首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of the potential evolutionary importance of parental effects, many aspects of these effects remain inadequately explained. This paper explores both their causes and potential consequences for the evolution of life-history traits in plants. In a growth chamber experiment, I manipulated the pre- and postzygotic temperatures of both parents of controlled crosses of Plantago lanceolata. All offspring traits were affected by parental temperature. On average, low parental temperature increased seed weight, reduced germination and offspring growth rate, and accelerated onset of reproduction by 7%, 50%, 5%, and 47%, respectively, when compared to the effects of high parental temperature. Both pre- and postzygotic parental temperatures (i.e., prior to fertilization vs. during fertilization and seed set, respectively) influenced offspring traits but not always in the same direction. In all cases, however, the postzygotic effect was stronger. The prezygotic effects were more often transmitted paternally than maternally. Growth and onset of reproduction were influenced both directly by parental temperature as well as indirectly via the effects of parental temperature on seed weight and germination. Significant interactions between parental genotypes and prezygotic temperature treatment (G × E interactions) show that genotypes differ in their intergenerational responses to temperature with respect to germination and growth. The data suggest that temperature is involved in both genetically based and environmentally induced parental effects and that parental temperature may accelerate the rate of evolutionary change in flowering time in natural populations of P. lanceolata. The environmentally induced temperature effects, as mediated through G × (prezygotic) E interactions are not likely to affect the rate or direction of evolutionary change in the traits examined because postzygotic temperature effects greatly exceed prezygotic effects.  相似文献   

2.
Many biologists studying environmentally induced parental effects have indirectly suggested that the parental environment alters seed mass by altering the amount of endosperm or embryo tissue in the seed. We tested this hypothesis by measuring the effects of parental temperature on total seed mass, seed coat mass, and embryo/endosperm mass in offspring of Plantago lanceolata. Parental temperature significantly affected total seed and coat mass but not endosperm/embryo mass. Thus, larger seeds do not contain more resources in the embryo or endosperm than do small seeds. Rather they have more coat mass, which probably strongly influences germination. These results suggest caution when making assumptions about the pathways by which environmentally induced parental effects are transmitted in plant species. We also observed that controlled crosses differed significantly in their response to parental temperature, which provides evidence for genetic variation in environmentally induced parental effects, i.e., intergenerational phenotypic plasticity, in natural populations of P. lanceolata.  相似文献   

3.

Background

The evolution of reproductive traits, such as hybrid incompatibility (postzygotic isolation) and species recognition (prezygotic isolation), have shown their key role in speciation. Theoretical modeling has recently predicted that close linkage between genes controlling pre- and postzygotic reproductive isolation could accelerate the conditions for speciation. Postzygotic isolation could develop during the sympatric speciation process contributing to the divergence of populations. Using hybrid fitness as a measure of postzygotic reproductive isolation, we empirically studied population divergence in perch (Perca fluviatilis L.) from two genetically divergent populations within a lake.

Results

During spawning time of perch we artificially created parental offspring and F1 hybrids of the two populations and studied fertilization rate and hatching success under laboratory conditions. The combined fitness measure (product of fertilization rate and hatching success) of F1 hybrids was significantly reduced compared to offspring from within population crosses.

Conclusion

Our results suggest intrinsic genetic incompatibility between the two populations and indicate that population divergence between two populations of perch inhabiting the same lake may indeed be promoted by postzygotic isolation.  相似文献   

4.
Abstract Direct costs and benefits to females of multiple mating have been shown to have large effects on female fecundity and longevity in several species. However, with the exception of studies examining genetic benefits of polyandry, little attention has been paid to the possible effects on offspring of multiple mating by females. We propose that nongenetic effects of maternal matings on offspring fitness are best viewed in the same context as other maternal phenotype effects on offspring that are well known even in species lacking parental care. Hence, matings can exert effects on offspring in the same way as other maternal environment variables, and are likely to interact with such effects. We have conducted a study using yellow dung flies ( Scathophaga stercoraria ), in which we independently manipulated female mating rate, number of mates and maternal thermal environment and measured subsequent fecundity, hatching success, and offspring life-history traits. To distinguish between direct effects of matings and potential genetic benefits of polyandry we split broods and reared offspring at three different temperature regimes. This allowed us to demonstrate that although we could not detect any simple benefits or costs to matings, there are effects of maternal environment on offspring and these effects interact with female mating regime affecting offspring fitness. Such interactions between female phenotype and the costs and benefits of matings have potentially broad implications for understanding female behavior.  相似文献   

5.
Cross-generational effects refer to nongenetic influences of the parental phenotype or environment on offspring phenotypes. Such effects are commonly observed, but their adaptive significance is largely unresolved. We examined cross-generational effects of parental temperature on offspring fitness (estimated via a serial-transfer assay) at different temperatures in a laboratory population of Drosophila melanogaster. Parents were reared at 18 degrees C, 25 degrees C, or 29 degrees C (Tpar) and then their offspring were reared at 18 degrees C, 25 degrees C, or 29 degrees C (Toff) to evaluate several competing hypotheses (including an adaptive one) involving interaction effects of parental and offspring temperature on offspring fitness. The results clearly show that hotter parents are better; in other words, the higher the temperature of the parents, the higher the fitness of their offspring, independent of offspring thermal environment. These data contradict the adaptive cross-generational hypothesis, which proposes that offspring fitness is maximal when the offspring thermal regime matches the parental one. Flies with hot parents have high fitness seemingly because their own offspring develop relatively quickly, not because they have higher fecundity early in life.  相似文献   

6.
Non-genetic parental effects may largely affect offspring phenotype, and such plasticity is potentially adaptive. Despite its potential importance, little is known about cross-generational effects of temperature, at least partly because parental effects were frequently considered a troublesome nuisance, rather than a target of experimental studies. We here investigate effects of parental, developmental and acclimation temperature on life-history traits in the butterfly Bicyclus anynana. Higher developmental temperatures reduced development times and egg size, increased egg number, but did not affect pupal mass. Between-generation temperature effects on larval time, pupal time, larval growth rate and egg size were qualitatively very similar to effects of developmental temperature, and additionally affected pupal mass but not egg number. Parental effects are important mediators of phenotypic plasticity in B. anynana, and partly yielded antagonistic effects on different components of fitness, which may constrain the evolution of cross-generational adaptive plasticity.  相似文献   

7.
We studied inbreeding depression, growth context and maternal influence as constraints to fitness in the self-compatible, protandrous Dianthus guliae Janka, a threatened Italian endemic. We performed hand-pollinations to verify outcomes of self- and cross-fertilisation over two generations, and grew inbred and outbred D.?guliae offspring under different conditions - in pots, a common garden and field conditions (with/without nutrient addition). The environment influenced juvenile growth and flowering likelihood/rate, but had little effect on inbreeding depression. Significant interactions among genetic and environmental factors influenced female fertility. Overall, genetic factors strongly affected both early (seed mass, seed germination, early survival) and late (seed/ovule ratio) life-history traits. After the first pollination experiment, we detected higher mortality in the selfed progeny, which is possibly a consequence of inbreeding depression caused by over-expression of early-acting deleterious alleles. The second pollination induced a strong loss of reproductive fitness (seed production, seed mass) in inbred D.?guliae offspring, regardless of the pollination treatment (selfing/crossing); hence, a strong (genetic) maternal influence constrained early life-history traits of the second generation. Based on current knowledge, we conclude that self-compatibility does not prevent the detrimental effects of inbreeding in D.?guliae populations, and may increase the severe extinction risk if out-crossing rates decrease.  相似文献   

8.
Genetic models of maternal effects and models of mate choice have focused on the evolutionary effects of variation in parental quality. There have been, however, few attempts to combine these into a single model for the evolution of sexually selected traits. We present a quantitative genetic model that considers how male and female parental quality (together or separately) affect the expression of a sexually selected offspring trait. We allow female choice of males based on this parentally affected trait and examine the evolution of mate choice, parental quality and the indicator trait. Our model reveals a number of consequences of maternal and paternal effects. (1) The force of sexual selection owing to adaptive mate choice can displace parental quality from its natural selection optimum. (2) The force of sexual selection can displace female parental quality from its natural selection optimum even when nonadaptive mate choice occurs (e.g. runaway sexual selection), because females of higher parental quality produce more attractive sons and these sons counterbalance the loss in fitness owing to over-investment in each offspring. (3) Maternal and paternal effects can provide a source of genetic variation for offspring traits, allowing evolution by sexual selection even when those traits do not show direct genetic variation (i.e. are not heritable). (4) The correlation between paternal investment and the offspring trait influenced by the parental effects can result in adaptive mate choice and lead to the elaboration of both female preference and the male sexually selected trait. When parental effects exist, sexual selection can drive the evolution of parental quality when investment increases the attractiveness of offspring, leading to the elaboration of indicator traits and higher than expected levels of parental investment.  相似文献   

9.
The shape of the fitness function relating the decline in fitness with coefficient of inbreeding (f) can provide evidence concerning the genetic basis of inbreeding depression, but few studies have examined inbreeding depression across a range of f using noncultivated species. Futhermore, studies have rarely examined the effects of inbreeding depression in the maternal parent on offspring fitness. To estimate the shape of the fitness function, we examined the relationship between f and fitness across a range off from 0.000 to 0.875 for components of both male and female fitness in Cucurbita pepo ssp. texana. Each measure of female fitness declined with f, including pistillate flower number, fruit number, seed number per fruit, seed mass per fruit, and percentage seed germination. Several aspects of male fitness also declined with f, including staminate flower number, pollen number per flower, and the number of days of flowering, although cumulative inbreeding depression was less severe for male (0.34) than for female function (0.39). Fitness tended to decline linearly with f between f = 0.00 and f = 0.75 for most traits and across cumulative lifetime fitness (mean = 0.66), suggesting that individual genes causing inbreeding depression are additive and the result of many alleles of small effect. However, most traits also showed a small reduction in inbreeding depression between f = 0.75 and f = 0.875, and evidence of purging or diminishing epistasis was found for in vitro pollen-tube growth rate. To examine inbreeding depression as a maternal effect, we performed outcross pollinations on f = 0.0 and f = 0.5 mothers and found that depression due to maternal inbreeding was 0.07, compared to 0.10 for offspring produced through one generation of selfing. In at least some families, maternal inbreeding reduced fruit number, seed number and mass, staminate flower number, pollen diameter, and pollen-tube growth rate. Collectively these results suggest that, while the fitness function appears to be largely linear for most traits, maternal effects may compound the effects of inbreeding depression in multigenerational studies, though this may be partially offset by purging or diminishing epistasis.  相似文献   

10.
Christian Lampei 《Oikos》2019,128(3):368-379
In general, studies on plant phenotypic plasticity concentrate on plant responses to different levels of a single environmental factor. Under natural conditions, however, multiple environmental factors often vary simultaneously. I studied the consequences for lifetime fitness caused by single treatments or treatment combinations by investigating patterns of phenotypic plasticity within and between generations. The parental plants (three genotypes of the annual plant Arabidopsis thaliana) received zero, one or two stress treatments at an early life‐stage. The treatments included wounding, shading, chilling, and their pairwise combinations. In the second generation, offspring of treated plants received either the parental or no treatment. Offspring of non‐treated plants were reared under all treatment conditions. Plants responded strongly to the treatments, especially through delayed reproduction, which positively affected lifetime fitness. Notably, treatment combinations triggered stronger plastic responses on average. Because the delay in reproduction was offset by a delay in senescence, the treatments resulted in a fitness gain instead of a loss. However, under adverse environmental conditions, this delay represents a potential fitness cost, especially when the time for reproduction is limited. The treatments ‘wounding’ and ‘shading’ triggered parental effects that increased fitness only in plants that themselves received the treatment. Untreated offspring of wounded or shaded parents performed like control plants. Also, these parental effects were not accompanied by potential fitness costs, such as delayed reproduction. Chilling triggered genotype‐specific parental effects that increased or reduced fitness. Of the treatment combinations only ‘wounding’ and ‘shading’ resulted in genotype‐specific parental effects that increased or reduced fitness independently of offspring treatment. These results suggest that the response of annual plants to treatment combinations triggers predominantly within‐generation plastic responses that include potential fitness costs, which cannot be inferred from studies that manipulate environmental factors individually. Therefore, single treatment studies likely underestimate the costs of plasticity in natural environments.  相似文献   

11.
  • The environment experienced by plants can influence the phenotype of their offspring. Such transgenerational plasticity can be adaptive when it results in higher fitness of the offspring under conditions correlated with those experienced by the mother plant. However, it has rarely been tested if such anticipatory parental effects may be induced with different environments.
  • We grew clonal replicates of Silene vulgaris under control conditions and three types of stress (nutrient deficiency, copper addition and drought), which are known from natural populations of the species. We then subjected offspring from differently treated mother plants to each of the different stress treatments to analyse the influence of maternal and offspring environment on performance and several functional traits.
  • Current stress treatments strongly influenced biomass and functional traits of the plants, mostly in line with responses predicted by the theory of functional equilibrium. Plant performance was also influenced by maternal stress treatments, and some effects independent of initial size differences remained until harvest. In particular, stressed mothers produced offspring of higher fitness than control plants. However, there was no evidence for treatment‐specific adaptive transgenerational plasticity, as offspring from a mother plant that had grown in a specific environment did not grow better in that environment than other plants.
  • Our results indicate that the maternal environment may affect offspring traits and performance, but also that this transgenerational plasticity is not necessarily adaptive.
  相似文献   

12.
Parents often have important influences on their offspring's traits and/or fitness (i.e., maternal or paternal effects). When offspring fitness is determined by the joint influences of offspring and parental traits, selection may favor particular combinations that generate high offspring fitness. We show that this epistasis for fitness between the parental and offspring genotypes can result in the evolution of their joint distribution, generating genetic correlations between the parental and offspring characters. This phenomenon can be viewed as a coadaptive process in which offspring genotypes evolve to function with the parentally provided environment and, in turn, the genes for this environment become associated with specific offspring genes adapted to it. To illustrate this point, we present two scenarios in which selection on offspring alone alters the correlation between a maternal and an offspring character. We use a quantitative genetic maternal effect model combined with a simple quadratic model of fitness to examine changes in the linkage disequilibrium between the maternal and offspring genotypes. In the first scenario, stabilizing selection on a maternally affected offspring character results in a genetic correlation that is opposite in sign to the maternal effect. In the second scenario, directional selection on an offspring trait that shows a nonadditive maternal effect can result in selection for positive covariances between the traits. This form of selection also results in increased genetic variation in maternal and offspring characters, and may, in the extreme case, promote host-race formation or speciation. This model provides a possible evolutionary explanation for the ubiquity of large genetic correlations between maternal and offspring traits, and suggests that this pattern of coinheritance may reflect functional relationships between these characters (i.e., functional integration).  相似文献   

13.
While a considerable amount of attention has been devoted to the effects that increased ultraviolet-B (UV-B) radiation has on vegetative plant growth and physiological function, the impact that UV-B may have on plant fitness has been the focus of fewer studies, with attention given primarily to a few crop species. Further, the possible interactions between UV-B and additional potential stresses found in natural environments have rarely been studied experimentally. Because the reported effects of increased UV-B on plant growth and fitness have been highly variable, studies that focus on factors that may lead to these differences in results are important for the formulation of accurate predictions about future plant success under varying UV-B levels. We examined the effects of UV-B dose and intraspecific competition on growth, phenology, pollen production, pollination success, fruit and seed production, and offspring quality in two species of Phacelia. Increased UV-B was neutral or beneficial for all traits, while competition was neutral or detrimental. There were no significant interactions between UV-B and competition in the parental generation. Phacelia campanularia offspring were unaffected by parental competition, but derived indirect beneficial effects on germination, growth, and fitness traits from parental enhanced UV-B.  相似文献   

14.
Germination responses to seasonal conditions determine the environment experienced by postgermination life stages, and this ability has potential consequences for the evolution of plant life histories. Using recombinant inbred lines of Arabidopsis thaliana, we tested whether life-history characters exhibited plasticity to germination timing, whether germination timing influenced the strength and mode of natural selection on life-history traits, and whether germination timing influenced the expression of genetic variation for life-history traits. Adult life-history traits exhibited strong plasticity to season of germination, and season of germination significantly altered the strength, mode, and even direction of selection on life-history traits under some conditions. None of the average plastic responses to season of germination or season of dispersal were adaptive, although some genotypes within our sample did exhibit adaptive responses. Thus, recombination between inbred lineages created some novel adaptive genotypes with improved responses to the seasonal timing of germination under some, but not all, conditions. Genetically based variation in germination time tended to augment genetic variances of adult life-history traits, but it did not increase the heritabilities because it also increased environmentally induced variance. Under some conditions, plasticity of life-history traits in response to genetically variable germination timing actually obscured genetic variation for those traits. Therefore, the evolution of germination responses can influence the evolution of life histories in a general manner by altering natural selection on life-history traits and the genetic variation of these traits.  相似文献   

15.
Parental care is of fundamental importance to understanding reproductive strategies and allocation decisions. Here, we explore how parental care strategies evolve in variable environments. Using a set of life-history trait trade-offs, we explore the relative costs and benefits of parental care in stochastic environments. Specifically, we consider the cases in which environmental variability results in varying adult death rates, egg death rates, reproductive rate and carrying capacity. Using a measure of fitness appropriate for stochastic environments, we find that parental care has the potential to evolve over a wide range of life-history characteristics when the environment is variable. A variable environment that affects adult or egg death rates can either increase or decrease the fitness of care relative to that in a constant environment, depending on the specific costs of care. Variability that affects carrying capacity or adult reproductive rate has negligible effects on the fitness associated with care. Increasing parental care across different life-history stages can increase fitness gains in variable environments. Costly investment in care is expected to affect the overall fitness benefits, the fitness optimum and rate of evolution of parental care. In general, we find that environmental variability, the life-history traits affected by such variability and the specific costs of care interact to determine whether care will be favoured in a variable environment and what levels of care will be selected.  相似文献   

16.
We explore the relationships among phenotypic plasticity, parental effects, and parental care in plants by presenting data from four experiments examining reflectance/color patterns in Plantago lanceolata. In three experiments, we measured spike (inflorescence) reflectance between 362 and 850 nm using a spectrophotometer with an integrating sphere. Experiments show that (1) spike reflectance changes seasonally within and outside the visible portion of the spectrum of radiant energy, (2) increasing ambient temperature causes an individual plant to produce flowering and fruiting spikes that reflect more/lighten in color (the greatest changes occur in the regions around 550 nm and between 750 and 850 nm, the visible and near-infrared regions, respectively), (3) responses are reversible, (4) genotypes within populations and populations from different latitudes differ in mean reflectance and degree of phenotypic plasticity. In a fourth experiment, we measured internal spike temperature. Darker spikes, those produced at lower temperature, got hotter than did lighter spikes in full sun. Thus, plants can partially thermoregulate reproduction and the embryonic development of their offspring. In light of a previous experiment, data suggest that thermoregulation produces adaptive parental effects and is a mechanism by which P. lanceolata provides parental care.  相似文献   

17.
In outcrossing plants, seed dispersal distance is often less than pollen movement. If the scale of environmental heterogeneity within a population is greater than typical seed dispersal distances but less than pollen movement, an individual's environment will be similar to that of its mother but not necessarily its father. Under these conditions, environmental maternal effects may evolve as a source of adaptive plasticity between generations, enhancing offspring fitness in the environment that they are likely to experience. This idea is illustrated using Campanula americana, an herb that grows in understory and light-gap habitats. Estimates of seed dispersal suggest that offspring typically experience the same light environment as their mother. In a field experiment testing the effect of open vs understory maternal light environments, maternal light directly influenced offspring germination rate and season, and indirectly affected germination season by altering maternal flowering time. Results to date indicate that these maternal effects are adaptive; further experimental tests are ongoing. Evaluating maternal environmental effects in an ecological context demonstrates that they may provide phenotypic adaptation to local environmental conditions.  相似文献   

18.
植物表型受自身基因型、所处环境及其亲体所经历环境的共同影响;其中,亲体环境对子代表型的影响被称为亲体效应。亲体效应不仅可通过有性繁殖产生的种子传递给后代(即有性亲体效应),也可以通过克隆生长等无性繁殖产生的分株传递给后代(即克隆亲体效应)。亲体效应对植物种群,特别是对有性繁殖受限、缺乏遗传变异的克隆植物种群的长期进化可能发挥着极其重要的作用,因此,对亲体效应研究进展的梳理非常必要。对克隆亲体效应和有性亲体效应的内涵进行了阐释,并论述了克隆和有性亲体效应对子代表型、适合度、种内/种间竞争能力以及种群/群落结构和功能的潜在影响;阐述了亲体效应的潜在调控机制,包括供给机制、代谢物质调控机制、表观遗传机制等;论述了克隆亲体效应在克隆植物适应进化中的作用。未来可以就克隆亲体效应的遗传稳定性及其对克隆生活史性状变异的贡献程度,以及克隆和有性亲体效应引起的表型多样性对种内/种间关系、种群/群落多样性及生态系统结构、功能和稳定性的影响开展深入研究。  相似文献   

19.
Maternal effects have wide-ranging effects on life-history traits. Here, using the crustacean Daphnia magna, we document a new effect: maternal food quantity affects offspring feeding rate, with low quantities of food triggering mothers to produce slow-feeding offspring. Such a change in the rate of resource acquisition has broad implications for population growth or dynamics and for interactions with, for instance, predators and parasites. This maternal effect can also explain the previously puzzling situation that the offspring of well-fed mothers, despite being smaller, grow and reproduce better than the offspring of food-starved mothers. As an additional source of variation in resource acquisition, this maternal effect may also influence relationships between life-history traits, i.e. trade-offs, and thus constraints on adaptation. Maternal nutrition has long-lasting effects on health and particularly diet-related traits in humans; finding an effect of maternal nutrition on offspring feeding rate in Daphnia highlights the utility of this organism as a powerful experimental model for exploring the relationship between maternal diet and offspring fitness.  相似文献   

20.
Environmentally induced maternal effects on offspring phenotype are well known in plants. When genotypes or maternal lineages are replicated and raised in different environmental conditions, the phenotype of their offspring often depends on the environment in which the parents developed. However, the degree to which such maternal effects are maintained over subsequent generations has not been documented in many taxa. Here we report the results of a study designed to assess the effects of parental environment on vegetative and reproductive traits, using glasshouse-raised maternal lines sampled from natural populations of Arabidopsis thaliana . Replicates of five highly selfed lines from each of four wild populations were cultivated in two abiotic environments in the glasshouse, and the quality and performance of seeds derived from these two environments were examined over two generations. We found that offspring phenotype was strongly influenced by parental environment, but because the parental environments differed with respect to the time of seed harvest, it was not possible to distinguish clearly between parental environmental effects and the possible (but unlikely) effects of seed age on offspring phenotype. We observed a rapid decline in the expression of ancestral environmental effects, and no main environmental effects on progeny phenotype persisted in the second generation. The mechanism of transmission of environmental effects did not appear to be associated with the quantity or quality of reserves in the seeds, suggesting that environmental effects may be transmitted across subsequent generations via some mechanism that generates environment-specific gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号