics, indicating that the soil microbial responses to N addition are likely controlled by similar wide‐spread mechanisms. Our results support the hypothesis that N addition depresses soil microbial activity by shifting the metabolic capabilities of soil bacterial communities, yielding communities that are less capable of decomposing more recalcitrant soil carbon pools and leading to a potential increase in soil carbon sequestration rates.  相似文献   

13.
DNA-based pyrosequencing analysis of the V1- V3 16S rRNA gene region was used to identify bacteria community and shift during early stages of wood colonization in boreal forest soils. The dataset comprised 142,447 sequences and was affiliated to 11 bacteria phyla, 25 classes and 233 genera. The dominant groups across all samples were Proteobacteria, followed by Bacteroidetes, Acidobacteria, Actinobacteria, Amatimonadetes, Planctomycetes and TM7 group. The community structure of the primary wood-inhabiting bacteria differed between types of forest soils and the composition of bacteria remained stable over prolonged incubation time. The results suggest that variations in soil bacterial community composition have an influence on the wood-inhabiting bacterial structure.  相似文献   

14.
【目的】探究高寒湿地逆行演替对土壤性质与微生物群落结构的影响。【方法】以新疆巴音布鲁克天鹅湖高寒湿地为研究对象,依托逆行演替典型样带(沼泽-沼泽化草甸-草甸),利用高通量测序技术分析各演替区土壤微生物群落结构。【结果】高寒湿地逆行演替改变了土壤微生物在分类操作单元(operational taxonomic unit,OTU)水平上的物种组成,致使草甸区的微生物ACE、Chao1、Simpson、Shannon多样性指数显著低于沼泽区和沼泽化草甸区(P<0.05);随着演替发生,变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)、子囊菌门(Ascomycota)的相对丰度均减少,放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadetes)、担子菌门(Basidiomycota)、被孢霉门(Mortierellomycota)的相对丰度增加;主坐标法分析(principal coordinates analysis,PCoA)排序分析显示,土壤微生物群落在各逆行演替都出现不同程度的离散...  相似文献   

15.
Restoration of California native perennial grassland is often initiated with cultivation to reduce the density and cover of non‐native annual grasses before seeding with native perennials. Tillage is known to adversely impact agriculturally cultivated land; thus changes in soil biological functions, as indicated by carbon (C) turnover and C retention, may also be negatively affected by these restoration techniques. We investigated a restored perennial grassland in the fourth year after planting Nassella pulchra, Elymus glaucus, and Hordeum brachyantherum ssp. californicum for total soil C and nitrogen (N), microbial biomass C, microbial respiration, CO2 concentrations in the soil atmosphere, surface efflux of CO2, and root distribution (0‐ to 15‐, 15‐ to 30‐, 30‐ to 60‐, and 60‐ to 80‐cm depths). A comparison was made between untreated annual grassland and plots without plant cover still maintained by tillage and herbicide. In the uppermost layer (0‐ to 15‐cm depth), total C, microbial biomass C, and respiration were lower in the tilled, bare soil than in the grassland soils, as was CO2 efflux from the soil surface. Root length near perennial bunchgrasses was lower at the surface and greater at lower depths than in the annual grass–dominated areas; a similar but less pronounced trend was observed for root biomass. Few differences in soil biological or chemical properties occurred below 15‐cm depth, except that at lower depths, the CO2 concentration in the soil atmosphere was lower in the plots without vegetation, possibly from reduced production of CO2 due to the lack of root respiration. Similar microbiological properties in soil layers below 15‐cm depth suggest that deeper microbiota rely on more recalcitrant C sources and are less affected by plant removal than in the surface layer, even after 6 years. Without primary production, restoration procedures with extended periods of tillage and herbicide applications led to net losses of C during the plant‐free periods. However, at 4 years after planting native grasses, soil microbial biomass and activity were nearly the same as the former conditions represented by annual grassland, suggesting high resilience to the temporary disturbance caused by tillage.  相似文献   

16.
Ekblad  Alf  Nordgren  Anders 《Plant and Soil》2002,245(1):115-122
To study whether the biomass of soil microorganisms in a boreal Pinus sylvestris-Vaccinium vitis-idaea forest was limited by the availability of carbon or nitrogen, we applied sucrose from sugar cane, a C4 plant, to the organic mor-layer of the C3–C dominated soil. We can distinguish between microbial mineralization of the added sucrose and respiration of endogenous carbon (root and microbial) by using the C4-sucrose as a tracer, exploiting the difference in natural abundance of 13C between the added C4-sucrose (13C –10.8) and the endogenous C3–carbon (13C –26.6 ). In addition to sucrose, NH4Cl (340 kg N ha–1) was added factorially to the mor-layer. We followed the microbial activity for nine days after the treatments, by in situ sampling of CO2 evolved from the soil and mass spectrometric analyses of 13C in the CO2. We found that microbial biomass was limited by the availability of carbon, rather than nitrogen availability, since there was a 50% increase in soil respiration in situ between 1 h and 5 days after adding the sucrose. However, no further increase was observed unless nitrogen was also added. Analyses of the 13C ratios of the evolved CO2 showed that increases in respiration observed between 1 h and 9 days after the additions could be accounted for by an increase in mineralization of the added C4–C.  相似文献   

17.
水热增加下黑土细菌群落共生网络特征   总被引:2,自引:0,他引:2  
李东  肖娴  孙波  梁玉婷 《微生物学报》2021,61(6):1715-1727
黑土是有机质含量高且肥沃的土壤类型之一,气候变化会显著改变黑土中微生物群落的结构,同时影响群落间的潜在相互作用关系。[目的] 揭示水热增加对黑土中的细菌群落结构及潜在互作关系的影响。[方法] 基于土壤移置试验,采用16S rRNA高通量测序解析农田黑土(原位黑土、水热增加1和水热增加2)中的细菌群落结构对水热增加的响应;使用CoNet构建微生物群落共生网络,识别共生网络中的枢纽微生物;利用结构方程模型、相关性分析探究水热条件变化下土壤性质、微生物交互作用、多样性之间的直接、间接关系。[结果] 黑土中的微生物以疣微菌、变形杆菌、酸性杆菌和放线菌为主。水热增加下土壤微生物共生网络的拓扑性质发生显著变化,网络中表征微生物潜在竞争关系的负连线随着水热增加而显著增加。气候因素通过改变微生物潜在相互作用影响了群落水平分类多样性。物种竞争增强可能直接导致了土壤有机碳含量的降低。[结论] 水热增加会显著改变黑土中微生物之间的潜在交互作用,枢纽微生物的响应更加敏感。  相似文献   

18.
Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (?31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolytic Mycena and Kuehneromyces fungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance.  相似文献   

19.

Aim

The microbial metabolic quotient (MMQ; mg CO2-C/mg MBC/h), defined as the amount of microbial CO2 respired (MR; mg CO2-C/kg soil/h) per unit of microbial biomass C (MBC; mg C/kg soil), is a key parameter for understanding the microbial regulation of the carbon (C) cycle, including soil C sequestration. Here, we experimentally tested hypotheses about the individual and interactive effects of multiple nutrient addition (nitrogen + phosphorus + potassium + micronutrients) and herbivore exclusion on MR, MBC and MMQ across 23 sites (five continents). Our sites encompassed a wide range of edaphoclimatic conditions; thus, we assessed which edaphoclimatic variables affected MMQ the most and how they interacted with our treatments.

Location

Australia, Asia, Europe, North/South America.

Time period

2015–2016.

Major taxa

Soil microbes.

Methods

Soils were collected from plots with established experimental treatments. MR was assessed in a 5-week laboratory incubation without glucose addition, MBC via substrate-induced respiration. MMQ was calculated as MR/MBC and corrected for soil temperatures (MMQsoil). Using linear mixed effects models (LMMs) and structural equation models (SEMs), we analysed how edaphoclimatic characteristics and treatments interactively affected MMQsoil.

Results

MMQsoil was higher in locations with higher mean annual temperature, lower water holding capacity and lower soil organic C concentration, but did not respond to our treatments across sites as neither MR nor MBC changed. We attributed this relative homeostasis to our treatments to the modulating influence of edaphoclimatic variables. For example, herbivore exclusion, regardless of fertilization, led to greater MMQsoil only at sites with lower soil organic C (< 1.7%).

Main conclusions

Our results pinpoint the main variables related to MMQsoil across grasslands and emphasize the importance of the local edaphoclimatic conditions in controlling the response of the C cycle to anthropogenic stressors. By testing hypotheses about MMQsoil across global edaphoclimatic gradients, this work also helps to align the conflicting results of prior studies.  相似文献   

20.
Increasing atmospheric CO2 concentration can influence the growth and chemical composition of many plant species, and thereby affect soil organic matter pools and nutrient fluxes. Here, we examine the effects of ambient (initially 362 μL L?1) and elevated (654 μL L?1) CO2 in open‐top chambers on the growth after 6 years of two temperate evergreen forest species: an exotic, Pinus radiata D. Don, and a native, Nothofagus fusca (Hook. F.) Oerst. (red beech). We also examine associated effects on selected carbon (C) and nitrogen (N) properties in litter and mineral soil, and on microbial properties in rhizosphere and hyphosphere soil. The soil was a weakly developed sand that had a low initial C concentration of about 1.0 g kg?1 at both 0–100 and 100–300 mm depths; in the N. fusca system, it was initially overlaid with about 50 mm of forest floor litter (predominantly FH material) taken from a Nothofagus forest. A slow‐release fertilizer was added during the early stages of plant growth; subsequent foliage analyses indicated that N was not limiting. After 6 years, stem diameters, foliage N concentrations and C/N ratios of both species were indistinguishable (P>0.10) in the two CO2 treatments. Although total C contents in mineral soil at 0–100 mm depth had increased significantly (P<0.001) after 6 years growth of P. radiata, averaging 80±0.20 g m?2 yr?1, they were not significantly influenced by elevated CO2. However, CO2‐C production in litter, and CO2‐C production, microbial C, and microbial C/N ratios in mineral soil (0–100 mm depth) under P. radiata were significantly higher under elevated than ambient CO2. CO2‐C production, microbial C, and numbers of bacteria (but not fungi) were also significantly higher under elevated CO2 in hyphosphere soil, but not in rhizosphere soil. Under N. fusca, some incorporation of the overlaid litter into the mineral soil had probably occurred; except for CO2‐C production and microbial C in hyphosphere soil, none of the biochemical properties or microbial counts increased significantly under elevated CO2. Net mineral‐N production, and generally the potential utilization of different substrates by microbial communities, were not significantly influenced by elevated CO2 under either tree species. Physiological profiles of the microbial communities did, however, differ significantly between rhizosphere and hyphosphere samples and between samples under P. radiata and N. fusca. Overall, results support the concept that a major effect on soil properties after prolonged exposure of trees to elevated CO2 is an increase in the amounts, and mineralization rate, of labile organic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号