首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification of synaptic vesicles directly from homogenates of mammalian brain is compared with a classical method based on osmotic lysis of brain synaptosomes. The direct method affords increased yield and purity of synaptic vesicles prepared under isoosmotic conditions. Antigen SV2 and the antigens (primarily synaptophysin) recognized by rabbit antiserum R10, raised to purified rat brain synaptic vesicles, are localized specifically on approximately 40-nm-diameter microsomal vesicles from rat brain. Rat brain synaptic vesicles have equilibrium densities of approximately 1.11 g/ml on Nycodenz density gradients, 1.12 g/ml on glycerol/Nycodenz, and 1.07 g/ml on Ficoll gradients. Both SV2 and the R10 antigens are enriched approximately 50-fold in purified rat brain synaptic vesicles. Synaptic vesicles purified from rat or cow brain show active uptake of [3H]norepinephrine that is reserpine sensitive and dependent on ATP and Mg2+. Synaptic vesicles exhibiting [3H]norepinephrine uptake comigrate with approximately 40-nm-diameter synaptic vesicles carrying SV2 or R10 antigens during permeation chromatography. After the Sephacryl S-1000 chromatography step, [3H]-norepinephrine uptake activity is purified approximately 90-fold. Highly purified brain synaptic vesicles should facilitate studies at the molecular level of the roles of these organelles in neurotransmission at mammalian synapses.  相似文献   

2.
The SV2 Protein of Synaptic Vesicles Is a Keratan Sulfate Proteoglycan   总被引:3,自引:0,他引:3  
Abstract: We have determined that synaptic vesicles contain a vesicle-specific keratan sulfate integral membrane proteoglycan. This is a major proteoglycan in electric organ synaptic vesicles. It exists in two forms on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, i.e., the L form, which migrates like a protein with an Mr of 100, 000, and the H form, with a lower mobility that migrates with an Mr of ∼250, 000. Both forms contain SV2, an epitope located on the cytoplasmic side of the vesicle membrane. In addition to electric organ, we have analyzed the SV2 proteoglycan in vesicle fractions from two other sources, electric fish brain and rat brain. Both the H and L forms of SV2 are present in these vesicles and all are keratan sulfate proteoglycans. Unlike previously studied synaptic vesicle proteins, this proteoglycan contains a marker specific for a single group of neurons. This marker is an antigenically unique keratan sulfate side chain that is specific for the cells innervating the electric organ; it is not found on the synaptic vesicle keratan sulfate proteoglycan in other neurons of the electric fish brain.  相似文献   

3.
Highly purified rat and cow brain synaptic vesicles contain major proteins with molecular weights of approximately 74,000, 60,000, 57,000, 40,000, 38,000, and 34,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The presence of the major proteins on synaptic vesicles was confirmed by immunoprecipitation of intact rat brain synaptic vesicles with a synaptic vesicle-specific monoclonal antibody. The 40,000-Mr protein appeared to be identical to the 38,000-Mr integral membrane glycoprotein, p38 or synaptophysin, previously identified as a major component of mammalian synaptic vesicles. The isoelectric point of the 75,000-Mr proteins from either rat or cow brain synaptic vesicles is 5.0, and the pI of the 57,000-Mr protein is approximately 5.1 in both species. The similarity in size and charge of several major proteins in rat and cow synaptic vesicles suggests a high degree of structure conservation of these proteins in diverse mammalian species and raises the possibility that a set of functions common to most or all mammalian synaptic vesicles is mediated by these proteins.  相似文献   

4.
We expressed the synaptic vesicle proteins SV2, synaptotagmin, and synaptophysin in CHO fibroblasts to investigate the targeting information contained by each protein. All three proteins entered different cellular compartments. Synaptotagmin was found on the plasma membrane. Both SV2 and synaptophysin were sorted to small intracellular vesicles, but synaptophysin colocalized with early endosomal markers, while SV2 did not. SV2-containing vesicles did not have the same sedimentation characteristics as authentic synaptic vesicles, even though transfected SV2 was sorted from endosomal markers. We also created cell lines expressing both SV2 and synaptotagmin, both synaptotagmin and synaptophysin, and lines expressing all three synaptic vesicle proteins. In all cases, the proteins maintained their distinct compartmentalizations, were not found in the same organelle, and did not created synaptic vesicle-like structures. These results have important implications for models of synaptic vesicle biogenesis.  相似文献   

5.
The subcellular distribution of three proteins of synaptic vesicles (synaptin/synaptophysin, p65 and SV2) was determined in bovine adrenal medulla and sympathetic nerve axons. In adrenals most p65 and SV2 is confined to chromaffin granules. Part of synaptin/synaptophysin is apparently also present in these organelles, but a considerable portion is found in a light vesicle which does not contain significant concentrations of typical markers of chromaffin granules (cytochrome b-561, dopamine beta-hydroxylase or the amine carrier). An analogous finding was obtained for sympathetic axons. The large dense core vesicles contain most p65 and also SV2 but only a smaller portion of synaptin/synaptophysin. A lighter vesicle containing this latter antigen and some SV2 has also been found. These results establish that in adrenal medulla and sympathetic axons three typical antigens of synaptic vesicles are not restricted to light vesicles. Apparently, a varying part of these antigens is found in chromaffin granules and large dense core vesicles. On the other hand, the light vesicles do not contain significant concentrations of functional antigens of chromaffin granules. Thus, the biogenesis of small presynaptic vesicles which contain all three antigens as well as functional components like the amine carrier is likely to involve considerable membrane sorting.  相似文献   

6.
Both neuronal and endocrine cells contain secretory vesicles that store and release neurotransmitters and peptides. Neuronal cells release their secretory material from both small synaptic vesicles and large dense-core vesicles (LDCVs), whereas endocrine cells release secretory products from LDCVs. Neuronal small synaptic vesicles are known to express three integral membrane proteins: 65,000 calmodulin-binding protein (65-CMBP) (p65), synaptophysin (p38), and SV2. A controversial question surrounding these three proteins is whether they are present in LDCV membranes of endocrine and neuronal cells. Sucrose density centrifugation of adrenal medulla was performed to study and compare the subcellular distribution of two of these small synaptic vesicle proteins (65-CMBP and synaptophysin). Subsequent immunoblotting and 125I-Protein A binding experiments performed on the fractions obtained from sucrose gradients showed that 65-CMBP was present in fractions corresponding to granule membranes and intact chromaffin granules. Similar immunoblotting and 125I-Protein A binding experiments with synaptophysin antibodies showed that this protein was also present in intact granules and granule membrane fractions. However, an additional membrane component, equilibrating near the upper portion of the sucrose gradient, also showed strong immunoreactivity with anti-synaptophysin and high 125I-Protein A binding activity. In addition, immunoblotting experiments on purified plasma and granule membranes demonstrated that 65-CMBP was a component of both membranes, whereas synaptophysin was only present in granule membranes. Thus, there appears to be a different subcellular localization between 65-CMBP and synaptophysin in the chromaffin cell.  相似文献   

7.
We have previously shown the presence of the glycine transporter GLYT1 in glutamatergic terminals of the rat brain. In this study we present immunohistochemical and biochemical evidence indicating that GLYT1 is expressed not only at the plasma membrane of glutamatergic neurons, but also at synaptic vesicles. Confocal microscopy, immunoblots analysis of a highly purified synaptic vesicle fraction and immunoisolation of synaptic vesicles with anti-synaptophysin antibodies strongly suggested the presence of GLYT1 in synaptic vesicles. Moreover, direct observation with the electron microscope of purified vesicles immunoreacted with anti-GLYT1 and colloidal gold demonstrated that about 40% of the small vesicles of the purified vesicle fraction contained GLYT1. Double labeling for GLYT1 and synaptophysin of this vesicular fraction revealed that more of ninety percent of them were synaptic vesicles. Moreover, a significant part of the GLYT1 containing vesicles (86%) also contained the vesicular glutamate transporter vGLUT1, suggesting a functional role of GLYT1 in a subpopulation of glutamatergic vesicles.  相似文献   

8.
The recycling of synaptic vesicles in nerve terminals is thought to involve clathrin-coated vesicles. However, the properties of nerve terminal coated vesicles have not been characterized. Starting from a preparation of purified nerve terminals obtained from rat brain, we isolated clathrin-coated vesicles by a series of differential and density gradient centrifugation steps. The enrichment of coated vesicles during fractionation was monitored by EM. The final fraction consisted of greater than 90% of coated vesicles, with only negligible contamination by synaptic vesicles. Control experiments revealed that the contribution by coated vesicles derived from the axo-dendritic region or from nonneuronal cells is minimal. The membrane composition of nerve terminal-derived coated vesicles was very similar to that of synaptic vesicles, containing the membrane proteins synaptophysin, synaptotagmin, p29, synaptobrevin and the 116-kD subunit of the vacuolar proton pump, in similar stoichiometric ratios. The small GTP-binding protein rab3A was absent, probably reflecting its dissociation from synaptic vesicles during endocytosis. Immunogold EM revealed that virtually all coated vesicles carried synaptic vesicle proteins, demonstrating that the contribution by coated vesicles derived from other membrane traffic pathways is negligible. Coated vesicles isolated from the whole brain exhibited a similar composition, most of them carrying synaptic vesicle proteins. This indicates that in nervous tissue, coated vesicles function predominantly in the synaptic vesicle pathway. Nerve terminal-derived coated vesicles contained AP-2 adaptor complexes, which is in agreement with their plasmalemmal origin. Furthermore, the neuron-specific coat proteins AP 180 and auxilin, as well as the alpha a1 and alpha c1-adaptins, were enriched in this fraction, suggesting a function for these coat proteins in synaptic vesicle recycling.  相似文献   

9.
Potential interactions between membrane components of rat brain synaptic vesicles were analyzed by detergent solubilization followed by size fractionation or immunoprecipitation. The behavior of six synaptic vesicle membrane proteins as well as a plasma membrane protein was monitored by Western blotting. Solubilization of synaptic vesicle membranes in CHAPS resulted in the recovery of a large protein complex that included SV2, p65, p38, vesicle-associated membrane protein, and the vacuolar proton pump. Solubilization in octylglucoside resulted in the preservation of interactions between SV2, p38, and rab3A, while solubilization of synaptic vesicles with Triton X-100 resulted in two predominant interactions, one involving p65 and SV2, and the other involving p38 and vesicle-associated membrane protein. The multicomponent complex preserved with CHAPS solubilization was partially reconstituted following octylglucoside solubilization and subsequent dialysis against CHAPS. Reduction of the CHAPS concentration by gel filtration chromatography resulted in increased recovery of the multicomponent complex. Examination of the large complex isolated from CHAPS-solubilized vesicles by negative stain EM revealed structures with multiple globular domains, some of which were specifically labeled with gold-conjugated antibodies directed against p65 and SV2. The protein interactions defined in this report are likely to underlie aspects of neurotransmitter secretion, membrane traffic, and the spatial organization of vesicles within the nerve terminal.  相似文献   

10.
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.  相似文献   

11.
A Novel Synaptic Vesicle-Associated Phosphoprotein: SVAPP-120   总被引:1,自引:0,他引:1  
Generation of antibodies and direct protein sequencing were used to identify and characterize proteins associated with highly purified synaptic vesicles from rat brain. A protein doublet of low abundance of 119 and 124 kDa apparent molecular mass [synaptic vesicle-associated phosphoprotein with a molecular mass of 120 kDa (SVAPP-120)] was identified using polyclonal antibodies. SVAPP-120 was found to copurify with synaptic vesicles and to be enriched in the purified synaptic vesicle fraction to the same extent as synapsin I. Like synapsin I, SVAPP-120 is not an integral membrane protein because it was released from synaptic vesicles by high salt concentrations. This protein was demonstrated to be brain specific, and its distribution in various brain regions paralleled the distribution of synapsin I and synaptophysin. During the postnatal development of the rat cortex and cerebellum, its expression correlated with synaptogenesis. SVAPP-120 was demonstrated to be a phosphoprotein both in vivo and in vitro. It was shown to be phosphorylated on serine and to a lesser extent on threonine residues. These results provide evidence that SVAPP-120 represents a novel synaptic vesicle-associated phosphoprotein. In addition, aldolase, a glycolytic enzyme, and alpha c-adaptin, a clathrin assembly-promoting protein, were identified on purified synaptic vesicles by direct protein sequencing.  相似文献   

12.
The presence of unique proteins in synaptic vesicles of neurons suggests selective targeting during vesicle formation. Endocrine, but not other cells, also express synaptic vesicle membrane proteins and target them selectively to small intracellular vesicles. We show that the rat pheochromocytoma cell line, PC12, has a population of small vesicles with sedimentation and density properties very similar to those of rat brain synaptic vesicles. When synaptophysin is expressed in nonneuronal cells, it is found in intracellular organelles that are not the size of synaptic vesicles. The major protein in the small vesicles isolated from PC12 cells is found to be synaptophysin, which is also the major protein in rat brain vesicles. At least two of the minor proteins in the small vesicles are also known synaptic vesicle membrane proteins. Synaptic vesicle-like structures in PC12 cells can be shown to take up an exogenous bulk phase marker, HRP. Their proteins, including synaptophysin, are labeled if the cells are surface labeled and subsequently warmed. Although the PC12 vesicles can arise by endocytosis, they seem to exclude the receptor-mediated endocytosis marker, transferrin. We conclude that PC12 cells contain synaptic vesicle-like structures that resemble authentic synaptic vesicles in physical properties, protein composition and endocytotic origin.  相似文献   

13.
In response to an external stimulus, neuronal cells release neurotransmitters from small synaptic vesicles and endocrine cells release secretory proteins from large dense core granules. Despite these differences, endocrine cells express three proteins known to be components of synaptic vesicle membranes. To determine if all three proteins, p38, p65, and SV2, are present in endocrine dense core granule membranes, monoclonal antibodies bound to beads were used to immunoisolate organelles containing the synaptic vesicle antigens. [3H]norepinephrine was used to label both chromaffin granules purified from the bovine adrenal medulla and rat pheochromocytoma (PC12) cells. Up to 80% of the vesicular [3H]norepinephrine was immunoisolated from both labeled purified bovine chromaffin granules and PC12 postnuclear supernatants. In PC12 cells transfected with DNA encoding human growth hormone, the hormone was packaged and released with norepinephrine. 90% of the sedimentable hormone was also immunoisolated by antibodies to all three proteins. Stimulated secretion of PC12 cells via depolarization with 50 mM KCl decreased the amount of [3H]norepinephrine or human growth hormone immunoisolated. Electron microscopy of the immunoisolated fractions revealed large (greater than 100 nm diameter) dense core vesicles adherent to the beads. Thus, large dense core vesicles containing secretory proteins possess all three of the known synaptic vesicle membrane proteins.  相似文献   

14.
《The Journal of cell biology》1990,111(5):2041-2052
We have developed procedures for detecting synaptic vesicle-binding proteins by using glutaraldehyde-fixed or native vesicle fractions as absorbent matrices. Both adsorbents identify a prominent synaptic vesicle-binding protein of 36 kD in rat brain synaptosomes and mouse brain primary cultures. The binding of this protein to synaptic vesicles is competed by synaptophysin, a major integral membrane protein of synaptic vesicles, with half-maximal inhibition seen between 10(-8) and 10(-7) M synaptophysin. Because of its affinity for synaptophysin, we named the 36-kD synaptic vesicle-binding protein physophilin (psi nu sigma alpha, greek = bubble, vesicle; psi iota lambda os, greek = friend). Physophilin exhibits an isoelectric point of approximately 7.8, a Stokes radius of 6.6 nm, and an apparent sedimentation coefficient of 5.6 S, pointing to an oligomeric structure of this protein. It is present in synaptic plasma membranes prepared from synaptosomes but not in synaptic vesicles. In solubilization experiments, physophilin behaves as an integral membrane protein. Thus, a putative synaptic plasma membrane protein exhibits a specific interaction with one of the major membrane proteins of synaptic vesicles. This interaction may play a role in docking and/or fusion of synaptic vesicles to the presynaptic plasma membrane.  相似文献   

15.
The distribution of the three synaptic vesicle proteins SV2, synaptophysin and synaptotagmin, and of SNAP-25, a component of the docking and fusion complex, was investigated in PC12 cells by immunocytochemistry. Colloidal gold particle-bound secondary antibodies and a preembedding protocol were applied. Granules were labeled for SV2 and synaptotagmin but not for synaptophysin. Electron-lucent vesicles were labeled most intensively for synaptophysin but also for SV2 and to a lesser extent for synaptotagmin. The t-SNARE SNAP-25 was found at the plasma membrane but also at the surface of granules. Labeling of Golgi vesicles was observed for all antigens investigated. Also components of the endosomal pathway such as multivesicular bodies and multilamellar bodies were occasionally marked. The results suggest that the three membrane-integral synaptic vesicle proteins can have a differential distribution between electron-lucent vesicles (of which PC12 cells may possess more than one type) and granules. The membrane compartment of granules appears not to be an immediate precursor of that of electron-lucent vesicles.  相似文献   

16.
Abstract: Several synaptic vesicle proteins including synap-tophysin and p65/synaptotagmin are expressed by the pheochromocytoma cell line PC12. Stimulation of these cells with nerve growth factor for 7 days induces morphologic neuronotypic differentiation, but the levels of synaptophysin are markedly reduced. Stimulation with cyclic AMP analogs also produces neuronotypic differentiation of PC12 cells, and the degree of morphologic differentiation induced by these agents parallels their ability to effect reduction in synaptophysin levels. By contrast, levels of p65/synaptotagmin are increased following neuronotypic differentiation. The contrasting effects of neuronotypic differentiation on levels of synaptophysin and p65/synaptotagmin indicate potential differences in the regulation of these proteins in PC12 cells. Immunocytochemical labeling of undifferentiated PC12 cells reveals concentrations of synaptophysin in the perinuclear region. After neuronotypic differentiation, there is reduction in perinuclear labeling and concentration of label in swellings along PC12 cell processes. At the ultra-structural level, synaptophysin labeling is found on similar organelles in both undifferentiated and nerve growth factor-stimulated PC12 cells. Although the highest labeling densities were seen on small clear vesicles, specific labeling was also seen on dense core vesicles. The presence of synaptophysin on both small clear vesicles and dense core vesicles indicates potential functional similarities in these vesicle types. The changes in the levels and immunocytochemical distribution of synaptophysin after neuronotypic differentiation suggest possible functional heterogeneity among morphologically similar populations of small clear vesicles.  相似文献   

17.
A novel membrane protein from rat brain synaptic vesicles with an apparent 29,000 Mr (p29) was characterized. Using monospecific polyclonal antibodies, the distribution of p29 was studied in a variety of tissues by light and electron microscopy and immunoblot analysis. Within the nervous system, p29 was present in virtually all nerve terminals. It was selectively associated with small synaptic vesicles and a perinuclear region corresponding to the area of the Golgi complex. P29 was not detected in any other subcellular organelles including large dense-core vesicles. The distribution of p29 in various subcellular fractions from rat brain was very similar to that of synaptophysin and synaptobrevin. The highest enrichment occurred in purified small synaptic vesicles. Outside the nervous system, p29 was found only in endocrine cell types specialized for peptide hormone secretion. In these cells, p29 had a distribution very similar to that of synaptophysin. It was associated with microvesicles of heterogeneous size and shape that are primarily concentrated in the centrosomal-Golgi complex area. Secretory granules were mostly unlabeled, but their membrane occasionally contained small labeled evaginations. Immunoisolation of subcellular organelles from undifferentiated PC12 cells with antisynaptophysin antibodies led to a concomitant enrichment of p29, synaptobrevin, and synaptophysin, further supporting a colocalization of all three proteins. P29 has an isoelectric point of approximately 5.0 and is not N-glycosylated. It is an integral membrane protein and all antibody binding sites are exposed on the cytoplasmic side of the vesicles. Two monoclonal antibodies raised against p29 cross reacted with synaptophysin, indicating the presence of related epitopes. P29, like synaptophysin, was phosphorylated on tyrosine residues by endogenous tyrosine kinase activity in intact vesicles.  相似文献   

18.
Growth cone fractions isolated from neonatal [postnatal day 3 (P3)] rat forebrain contain GABAergic growth cones as demonstrated by immunofluorescence staining with monospecific antibodies to gamma-aminobutyric acid (GABA). HPLC analysis shows that GABAergic growth cones release this endogenous GABA when stimulated with high K+. Endogenous GABA release is Ca2(+)-independent and, in this respect, similar to that seen previously with [3H]GABA. Isolated growth cone fractions also exhibit a K(+)-stimulated, Ca2(+)-independent release of endogenous taurine. None of the other amino acids shown to be present in isolated growth cone fractions were released, including glutamate, aspartate, and glycine. A population of dissociated cerebral cortical neurones prepared from P1 rat forebrain were GABA-immunoreactive after 1 day in culture. The cell body, neurites, and growth cones of these neurones were all stained with GABA antibodies. At this time in culture, neurones did not stain with either of two antibodies to synaptic vesicle antigens, i.e., p65 and synaptophysin. Growth cones isolated from P3 rat forebrain were also not immunoreactive with these antibodies. After about 8 days in culture, when neurones had established extensive networks of long, varicose axons and elaborately branched dendrites, many neurones and their neurites were immunoreactive for GABA antibodies. At this time in culture, p65 and synaptophysin antibodies did stain neuronal cell bodies and particularly their varicose axons. Dendrites were not stained with synaptic vesicle antibodies. These results suggest that GABAergic neurones synthesize GABA during neurite outgrowth and that GABA is present in, and can be released from, the growth cones of these neurones. The presence of GABA in GABAergic growth cones is not associated with synaptic vesicles, which explains the Ca2+ independency of both endogenous and [3H]GABA release from these growth cones.  相似文献   

19.
Abstract: o-rab3 is an electric ray homologue of low molecular weight GTP-binding proteins thought to be involved in targeting of secretory vesicles to sites of exocytosis. The stimulation-dependent association of o-rab3 with synaptic vesicles was compared with that of the membrane-integral synaptic vesicle protein 2 (SV2). On application of immunoelectron microscopy and the colloidal gold technique, antibodies against either protein labeled the synaptic vesicle membrane compartment. Synaptic vesicles recycled under conditions of low frequency stimulation (0.1 Hz) retained their complement of both SV2 and o-rab3. Isolation of synaptic vesicles by density-gradient centrifugation and subsequent column chromatography yielded no indication of a stimulation-dependent release of o-rab3 from synaptic vesicles. In contrast, multivesicular bodies and vacuoles occasionally observed in the nerve terminals contained SV2 but little if any o-rab3. It is concluded that o-rab3 remains associated with the synaptic vesicle membrane compartment during stimulation-induced cycles of repeated exo- and endocytosis. o-rab3 may be lost once the vesicle enters the prelysosomal pathway.  相似文献   

20.
Synaptic vesicles are key organelles in neurotransmission. Their functions are governed by a unique set of integral and peripherally associated proteins. To obtain a complete protein inventory, we immunoisolated synaptic vesicles from rat brain to high purity and performed a gel-based analysis of the synaptic vesicle proteome. Since the high hydrophobicity of integral membrane proteins hampers their resolution by gel electrophoretic techniques, we applied in parallel three different gel electrophoretic methods for protein separation prior to MS. Synaptic vesicle proteins were subjected to either 1-D SDS-PAGE along with nano-LC ESI-MS/MS or to the 2-D gel electrophoretic techniques benzyldimethyl-n-hexadecylammonium chloride (BAC)/SDS-PAGE, and double SDS (dSDS)-PAGE in combination with MALDI-TOF-MS. We demonstrate that the combination of all three methods provides a comprehensive survey of the proteinaceous inventory of the synaptic vesicle membrane compartment. The identified synaptic vesicle proteins include transporters, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), synapsins, rab and rab-interacting proteins, additional guanine nucleotide triphosphate (GTP) binding proteins, cytoskeletal proteins, and proteins modulating synaptic vesicle exo- and endocytosis. In addition, we identified novel proteins of unknown function. Our results demonstrate that the parallel application of three different gel-based approaches in combination with mass spectrometry permits a comprehensive analysis of the synaptic vesicle proteome that is considerably more complex than previously anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号