首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colonization of conducting airways of humans by the prokaryote Mycoplasma pneumoniae is mediated by a differentiated terminal organelle important in cytadherence, gliding motility and cell division. TopJ is a predicted J‐domain co‐chaperone also having domains unique to mycoplasma terminal organelle proteins and is essential for terminal organelle function, as well as stabilization of protein P24, which is required for normal initiation of terminal organelle formation. J‐domains activate the ATPase of DnaK chaperones, facilitating peptide binding and proper protein folding. We performed mutational analysis of the predicted J‐domain, central acidic and proline‐rich (APR) domain, and C‐terminal domain of TopJ and assessed the phenotypic consequences when introduced into an M. pneumoniae topJ mutant. A TopJ derivative with amino acid substitutions in the canonical J‐domain histidine–proline–aspartic acid motif restored P24 levels but not normal motility, morphology or cytadherence, consistent with a J‐domain co‐chaperone function. In contrast, TopJ derivatives having APR or C‐terminal domain deletions were less stable and failed to restore P24, but resulted in normal morphology, intermediate gliding motility and cytadherence levels exceeding that of wild‐type cells. Results from immunofluorescence microscopy suggest that both the APR and C‐terminal domains, but not the histidine–proline–aspartic acid motif, are critical for TopJ localization to the terminal organelle.  相似文献   

2.
The wall-less prokaryote Mycoplasma pneumoniae, a common cause of chronic respiratory tract infections in humans, is considered to be among the smallest and simplest known cells capable of self-replication, yet it has a complex architecture with a novel cytoskeleton and a differentiated terminal organelle that function in adherence, cell division, and gliding motility. Recent findings have begun to elucidate the hierarchy of protein interactions required for terminal organelle assembly, but the engineering of its gliding machinery is largely unknown. In the current study, we assessed gliding in cytadherence mutants lacking terminal organelle proteins B, C, P1, and HMW1. Furthermore, we screened over 3,500 M. pneumoniae transposon mutants individually to identify genes associated with gliding but dispensable for cytadherence. Forty-seven transformants having motility defects were characterized further, with transposon insertions mapping to 32 different open reading frames widely distributed throughout the M. pneumoniae genome; 30 of these were dispensable for cytadherence. We confirmed the clonality of selected transformants by Southern blot hybridization and PCR analysis and characterized satellite growth and gliding by microcinematography. For some mutants, satellite growth was absent or developed more slowly than that of the wild type. Others produced lawn-like growth largely devoid of typical microcolonies, while still others had a dull, asymmetrical leading edge or a filamentous appearance of colony spreading. All mutants exhibited substantially reduced gliding velocities and/or frequencies. These findings significantly expand our understanding of the complexity of M. pneumoniae gliding and the identity of possible elements of the gliding machinery, providing a foundation for a detailed analysis of the engineering and regulation of motility in this unusual prokaryote.  相似文献   

3.
The cell wall-less prokaryote Mycoplasma pneumoniae causes bronchitis and atypical pneumonia in humans. Mycoplasma attachment to the host respiratory epithelium is required for colonization and mediated largely by a differentiated terminal organelle. P30 is an integral membrane protein located at the distal end of the terminal organelle. The P30 null mutant II-3 is unable to attach to host cells and nonmotile and has a branched cellular morphology compared to the wild type, indicating an important role for P30 in M. pneumoniae biology. P30 is predicted to have an N-terminal signal sequence, but the presence of such a motif has not been confirmed experimentally. In the current study we analyzed P30 derivatives having epitope tags engineered at various locations to demonstrate that posttranslational processing occurred in P30. Several potential cleavage sites predicted in silico were examined, and a processing-defective mutant was created to explore P30 maturation further. Our results suggested that signal peptide cleavage occurs between residues 52 and 53 to yield mature P30. The processing-defective mutant exhibited reduced gliding velocity and cytadherence, indicating that processing is required for fully functional maturation of P30. We speculate that P30 processing may trigger a conformational change in the extracellular domain or expose a binding site on the cytoplasmic domain to allow interaction with a binding partner as a part of functional maturation.  相似文献   

4.
Mycoplasma pneumoniae is a major cause of bronchitis and atypical pneumonia in humans. This cell wall-less bacterium has a complex terminal organelle that functions in cytadherence and gliding motility. The gliding mechanism is unknown but is coordinated with terminal-organelle development during cell division. Disruption of M. pneumoniae open reading frame MPN311 results in loss of protein P41 and downstream gene product P24. P41 localizes to the base of the terminal organelle and is required to anchor the terminal organelle to the cell body, but during cell division, MPN311 insertion mutants also fail to properly regulate nascent terminal-organelle development spatially or gliding activity temporally. We measured gliding velocity and frequency and used fluorescent protein fusions and time-lapse imaging to assess the roles of P41 and P24 individually in terminal-organelle development and gliding function. P41 was necessary for normal gliding velocity and proper spatial positioning of new terminal organelles, while P24 was required for gliding frequency and new terminal-organelle formation at wild-type rates. However, P41 was essential for P24 function, and in the absence of P41, P24 exhibited a dynamic localization pattern. Finally, protein P28 requires P41 for stability, but analysis of a P28(-) mutant established that the MPN311 mutant phenotype was not a function of loss of P28.  相似文献   

5.
The attachment organelle of Mycoplasma pneumoniae is a polar, tapered cell extension containing an intracytoplasmic, electron-dense core. This terminal structure is the leading end in gliding motility, and its duplication is thought to precede cell division, raising the possibility that mutations affecting cytadherence also confer a defect in motility or cell development. Mycoplasma surface protein P30 is associated with the attachment organelle, and P30 mutants II-3 and II-7 do not cytadhere. In this study, the recombinant wild-type but not the mutant II-3 p30 allele restored cytadherence when transformed into P30 mutants by recombinant transposon delivery. The mutations associated with loss of P30 in mutant II-3 and reacquisition of P30 in cytadhering revertants thereof were identified by nucleotide sequencing of the p30 gene. Morphological abnormalities that included ovoid or multilobed cells having a poorly defined tip structure were associated with loss of P30. Digital image analysis confirmed quantitatively the morphological differences noted visually. Transformation of the P30 mutants with the wild-type p30 allele restored a normal morphology, as determined both visually and by digital image analysis, suggesting that P30 plays a role in mycoplasma cell development. Finally, the P30 mutants localized the adhesin protein P1 to the terminal organelle, indicating that P30 is not involved in P1 trafficking but may be required for its receptor-binding function.  相似文献   

6.
The human pathogen Mycoplasma genitalium is known to mediate cell adhesion to target cells by the attachment organelle, a complex structure also implicated in gliding motility. The gliding mechanism of M. genitalium cells is completely unknown, but recent studies have begun to elucidate the components of the gliding machinery. We report the study of MG312, a cytadherence-related protein containing in the N terminus a box enriched in aromatic and glycine residues (EAGR), which is also exclusively found in MG200 and MG386 gliding motility proteins. Characterization of an MG_312 deletion mutant obtained by homologous recombination has revealed that the MG312 protein is required for the assembly of the M. genitalium terminal organelle. This finding is consistent with the intermediate-cytadherence phenotype and the complete absence of gliding motility exhibited by this mutant. Reintroduction of several MG_312 deletion derivatives into the MG_312 null mutant allowed us to identify two separate functional domains: an N-terminal domain implicated in gliding motility and a C-terminal domain involved in cytadherence and terminal organelle assembly functions. In addition, our results also provide evidence that the EAGR box has a specific contribution to mycoplasma cell motion. Finally, the presence of a conserved ATP binding site known as a Walker A box in the MG312 N-terminal region suggests that this structural protein could also play an active function in the gliding mechanism.  相似文献   

7.
The cell wall-less prokaryote Mycoplasma pneumoniae is a major cause of community-acquired bronchitis and pneumonia in humans. Colonization is mediated largely by a differentiated terminal organelle, which is also the leading end in gliding motility. Cytadherence-associated proteins P30 and P65 appear to traffic concurrently to the distal end of developing terminal organelles. Here, truncation of P65 due to transposon insertion in the corresponding gene resulted in lower gliding velocity, reduced cytadherence, and decreased steady-state levels of several terminal organelle proteins, including P30. Utilizing fluorescent protein fusions, we followed terminal organelle development over time. New P30 foci appeared at nascent terminal organelles in P65 mutants, as in the wild type. However, with forward cell motility, P30 in the P65 mutants appeared to drag toward the trailing cell pole, where it was released, yielding a fluorescent trail to which truncated P65 colocalized. In contrast, P30 was only rarely observed at the trailing end of gliding wild-type cells. Complementation with the recombinant wild-type P65 allele by transposon delivery restored P65 levels and stabilized P30 localization to the terminal organelle.  相似文献   

8.
The terminal organelle of the cell wall-less pathogenic bacterium Mycoplasma pneumoniae is a complex structure involved in adherence, gliding motility and cell division. This membrane-bound extension of the mycoplasma cell possesses a characteristic electron-dense core. A number of proteins having direct or indirect roles in M. pneumoniae cytadherence have been previously localized to the terminal organelle. However, the cytadherence-accessory protein HMW2, which is required for the stabilization of several terminal organelle components, has been refractory to antibody-based approaches to subcellular localization. In the current study, we constructed a sandwich fusion of HMW2 and enhanced green fluorescent protein (EGFP) and expressed this fusion in wild-type M. pneumoniae and the hmw2- mutant I-2. The fusion protein was produced in both backgrounds at wild-type levels and supported stabilization of proteins HMW1, HMW3 and P65, and haemadsorption function in mutant I-2. Furthermore, the fusion protein was fluorescent and localized specifically to the terminal organelle. However, the EGFP moiety appeared to interfere partially with processes related to cell division, as transformant cells exhibited an increased incidence of bifurcated attachment organelles. These data together with structural predictions suggest that HMW2 is the defining component of the electron-dense core of the terminal organelle.  相似文献   

9.
The cell wall-less prokaryote Mycoplasma pneumoniae causes tracheobronchitis and primary atypical pneumonia in humans. Colonization of the respiratory epithelium requires proper assembly of a complex, multifunctional, polar terminal organelle. Loss of a predicted J-domain protein also having domains unique to mycoplasma terminal organelle proteins (TopJ) resulted in a non-motile, adherence-deficient phenotype. J-domain proteins typically stimulate ATPase activity of Hsp70 chaperones to bind nascent peptides for proper folding, translocation or macromolecular assembly, or to resolve stress-induced protein aggregates. By Western immunoblotting all defined terminal organelle proteins examined except protein P24 remained at wild-type levels in the topJ mutant; previous studies established that P24 is required for normal initiation of terminal organelle formation. Nevertheless, terminal organelle proteins P1, P30, HMW1 and P41 failed to localize to a cell pole, and when evaluated quantitatively, P30 and HMW1 foci were undetectable in >40% of cells. Complementation of the topJ mutant with the recombinant wild-type topJ allele largely restored terminal organelle development, gliding motility and cytadherence. We propose that this J-domain protein, which localizes to the base of the terminal organelle in wild-type M. pneumoniae , functions in the late stages of assembly, positioning, or both, of nascent terminal organelles.  相似文献   

10.
The cell wall-less prokaryote Mycoplasma pneumoniae approaches the minimal requirements for a cell yet produces a complex terminal organelle that mediates cytadherence and gliding motility. Here we explored the molecular nature of the M. pneumoniae gliding machinery, utilizing fluorescent protein fusions and digital microcinematography to characterize gliding-altered mutants having transposon insertions in MPN311, encoding the cytoskeletal protein P41. Disruption of MPN311 resulted in loss of P41 and P24, the downstream gene product. Gliding ceases in wild-type M. pneumoniae during terminal organelle development, which occurs at the cell poles adjacent to an existing structure. In contrast, terminal organelle development in MPN311 mutants did not necessarily coincide with gliding cessation, and new terminal organelles frequently formed at lateral sites. Furthermore, new terminal organelles exhibited gliding capacity quickly, unlike wild-type M. pneumoniae. P41 and P24 localize at the base of the terminal organelle; in their absence this structure detached from the cell body of motile and dividing cells but retained gliding capacity and thus constitutes the gliding apparatus. Recombinant wild-type P41 restored cell integrity, establishing a role for this protein in anchoring the terminal organelle to the cell body.  相似文献   

11.
The proteins required for adherence of the pathogen Mycoplasma pneumoniae to host respiratory epithelial cells are localized to a polar structure, the attachment organelle. A number of these proteins have been characterized functionally by analysis of noncytadhering mutants, and many are components of the mycoplasma cytoskeleton. Mutations in some cytadherence-associated proteins have pleiotropic effects, including decreased stability of other proteins, loss of adherence and motility, and abnormal morphology. The function of protein HMW3, a component of the attachment organelle, has been difficult to discern due to lack of an appropriate mutant. In this paper, we report that loss of HMW3 resulted in decreased levels and more diffuse localization of cytoskeletal protein P65, subtle changes in morphology, inability to cluster the adhesin P1 consistently at the terminal organelle, reduced cytadherence, and, in some cells, an atypical electron-dense core in the attachment organelle. This phenotype suggests a role for HMW3 in the architecture and stability of the attachment organelle.  相似文献   

12.
Cytadherence proteins of Mycoplasma pneumoniae are localized at the attachment organelle, which is involved in adhesion, gliding motility, and cell division. The localization of these proteins in cytadherence-deficient mutants was examined by immunofluorescence microscopy. In the class I-2 mutant, which has a frameshift mutation in the hmw2 gene, fluorescent foci for HMW1 and HMW3 were found with reduced intensity, and P1 adhesin showed reduced focusing. However, foci for P90, P40, P30, and P65 were not observed in this mutant. In the class IV-22 mutant, which lacks expression of P1, P90, and P40, the other cytadherence proteins (HMW1, HMW3, P30, and P65) were focused. In a mutant lacking HMW1, signals for HMW3, P90, P40, P30, and P65 were not found, and P1 was distributed throughout the cell. These results suggest that HMW1 is essential for the localization of all other cytadherence proteins, while HMW2 is essential for the localization of P90, P40, P30, and P65. The electron-dense core in cytadherence mutants was observed by thin-section electron microscopy, suggesting that its formation depends on HMW1 and HMW2 and that P1 localization occurs independent of the formation of the electron-dense core. Doubly stained preparations visualized by immunofluorescence microscopy showed that the P1 adhesin, P90, and P40 colocalized to a subregion of the attachment organelle in the wild-type strain. HMW1 and HMW3 also colocalized to a different subregion of the attachment organelle, while P30 and P65 localized at more distal ends of cell poles than HMW1 and HMW3. These differences were more pronounced in cytadherence mutants. These results suggest that there are three distinct subcellular protein localization sites in the attachment organelle, which were represented by HMW1-HMW3, P1-P90-P40, and P30-P65.  相似文献   

13.
Mycoplasma pneumoniae is a wall-less human respiratory tract pathogen that colonizes mucosal epithelium via a polar terminal organelle having a central electron-dense core and adhesin-related proteins clustered at a terminal button. A mutant lacking J-domain co-chaperone TopJ is non-cytadherent and non-motile, despite having a core and normal levels of the major cytadherence-associated proteins. J-domain co-chaperones work with DnaK to catalyse polypeptide binding and subsequent protein folding. Here we compared features of the topJ mutant with other cytadherence mutants to elucidate the contribution of TopJ to cytadherence function. The topJ mutant was similar ultrastructurally to a non-cytadherent mutant lacking terminal organelle proteins B/C, including aberrant core positioning and cell morphology in thin sections, but exhibited a hybrid satellite growth pattern with features of mutants both having and lacking a core. Time-lapse images of mycoplasmas expressing a YFP fusion with terminal organelle protein P41 suggested that terminal organelle formation/positioning was delayed or poorly co-ordinated with cell growth in the absence of TopJ. TopJ required a core for localization, perhaps involving HMW1. P1 trypsin accessibility on other non-cytadherent mutants was significantly enhanced over wild type but unexpectedly was reduced with topJ mutant cells, suggesting impaired processing, translocation and/or folding of this adhesin.  相似文献   

14.
Mycoplasma pneumoniae cytadherence: unravelling the tie that binds   总被引:3,自引:1,他引:2  
Mycoplasma pneumoniae is the leading cause of pneumonia in older children and young adults. Mycoplasma adherence to the respiratory epithelium (cytadherence) is required for colonization and pathogenesis. Although considered to be among the smallest and simplest known prokaryotes, this cell-wall-less bacterium possesses a highly differentiated terminal structure that is thought to be functional in mycoplasma cell division, gliding motility, and cytadherence. Mutant analysis has identified mycoplasma proteins associated with cytadherence, and revealed novel regulatory features. Ultrastructural and biochemical studies have established the subcellular location and interaction of key components, several of which are phosphorylated by ATP-dependent kinase(s) in a manner that is responsive to changing nutritional conditions. This review summarizes recent progress in defining the composition, organization and regulation of the attachment organelle. What emerges is a picture of M. pneumoniae cytadherence as a multifactorial process that extends well beyond adhesin-receptor recognition.  相似文献   

15.
The Mycoplasma pneumoniae terminal organelle functions in adherence and gliding motility and is comprised of at least eleven substructures. We used electron cryotomography to correlate impaired gliding and adherence function with changes in architecture in diverse terminal organelle mutants. All eleven substructures were accounted for in the prkC, prpC and P200 mutants, and variably so for the HMW3 mutant. Conversely, no terminal organelle substructures were evident in HMW1 and HMW2 mutants. The P41 mutant exhibits a terminal organelle detachment phenotype and lacked the bowl element normally present at the terminal organelle base. Complementation restored this substructure, establishing P41 as either a component of the bowl element or required for its assembly or stability, and that this bowl element is essential to anchor the terminal organelle but not for leverage in gliding. Mutants II‐3, III‐4 and topJ exhibited a visibly lower density of protein knobs on the terminal organelle surface. Mutants II‐3 and III‐4 lack accessory proteins required for a functional adhesin complex, while the topJ mutant lacks a DnaJ‐like co‐chaperone essential for its assembly. Taken together, these observations expand our understanding of the roles of certain terminal organelle proteins in the architecture and function of this complex structure.  相似文献   

16.
Triclosan: a widely used biocide and its link to antibiotics   总被引:5,自引:0,他引:5  
Mycoplasmas are cell wall-less bacteria at the low extreme in genome size in the known prokaryote world, and the minimal nature of their genomes is clearly reflected in their metabolic and regulatory austerity. Despite this apparent simplicity, certain species such as Mycoplasma pneumoniae possess a complex terminal organelle that functions in cytadherence, gliding motility, and cell division. The attachment organelle is a membrane-bound extension of the cell and is characterized by an electron-dense core that is part of the mycoplasma cytoskeleton, defined here for working purposes as the protein fraction that remains after extraction with the detergent Triton X-100. This review focuses on the architecture and assembly of the terminal organelle of M. pneumoniae. Characterizing the downstream consequences of defects involving attachment organelle components has made it possible to begin to elucidate the probable sequence of certain events in the biogenesis of this structure.  相似文献   

17.
The cell-wall-less prokaryote Mycoplasma pneumoniae, long considered among the smallest and simplest cells capable of self-replication, has a distinct cellular polarity characterized by the presence of a differentiated terminal organelle which functions in adherence to human respiratory epithelium, gliding motility, and cell division. Characterization of hemadsorption (HA)-negative mutants has resulted in identification of several terminal organelle proteins, including P30, the loss of which results in developmental defects and decreased adherence to host cells, but their impact on M. pneumoniae gliding has not been investigated. Here we examined the contribution of P30 to gliding motility on the basis of satellite growth and cell gliding velocity and frequency. M. pneumoniae HA mutant II-3 lacking P30 was nonmotile, but HA mutant II-7 producing a truncated P30 was motile, albeit at a velocity 50-fold less than that of the wild type. HA-positive revertant II-3R producing an altered P30 was unexpectedly not fully wild type with respect to gliding. Complementation of mutant II-3 with recombinant wild-type and mutant alleles confirmed the correlation between gliding defect and loss or alteration in P30. Surprisingly, fusion of yellow fluorescent protein to the C terminus of P30 had little impact on cell gliding velocity and significantly enhanced HA. Finally, while quantitative examination of HA revealed clear distinctions among these mutant strains, gliding defects did not correlate strictly with the HA phenotype, and all strains attached to glass at wild-type levels. Taken together, these findings suggest a role for P30 in gliding motility that is distinct from its requirement in adherence.  相似文献   

18.
Within the genus Mycoplasma are species whose cells have terminal organelles, polarized structures associated with cytadherence and gliding motility. Mycoplasma penetrans, found mostly in HIV-infected patients, and Mycoplasma iowae, an economically significant poultry pathogen, are members of the Mycoplasma muris phylogenetic cluster. Both species have terminal organelles that interact with host cells, yet the structures in these species, or any in the M. muris cluster, remain uncharacterized. Time-lapse microcinematography of two strains of M. penetrans, GTU-54-6A1 and HF-2, and two serovars of M. iowae, K and N, show that the terminal organelles of both species play a role in gliding motility, with differences in speed within and between the two species. The strains and serovars also differed in their hemadsorption abilities that positively correlated with differences in motility speeds. No morphological differences were observed between M. penetrans and M. iowae by scanning electron microscopy (SEM). SEM and light microscopy of M. penetrans and M. iowae showed the presence of membranous filaments connecting pairs of dividing cells. Breaking of this filament during cell division was observed for M. penetrans by microcinematography, and this suggests a role for motility during division. The Triton X-100-insoluble fractions of M. penetrans and M. iowae consisted of similar structures that were unique compared to those identified in other mycoplasma species. Like other polarized mycoplasmas, M. penetrans and M. iowae have terminal organelles with cytadherence and gliding functions. The difference in function and morphology of the terminal organelles suggests that mycoplasmas have evolved terminal organelles independently of one another.  相似文献   

19.
Mycoplasma pneumoniae proteins HMW1-HMW3 collectively are essential for cytadherence, but the function or requirement for each has not been defined. Cytadherence mutant M6 lacks HMW1 because of a frameshift in hmw1 and produces a truncated adherence-associated protein P30 because of a deletion at the 3′ end of p30. Genetic manipulation of this mutant was used to evaluate the role of HMW1 in cytadherence. Mutant M6 was transformed with a recombinant transposon containing a wild-type p30 allele. Transformants synthesized both truncated and full-length P30, from the resident and recombinant alleles, respectively. However, these transformants remained hemadsorption negative, suggesting that HMW1 is required for cytadherence. Wild-type M. pneumoniae cells are generally elongated, tapering to form the attachment organelle at one end of the cell. The cytadhesin protein P1 is normally densely clustered on the mycoplasma surface at this differentiated terminal structure. However, both mutant M6 and M6 transformed with recombinant p30 had a striking ovoid morphology with no tapering at the tip structure, making the attachment organelle indistinguishable. Furthermore, protein P1 was randomly distributed on the mycoplasma surface rather than clustered at a polar location. In contrast, mutant M6 transformed with a recombinant transposon expressing the wild-type hmw1 allele exhibited a near-normal morphology and localized P1 to the attachment organelle. Significantly, M6 transformed with an hmw1 gene truncated slightly at the 3′ end failed to restore proper morphology or P1 localization to the attachment organelle, suggesting a functional importance to the C-terminal domain of HMW1.  相似文献   

20.
Mycoplasma pneumoniae lacks a cell wall but has internal cytoskeleton-like structures that are assumed to support the attachment organelle and asymmetric cell shape of this bacterium. To explore the fine details of the attachment organelle and the cytoskeleton-like structures, a fluorescent-protein tagging technique was applied to visualize the protein components of these structures. The focus was on the four proteins--P65, HMW2, P41, and P24--that are encoded in the crl operon (for "cytadherence regulatory locus"), which is known to be essential for the adherence of M. pneumoniae to host cells. When the P65 and HMW2 proteins were fused to enhanced yellow fluorescent protein (EYFP), a variant of green fluorescent protein, the fused proteins became localized at the attachment organelle, enabling visualization of the organelles of living cells by fluorescence microscopy. The leading end of gliding M. pneumoniae cells, expressing the EYFP-P65 fusion, was observed as a focus of fluorescence. On the other hand, when the P41 and P24 proteins were labeled with EYFP, the fluorescence signals of these proteins were observed at the proximal end of the attachment organelle. Coexpression of the P65 protein labeled with enhanced cyan fluorescent protein clearly showed that the sites of localization of P41 and P24 did not overlap that of P65. The localization of P41 and P24 suggested that they are also cytoskeletal proteins that function in the formation of unknown structures at the proximal end of the attachment organelle. The fluorescent-protein fusion technique may serve as a powerful tool for identifying components of cytoskeleton-like structures and the attachment organelle. It can also be used to analyze their assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号