首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The replication of porcine endogenous retrovirus subgroup A (PERV-A) and PERV-B in certain human cell lines indicates that PERV may pose an infectious risk in clinical xenotransplantation. We have previously reported that human-tropic PERVs isolated from infected human cells following cocultivation with miniature swine peripheral blood mononuclear cells (PBMC) are recombinants of PERV-A with PERV-C. Here, we report that these recombinants are exogenous viruses in miniature swine; i.e., they are not present in the germ line DNA. These viruses were invariably present in miniature swine that transmitted PERV to human cells and were also identified in some miniature swine that lacked this ability. These data, together with the demonstration of the absence of both replication-competent PERV-A and recombinant PERV-A/C loci in the genome of miniature swine (L. Scobie, S. Taylor, J. C. Wood, K. M. Suling, G. Quinn, C. Patience, H.-J. Schuurman, and D. E. Onions, J. Virol. 78:2502-2509, 2004), indicate that exogenous PERV is the principal source of human-tropic virus in these animals. Interestingly, strong expression of PERV-C in PBMC correlated with an ability of the PBMC to transmit PERV-A/C recombinants in vitro, indicating that PERV-C may be an important factor affecting the production of human-tropic PERV. In light of these observations, the safety of clinical xenotransplantation from miniature swine will be most enhanced by the utilization of source animals that do not transmit PERV to either human or porcine cells. Such animals were identified within the miniature swine herd and may further enhance the safety of clinical xenotransplantation.  相似文献   

2.
Here we report the identification of inbred miniature swine that failed to produce human-tropic replication-competent porcine endogenous retroviruses (HTRC PERVs), using in vitro coculture assays. When HTRC PERVs were isolated from transmitting animals, all were recombinant viruses, with the receptor-binding domain of PERV-A combining with PERV-C-related sequences.  相似文献   

3.
4.
Human tropic Porcine Endogenous Retroviruses (PERVs) are the major concern in zoonosis for xenotransplantation because PERVs cannot be eliminated by specific pathogen-free breeding. Recently, a PERV A/C recombinant with PERV-C bearing PERV-A gp70 showed a higher infectivity (approximately 500-fold) to human cells than PERV-A. Additionally, the chance of recombination between PERVs and HERVs is frequently stated as another risk of xenografting. Overcoming zoonotic barriers in xenotransplantation is more complicated by recombination. To achieve successful xenotransplantation, studies on the recombination in PERVs are important. Here, we cloned and sequenced proviral PERV env sequences from pig gDNAs to analyze natural recombination. The envelope is the most important element in retroviruses as a pivotal determinant of host tropisms. As a result, a total of 164 PERV envelope genes were cloned from pigs (four conventional pigs and two miniature pigs). Distribution analysis and recombination analysis of PERVs were performed. Among them, five A/B recombinant clones were identified. Based on our analysis, we determined the minimum natural recombination frequency among PERVs to be 3%. Although a functional recombinant envelope clone was not found, our data evidently show that the recombination event among PERVs may occur naturally in pigs with a rather high possibility.  相似文献   

5.
6.
The pig (Sus scrofa) is a potential organ donor for man but porcine endogenous retroviruses (PERVs) represent an important concern for patients, and identification or engineering of PERV-free pigs suitable for xenotransplantation is a major undertaking. Consequently, studies of variability in pigs for the presence of PERVs at specific loci are a prerequisite. We identified genomic flanking sequences of two PERVs cloned in bacterial artificial chromosomes, a replication-competent PERV-A at locus 1q2.4 and a defective PERV-B at locus 7p1.1–2. PERV-A is embedded in the second repeat of a tandem of eight 190 bp repeats. A short duplicated 4 bp cellular motif, AGAC, was found at each flank of PERV-A and a degenerate 4 bp motif was found for PERV-B. At each locus, the PERV flanks matched expressed sequence tags available in public databases. Primer pairs were designed to amplify either genomic flanks or PERV-genomic junctions. Polymerase chain reaction screening was performed on pigs from 11 distinct Chinese breeds and from the European Large White breed. PERV-B at locus 7p1.1–2 was detected in all animals whereas the presence of PERV-A at locus 1q2.4 was variable. Our results suggest that a genetic selection can be designed to identify animals lacking a potentially active PERV at a specific locus and that Chinese and European pig breeds represent large biodiversity reservoirs to explore. Our results point also to the existence of PERVs that might be fixed in the pig genome, and that might not be eliminated by classical genetic selection.Accession numbers: Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under Accession numbers AY160111–AY160114  相似文献   

7.
Argaw T  Wilson CA 《Journal of virology》2012,86(17):9096-9104
Replication-competent porcine endogenous retroviruses (PERVs) are either human cell tropic (PERV-A and PERV-B) or non-human cell tropic (PERV-C). We previously demonstrated that PERV in vitro cell tropism is modulated by 2 residues within the C terminus of SU and that the PERV receptor binding domain (RBD) extends beyond the variable regions A and B (VRA and VRB, respectively), to include the proline rich-region (PRR) of SU (M. Gemeniano et al., Virology 346:108-117, 2000; T. Argaw et al., J. Virol. 82:7483-7489, 2008). The present study aimed to identify the specific elements within the PERV RBD that interact with the C-terminal elements of SU to facilitate human cell infection. We constructed a series of chimeric and mutated envelopes between PERV-A and PERV-C and using pseudotyped retroviral vectors to map the human cell tropism-determining sequences within the PERV RBD. We show that the PRR from PERV-A is both necessary and sufficient to allow human cell infection when substituted into the homologous region of the PERV-C envelope carrying two C-terminal amino acid substitutions shown to influence human cell tropism, Q374R and I412V (PERV-Crv). Furthermore, substitution of a single amino acid residue in the PRR of the non-human-tropic PERV-Crv envelope allows vectors carrying this envelope to infect human cells. Receptor interference assays showed that these modified PERV-C envelopes do not bind either of the human PERV-A receptors, suggesting the presence of a distinct human PERV-C receptor. Finally, vectors carrying these modified PERV-C envelopes infect primary human endothelial cells, a cell type likely to be exposed to PERV in clinical use of certain porcine xenotransplantation products.  相似文献   

8.
PCR amplification of genomic DNA from miniature swine peripheral blood lymphocytes, using primers corresponding to highly conserved regions of the polymerase (pol) gene, allowed the identification of two novel porcine endogenous retrovirus (PERV) sequences, PMSN-1 and PMSN-4. Phylogenetic analyses of the nucleotide sequences of PMSN-1 and PMSN-4 revealed them to be most closely related to betaretroviruses. The identification of PERVs belonging to the Betaretrovirus genus shows that endogenous retroviruses of this family are more broadly represented in mammalian species than previously appreciated. Both sequences contained inactivating mutations, implying that these particular loci are defective. However, Southern blot analysis showed additional copies of closely related proviruses in the miniature swine genome. Analyses of fetal and adult miniature swine tissues revealed a broad mRNA expression pattern of both PMSN-1 and PMSN-4. The most abundant expression was detected in whole bone marrow c-kit(+) (CD117(+)) progenitor bone marrow cells, fetal liver, salivary gland, and thymus. It appears unlikely that functional loci encoding these novel PERV sequences exist, but this remains to be established. The betaretrovirus sequences described in this report will allow such investigations to be actively pursued.  相似文献   

9.
10.
11.
Xenotransplantation from pigs provides a possible solution to the shortage of human organs for allotransplantation. Porcine endogenous retroviruses (PERVs) are a possible obstacle to using porcine organs in addition to the immunological barriers. Three main types of PERVs (A, B and C) have been previously investigated in diverse pig breeds. To examine the copy numbers of PERVs and their genomic locations in the Korean native pig genome, we screened a BAC (Bacterial Artificial Chromosome) library with PERV-specific protease primers for initial recognition of PERV-positive clones and three sets of envelope-specific primers for the identification of PERV types. A total of 45 PERV-positive clones, nine PERV-A and 36 PERV-B, have been identified from the library screening and the BAC contigs were constructed using the primers designed from BAC end sequences (BESs). These primers were also used for SCH (Somatic Cell Hybrid) and RH (Radiation Hybrid) mapping of the PERV-positive clones. The results indicate that 45 PERV-positive BAC clones belong to nine contigs and a singleton. SCH and IMpRH (INRA-Minnesota Porcine Radiation Hybrid) mapping results indicated that there are at least eight separate PERV genomic locations, consisting of three PERV-A and five PERV-B. One contig could not be mapped, and two contigs are closely located on SSC7. Southern blotting indicates there may be up to 15 additional sites. Further investigation of these clones will contribute to a general strategy to generate PERV-free lines of pigs suitable for xenotransplantation.  相似文献   

12.
13.
Porcine endogenous retroviruses (PERVs) pose a potential stumbling block for therapeutic xenotransplantation, with the greatest threat coming from viruses generated by recombination between members of the PERV subgroup A (PERV-A) and PERV-C families (PERV-A/C recombinants). PERV-A and PERV-B have been shown to infect human cells in culture, albeit with low titers. PERV-C has a more restricted host range and cannot infect human cells. A recombinant PERV-A/C virus (PERV-A14/220) contains the PERV-A sequence between the end of pol and the middle of the SU region in env. The remaining sequence is derived from PERV-C. PERV-A14/220 is approximately 500-fold more infectious than PERV-A. To determine the molecular basis for the increased infectivity of PERV-A14/220, we have made a series of vector constructs. The primary determinant for the enhanced replicative potential of the recombinant virus appeared to be the env gene. Using a series of chimeric env genes, we could identify two determinants of high infectivity; one was an isoleucine to valine substitution at position 140 between variable regions A and B, and the other lies within the proline rich region. Taken together, these results show that the novel juxtaposition of env gene sequences enhanced the infectivity of PERV-A14/220 for human cells, perhaps by stabilization of the envelope glycoprotein or increased receptor binding.  相似文献   

14.
猪内源性反转录病毒在中国实验小型猪中的存在与表达   总被引:2,自引:0,他引:2  
目的对中国实验小型猪中内源性反转录病毒的存在与mRNA的表达进行检测,摸清中国实验小型猪中内源性反转录病毒的携带情况.方法根据已发表的PERV的序列设计并合成了三对引物,分别用于检测PERV核心蛋白基因(gag)、多聚酶基因(pol)及囊膜基因(env)的存在与表达;同时,根据目前通用的env基因分型方法合成了三对用于分型检测的引物env-A、env-B、env-C.应用PCR、RT-PCR扩增的方法,对来自于中国实验小型猪外周血淋巴细胞的DNA和RNA样品进行了检测.结果在6个被检DNA样品中均检出了PERV特异性DNA的存在;同样,在被检RNA样品中均有PERV特异性RNA的表达,且所表达的PERV均为A型和B型,在所有样品中均未检出C型PERV的表达.结论初步表明中国实验小型猪中存在内源性反转录病毒序列,且能以mRNA的形式表达,这一结果为我国特有小型猪的开发、利用及其病毒安全性评价奠定了基础.  相似文献   

15.
16.
17.
Xenotransplantation of pig organs is complicated by the existence of polytropic replication-competent porcine endogenous retroviruses (PERV) capable of infecting human cells. The potential for recombination between ecotropic PERV-C and human-tropic PERV-A and PERV-B adds another level of infectious risk. Proviral PERV-C were characterized in MAX-T cells derived from d/d haplotype miniature swine. Three proviruses were cloned from a genomic library. Clone PERV-C(1312) generated infectious particles after transfection into porcine ST-IOWA cells. Electron microscopy revealed the same morphologies of virions in MAX-T cells and in ST-IOWA cells infected with cell-free PERV-C(1312) particles, indicating that MAX-T cells harbor one functional PERV-C provirus.  相似文献   

18.
A porcine bacterial artificial chromosome (BAC) library was constructed using the pBeloBAC11 vector. It comprised 107,520 clones with an average insert size of 135 kb, representing an almost fivefold coverage of the swine haploid genome. Screening of the library allowed recovery of one to eight clones for 142 unique markers located all over the genome, while it failed for only one marker. About 4% chimeric clones were found. The library was also screened for the protease gene of type C porcine endoviral sequences (PERVs), and 62 clones were recovered, all but two of which contained one protease gene. We found 20 protease sequences (PERV-1 to PERV-20) which, despite differing by point mutations, were all coding sequences. The most frequent sequence, PERV-2, was 100% similar to a protease sequence expressed in the porcine PK-15 cell line. Most of the clones harbored envelope genes. Thirty-three BAC clones were mapped by fluorescence in situ hybridization to 22 distinct locations on 14 chromosomes, including the X and Y chromosomes. These overall results indicate that there is generally one PERV copy per integration site. Although PERV sequences were not tandemly arranged, clusters of integration sites were observed at positions 3p1.5 and 7p1.1. Southern blot experiments revealed 20-30 PERV copies in the Large White pig genome studied here, and variations in PERV content among pigs of different breeds were observed. In conclusion, this BAC collection represents a significant contribution to the swine large genomic DNA cloned insert resources and provides the first detailed map of PERV sequences in the swine genome. This work is the first step toward identification of potential active sites of PERV elements.  相似文献   

19.
The genetic nature and biological effects of recombination between porcine endogenous retroviruses (PERV) were studied. An infectious molecular clone was generated from a high-titer, human-tropic PERV isolate, PERV-A 14/220 (B. A. Oldmixon, et al. J. Virol. 76:3045-3048, 2002; T. A. Ericsson et al. Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). To analyze this sequence and 15 available full-length PERV nucleotide sequences, we developed a sequence comparison program, LOHA(TM) to calculate local sequence homology between two sequences. This analysis determined that PERV-A 14/220 arose by homologous recombination of a PERV-C genome replacing an 850-bp region around the pol-env junction with that of a PERV-A sequence. This 850-bp PERV-A sequence encompasses the env receptor binding domain, thereby conferring a wide host range including human cells. In addition, we determined that multiple regions derived from PERV-C are responsible for the increased infectious titer of PERV-A 14/220. Thus, a single recombination event may be a fast and effective way to generate high-titer, potentially harmful PERV. Further, local homology and phylogenetic analyses between 16 full-length sequences revealed evidence for other recombination events in the past that give rise to other PERV genomes that possess the PERV-A, but not the PERV-B, env gene. These results indicate that PERV-A env is more prone to recombination with heterogeneous backbone genomes than PERV-B env. Such recombination events that generate more active PERV-A appear to occur in pigs rather frequently, which increases the potential risk of zoonotic PERV transmission. In this context, pigs lacking non-human-tropic PERV-C would be more suitable as donor animals for clinical xenotransplantation.  相似文献   

20.
Lee D  Lee J  Yoon JK  Kim NY  Kim GW  Park C  Oh YK  Kim YB 《Animal biotechnology》2011,22(4):175-180
Here, we report the quantification of porcine endogenous retrovirus (PERV) copy numbers using real time PCR. After generating standard curves using plasmid DNA, copy numbers were determined for PERV pol and for a housekeeping gene, porcine estrogen receptor2 (ER2) with the same amount of genomic DNA. Using this method, we examined 6 pig breeds in Korea including two breeds of miniature pig, one domestic pig from Jeju, and imported pig breeds, Duroc, Landrace, and Yorkshire. All breeds showed PERV copy numbers ranging from 9 to 50. This method will be useful for monitoring of PERVs in a porcine xenograft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号