首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Biochar application to soils may increase carbon (C) sequestration due to the inputs of recalcitrant organic C. However, the effects of biochar application on the soil greenhouse gas (GHG) fluxes appear variable among many case studies; therefore, the efficacy of biochar as a carbon sequestration agent for climate change mitigation remains uncertain. We performed a meta‐analysis of 91 published papers with 552 paired comparisons to obtain a central tendency of three main GHG fluxes (i.e., CO2, CH4, and N2O) in response to biochar application. Our results showed that biochar application significantly increased soil CO2 fluxes by 22.14%, but decreased N2O fluxes by 30.92% and did not affect CH4 fluxes. As a consequence, biochar application may significantly contribute to an increased global warming potential (GWP) of total soil GHG fluxes due to the large stimulation of CO2 fluxes. However, soil CO2 fluxes were suppressed when biochar was added to fertilized soils, indicating that biochar application is unlikely to stimulate CO2 fluxes in the agriculture sector, in which N fertilizer inputs are common. Responses of soil GHG fluxes mainly varied with biochar feedstock source and soil texture and the pyrolysis temperature of biochar. Soil and biochar pH, biochar applied rate, and latitude also influence soil GHG fluxes, but to a more limited extent. Our findings provide a scientific basis for developing more rational strategies toward widespread adoption of biochar as a soil amendment for climate change mitigation.  相似文献   

2.
Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long‐term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long‐term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high‐temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (Rs), and metabolic quotient (qCO2) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N2O emissions, possibly due to accelerated N‐cycling at elevated soil temperature and to biochar‐induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar‐C into soil was estimated to offset warming‐induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N2O emissions under warming limit the GHG mitigation potential of biochar.  相似文献   

3.
Both soil and biochar properties are known to influence greenhouse gas emissions from biochar‐amended soils, but poor understanding of underlying mechanisms challenges prediction and modeling. Here, we examine the effect of six lignocellulosic biochars produced from the pyrolysis of corn stover and wood feedstocks on CO2 and N2O emissions from soils collected from two bioenergy cropping systems. Effects of biochar on total accumulated CO2‐C emissions were minimal (<0.45 mg C g?1 soil; <10% of biochar C), consistent with mineralization and hydrolysis of small labile organic and inorganic C fractions in the studied biochars. Comparisons of soil CO2 emissions with emissions from microbially inoculated quartz–biochar mixtures (‘quartz controls’) provide evidence of soil and biochar‐specific negative priming. Five of six biochar amendments suppressed N2O emissions from at least one soil, and the magnitude of N2O emissions suppression varied with respect to both biochar and soil types. Biochar amendments consistently decreased final soil NO3? concentrations, while contrasting effects on pH, NH4+, and DOC highlighted the potential for formation of anaerobic microsites in biochar‐amended soils and consequential shifts in the soil redox environment. Thus, results implicated both reduced substrate availability and redox shifts as potential factors contributing to N2O emission suppression. More research is needed to confirm these mechanisms, but overall our results suggest that soil biochar amendments commonly reduce N2O emissions and have little effect on CO2 emissions beyond the mineralization and/or hydrolysis of labile biochar C fractions. Considering the large C credit for the biochar C, we conclude that biochar amendments can reduce greenhouse gas emissions and enhance the climate change mitigation potential of bioenergy cropping systems.  相似文献   

4.
Understanding the potential for greenhouse gas (GHG) mitigation in agricultural lands is a critical challenge for climate change policy. This study uses the DAYCENT ecosystem model to predict GHG mitigation potentials associated with soil management in Chinese cropland systems. Application of ecosystem models, such as DAYCENT, requires the evaluation of model performance with data sets from experiments relevant to the climate and management of the study region. DAYCENT was evaluated with data from 350 cropland experiments in China, including measurements of nitrous oxide emissions (N2O), methane emissions (CH4), and soil organic carbon (SOC) stock changes. In general, the model was reasonably accurate with R2 values for model predictions vs. measurements ranging from 0.71 to 0.85. Modeling efficiency varied from 0.65 for SOC stock changes to 0.83 for crop yields. Mitigation potentials were estimated on a yield basis (Mg CO2‐equivalent Mg?1Yield). The results demonstrate that the largest decrease in GHG emissions in rainfed systems are associated with combined effect of reducing mineral N fertilization, organic matter amendments and reduced‐till coupled with straw return, estimated at 0.31 to 0.83 Mg CO2‐equivalent Mg?1Yield. A mitigation potential of 0.08 to 0.36 Mg CO2‐equivalent Mg?1Yield is possible by reducing N chemical fertilizer rates, along with intermittent flooding in paddy rice cropping systems.  相似文献   

5.
Switchgrass (Panicum virgatum L.) production has the potential to improve soils and the environment. However, little is known about the long‐term future assessment of soil and environmental impacts associated with switchgrass production. In this study, soil organic carbon (SOC), soil nitrate (), water‐filled pore space (WFPS), carbon dioxide (CO2) and nitrous oxide (N2O) fluxes, and biomass yield from switchgrass field were predicted using DAYCENT models for 2016 through 2050. Measured data for model calibration and validation at this study site managed with nitrogen fertilization rates (N rates) (low, 0 kg N ha?1; medium, 56 kg N ha?1; and high, 112 kg N ha?1) and landscape positions (shoulder and footslope) for switchgrass production were collected from the previously published studies. Modeling results showed that the N fertilization can enhance SOC and soil NO3?, but increase soil N2O and CO2 fluxes. In this study, medium N fertilization was the optimum rate for enhancing switchgrass yield and reducing negative impact on the environment. Footslope position can be beneficial for improving SOC, , and yield, but contribute higher greenhouse gas (GHG) emissions compared to those of the shoulder. An increase in temperature and decrease in precipitation (climate scenarios) may reduce soil , WFPS, and N2O flux. Switchgrass production can improve and maintain SOC and , and reduce N2O and CO2 fluxes over the predicted years. These findings indicate that switchgrass could be a sustainable bioenergy crop on marginally yielding lands for improving soils without significant negative impacts on the environment in the long run.  相似文献   

6.
Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice.  相似文献   

7.
Restoring overstocked forests by thinning and pyrolyzing residual biomass produces biochar and other value‐added products. Forest soils amended with biochar have potential to sequester carbon (C), improve soil quality, and alter greenhouse gas (GHG) emissions without depleting nutrient stocks. Yet, few studies have examined the effects of biochar on GHG emissions and tree growth in temperate forest soils. We measured GHG emissions, soil C content, and tree growth at managed forest sites in Idaho, Montana, and Oregon. We applied biochar amendments of 0, 2.5, or 25 Mg/ha to the forest soil surface. Flux of carbon dioxide and methane varied by season; however, neither were affected by biochar amendment. Flux of nitrous oxide was not detected at these nitrogen‐limited and unfertilized forest sites. Biochar amendment increased soil C content by 41% but did not affect tree growth. Overall, biochar had no detrimental effects on forest trees or soils. We conclude that biochar can be used harmlessly for climate change mitigation in forests by sequestering C in the soil.  相似文献   

8.
The application of biochar as a soil amendment to improve soil fertility has been suggested as a tool to reduce soil‐borne CO2 and non‐CO2 greenhouse gas emissions, especially nitrous oxide (N2O). Both laboratory and field trials have demonstrated N2O emission reduction by biochar amendment, but the long‐term effect (>1 year) has been questioned. Here, we present results of a combined microcosm and field study using a powdered beech wood biochar from slow pyrolysis. The field experiment showed that both CO2 and N2O emissions were still effectively reduced by biochar in the third year after application. However, biochar did not influence the biomass yield of sunflower for biogas production (Helianthus annuus L.). Biochar reduced bulk density and increased soil aeration and thus reduced the water‐filled pore space (WFPS) in the field, but was also able to suppress N2O emission in the microcosms experiment conducted at constant WFPS. For both experiments, biochar had limited impact on soil mineral nitrogen speciation, but it reduced the accumulation of nitrite in the microcosms. Extraction of soil DNA and quantification of functional marker genes by quantitative polymerase chain reaction showed that biochar did not alter the abundance of nitrogen‐transforming bacteria and archaea in both field and microcosm experiments. In contradiction to previous experiments, this study demonstrates the long‐term N2O emission suppression potential of a wood biochar and thus highlights its overall climate change mitigation potential. While a detailed understanding of the underlying mechanisms requires further research, we provide evidence for a range of biochar‐induced changes to the soil environment and their change with time that might explain the often observed N2O emission suppression.  相似文献   

9.
Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.  相似文献   

10.
No‐tillage (NT) management has been promoted as a practice capable of offsetting greenhouse gas (GHG) emissions because of its ability to sequester carbon in soils. However, true mitigation is only possible if the overall impact of NT adoption reduces the net global warming potential (GWP) determined by fluxes of the three major biogenic GHGs (i.e. CO2, N2O, and CH4). We compiled all available data of soil‐derived GHG emission comparisons between conventional tilled (CT) and NT systems for humid and dry temperate climates. Newly converted NT systems increase GWP relative to CT practices, in both humid and dry climate regimes, and longer‐term adoption (>10 years) only significantly reduces GWP in humid climates. Mean cumulative GWP over a 20‐year period is also reduced under continuous NT in dry areas, but with a high degree of uncertainty. Emissions of N2O drive much of the trend in net GWP, suggesting improved nitrogen management is essential to realize the full benefit from carbon storage in the soil for purposes of global warming mitigation. Our results indicate a strong time dependency in the GHG mitigation potential of NT agriculture, demonstrating that GHG mitigation by adoption of NT is much more variable and complex than previously considered, and policy plans to reduce global warming through this land management practice need further scrutiny to ensure success.  相似文献   

11.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

12.
Biochar management has been proposed as a possible tool to mitigate anthropogenic CO2 emissions, and thus far its impacts in forested environments remain poorly understood. We conducted a large‐scale, replicated field experiment using 0.05‐ha plots in the boreal region in northern Sweden to evaluate how soil and vegetation properties and processes responded to biochar application and the disturbance associated with burying biochar in the soil. We employed a randomized block design, where biochar and soil mixing treatments were established in factorial combination (i.e., control, soil mixing only, biochar only, and biochar and soil mixing; n = 6 plots of each). After two growing seasons, we found that biochar application enhanced net soil N mineralization rates and soil concentrations regardless of the soil mixing treatment, but had no impact on the availability of , the majority of soil microbial community parameters, or soil respiration. Meanwhile, soil mixing enhanced soil concentrations, but had negative impacts on net N mineralization rates and several soil microbial community variables. Many of the effects of soil mixing on soil nutrient and microbial community properties were less extreme when biochar was also added. Biochar addition had almost no effects on vegetation properties (except for a small reduction in species richness of the ground layer vegetation), while soil mixing caused significant reductions in graminoid and total ground layer vegetation cover, and enhanced seedling survival rates of P. sylvestris, and seed germination rates for four tree species. Our results suggest that biochar application can serve as an effective tool to store soil C in boreal forests while enhancing availability. They also suggest that biochar may serve as a useful complement to site preparation techniques that are frequently used in the boreal region, by enhancing soil fertility and reducing nutrient losses when soils are scarified during site preparation.  相似文献   

13.
Nitrous oxide (N2O) is a potent greenhouse gas and major component of the net global warming potential of bioenergy feedstock cropping systems. Numerous environmental factors influence soil N2O production, making direct correlation difficult to any one factor of N2O fluxes under field conditions. We instead employed quantile regression to evaluate whether soil temperature, water‐filled pore space (WFPS), and concentrations of soil nitrate () and ammonium () determined upper bounds for soil N2O flux magnitudes. We collected data over 6 years from a range of bioenergy feedstock cropping systems including no‐till grain crops, perennial warm‐season grasses, hybrid poplar, and polycultures of tallgrass prairie species each with and without nitrogen (N) addition grown at two sites. The upper bounds for soil N2O fluxes had a significant and positive correlation with all four environmental factors, although relatively large fluxes were still possible at minimal values for nearly all factors. The correlation with was generally weaker, suggesting it is less important than in driving large fluxes. Quantile regression slopes were generally lower for unfertilized perennials than for other systems, but this may have resulted from a perpetual state of nitrogen limitation, which prevented other factors from being clear constraints. This framework suggests efforts to reduce concentrations of in the soil may be effective at reducing high‐intensity periods—”hot moments”—of N2O production.  相似文献   

14.
Direct field emissions of nitrous oxide (N2O) may determine whether biodiesel from oilseed rape (Brassica napus L.) fulfills the EU requirement of at least 50% reduction of greenhouse gas emissions as compared to fossil diesel. However, only few studies have documented fertilizer N emission factors (EF) and mitigation options for N2O emissions from oilseed rape cropping systems. We conducted a field experiment with three N levels (0, 171, and 217 kg/ha), where the N fertilizer was applied as ammonium sulfate nitrate with or without the nitrification inhibitor 3,4‐dimethylpyrazole phosphate (DMPP). N2O fluxes were measured using static chambers technique and soil samples were analyzed for water and mineral N content during a monitoring period of 368 days. The DMPP treatments showed a significantly increased level of ammonium () for up to 18 weeks after spring fertilization as compared to the treatments without DMPP. However, this difference did not result in a corresponding decrease in soil content, and no differences in cumulative N2O emissions were found between any fertilized treatments with or without DMPP (mean, 1.26 kg N2O‐N ha?1 year?1). More field experiments are needed to clarify whether DMPP‐coated mineral fertilizers could mitigate N2O emissions under different weather conditions, for example, under conditions where fertilization events concurred with rainfall events increasing water‐filled pore space to the assumed 60% threshold for denitrification. Emission factors for mineral N fertilizer were 0.28%–0.36% with a mean of 0.32% across the fertilized treatments. These data concur with recent European studies suggesting that the EF for mineral N fertilizers in oilseed rape cropping systems may typically be lower than the default IPCC value of 1%. Further studies are needed to consolidate an EF for oilseed rape under temperate conditions, which will be determining for the sustainability of Northern European oilseed rape cultivation for biodiesel.  相似文献   

15.
Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long‐term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N2O) and methane (CH4) fluxes and SOC changes (ΔSOC) at a long‐term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha?1 yr?1, respectively) under no‐till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N2O and CH4 fluxes were measured for five crop‐years (2011–2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area‐ and yield‐scaled soil N2O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH4 neutral and CT a CH4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long‐term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface SOC stocks.  相似文献   

16.
Energy production from bioenergy crops may significantly reduce greenhouse gas (GHG) emissions through substitution of fossil fuels. Biochar amendment to soil may further decrease the net climate forcing of bioenergy crop production, however, this has not yet been assessed under field conditions. Significant suppression of soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions following biochar amendment has been demonstrated in short‐term laboratory incubations by a number of authors, yet evidence from long‐term field trials has been contradictory. This study investigated whether biochar amendment could suppress soil GHG emissions under field and controlled conditions in a Miscanthus × Giganteus crop and whether suppression would be sustained during the first 2 years following amendment. In the field, biochar amendment suppressed soil CO2 emissions by 33% and annual net soil CO2 equivalent (eq.) emissions (CO2, N2O and methane, CH4) by 37% over 2 years. In the laboratory, under controlled temperature and equalised gravimetric water content, biochar amendment suppressed soil CO2 emissions by 53% and net soil CO2 eq. emissions by 55%. Soil N2O emissions were not significantly suppressed with biochar amendment, although they were generally low. Soil CH4 fluxes were below minimum detectable limits in both experiments. These findings demonstrate that biochar amendment has the potential to suppress net soil CO2 eq. emissions in bioenergy crop systems for up to 2 years after addition, primarily through reduced CO2 emissions. Suppression of soil CO2 emissions may be due to a combined effect of reduced enzymatic activity, the increased carbon‐use efficiency from the co‐location of soil microbes, soil organic matter and nutrients and the precipitation of CO2 onto the biochar surface. We conclude that hardwood biochar has the potential to improve the GHG balance of bioenergy crops through reductions in net soil CO2 eq. emissions.  相似文献   

17.
Cover crops (CC) promote the accumulation of soil organic carbon (SOC), which provides multiple benefits to agro‐ecosystems. However, additional nitrogen (N) inputs into the soil could offset the CO2 mitigation potential due to increasing N2O emissions. Integrated management approaches use organic and synthetic fertilizers to maximize yields while minimizing impacts by crop sequencing adapted to local conditions. The goal of this work was to test whether integrated management, centered on CC adoption, has the potential to maximize SOC stocks without increasing the soil greenhouse gas (GHG) net flux and other agro‐environmental impacts such as nitrate leaching. To this purpose, we ran the DayCent bio‐geochemistry model on 8,554 soil sampling locations across the European Union. We found that soil N2O emissions could be limited with simple crop sequencing rules, such as switching from leguminous to grass CC when the GHG flux was positive (source). Additional reductions of synthetic fertilizers applications are possible through better accounting for N available in green manures and from mineralization of soil reservoirs while maintaining cash crop yields. Therefore, our results suggest that a CC integrated management approach can maximize the agro‐environmental performance of cropping systems while reducing environmental trade‐offs.  相似文献   

18.
Intensive vegetable production exhibits contrasting characteristics of high nitrous oxide (N2O) emissions and low nitrogen use efficiency (NUE). In an effort to mitigate N2O emissions and improve NUE, a field experiment with nine consecutive vegetable crops was designed to study the combined effects of nitrogen (N) and biochar amendment and their interaction on soil properties, N2O emission and NUE in an intensified vegetable field in southeastern China. We found that N application significantly increased N2O emissions, N2O–N emission factors and yield‐scaled N2O emissions by 51–159%, 9–125% and 14–131%, respectively. Moreover, high N input significantly decreased N partial factor productivity (PFPN) and even yield during the seventh to ninth vegetable crops along with obvious soil degradation and mineral N accumulation. To the contrary, biochar amendment resulted in significant decreases in cumulative N2O emissions, N2O–N emission factor and yield‐scaled N2O emissions by 5–39%, 16–67% and 14–53%, respectively. In addition, biochar significantly increased yield, PFPN and apparent recovery of N (ARN). Although without obvious influence during the first to fourth vegetable crops, biochar amendment mitigated N2O emissions during the fifth to ninth vegetable crops. The relative effects of biochar amendments were reduced with increasing N application rate. Hence, while high N input produced adverse consequences such as mineral N accumulation and soil degradation in the vegetable field, biochar amendment can be a beneficial agricultural strategy to mitigate N2O emissions and improve NUE and soil quality in vegetable field.  相似文献   

19.
By converting biomass residue to biochar, we could generate power cleanly and sequester carbon resulting in overall greenhouse gas emissions (GHG) savings when compared to typical fossil fuel usage and waste disposal. We estimated the carbon dioxide (CO2) abatements and emissions associated to the concurrent production of bioenergy and biochar through biomass gasification in an organic walnut farm and processing facility in California, USA. We accounted for (i) avoided-CO2 emissions from displaced grid electricity by bioenergy; (ii) CO2 emissions from farm machinery used for soil amendment of biochar; (iii) CO2 sequestered in the soil through stable biochar-C; and (iv) direct CO2 and nitrous oxide (N2O) emissions from soil. The objective of these assessments was to pinpoint where the largest C offsets can be expected in the bioenergy-biochar chain. We found that energy production from gasification resulted in 91.8% of total C offsets, followed by stable biochar-C (8.2% of total C sinks), offsetting a total of 107.7 kg CO2-C eq Mg-1 feedstock. At the field scale, we monitored gas fluxes from soils for 29 months (180 individual observations) following field management and precipitation events in addition to weekly measurements within three growing seasons and two tree dormancy periods. We compared four treatments: control, biochar, compost, and biochar combined with compost. Biochar alone or in combination with compost did not alter total N2O and CO2 emissions from soils, indicating that under the conditions of this study, biochar-prompted C offsets may not be expected from the mitigation of direct soil GHG emissions. However, this study revealed a case where a large environmental benefit was given by the waste-to-bioenergy treatment, addressing farm level challenges such as waste management, renewable energy generation, and C sequestration.  相似文献   

20.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号