首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA and its associated RNA binding proteins (RBPs) mitigate a diverse array of cellular functions and phenotypes. The interactions between RNA and RBPs are implicated in many roles of biochemical processing by the cell such as localization, protein translation, and RNA stability. Recent discoveries of novel mechanisms that are of significant evolutionary advantage between RBPs and RNA include the interaction of the RBP with the 3’ and 5’ untranslated region (UTR) of target mRNA. These mechanisms are shown to function through interaction of a trans-factor (RBP) and a cis-regulatory element (3’ or 5’ UTR) by the binding of a RBP to a regulatory-consensus nucleic acid motif region that is conserved throughout evolution. Through signal transduction, regulatory RBPs are able to temporarily dissociate from their target sites on mRNAs and induce translation, typically through a post-translational modification (PTM). These small, regulatory motifs located in the UTR of mRNAs are subject to a loss-of-function due to single polymorphisms or other mutations that disrupt the motif and inhibit the ability to associate into the complex with RBPs. The identification of a consensus motif for a given RBP is difficult, time consuming, and requires a significant degree of experimentation to identify each motif-containing gene on a genomic scale. We have developed a computational algorithm to analyze high-throughput genomic arrays that contain differential binding induced by a PTM for a RBP of interest–RBP-PTM Target Scan (RPTS). We demonstrate the ability of this application to accurately predict a PTM-specific binding motif to an RBP that has no antibody capable of distinguishing the PTM of interest, negating the use of in-vitro exonuclease digestion techniques.  相似文献   

2.
3.
Vascular endothelial growth factor A (VEGF) is a crucial proangiogenic factor, which regulates blood vessel supply under physiologic and pathologic conditions. The VEGF mRNA 5′-untranslated region (5′-UTR) bears internal ribosome entry sites (IRES), which confer sustained VEGF mRNA translation under hypoxia when 5′-cap-dependent mRNA translation is inhibited. VEGF IRES-mediated initiation of translation requires the modulated interaction of trans-acting factors. To identify trans-acting factors that control VEGF mRNA translation under hypoxic conditions we established an in vitro translation system based on human adenocarcinoma cells (MCF-7). Cytoplasmic extracts of MCF-7 cells grown under hypoxia (1% oxygen) recapitulate VEGF IRES-mediated reporter mRNA translation. Employing the VEGF mRNA 5′-UTR and 3′-UTR in an RNA affinity approach we isolated interacting proteins from translational active MCF-7 extract prepared from cells grown under normoxia or hypoxia. Interestingly, mass spectrometry analysis identified the DEAD-box RNA helicase 6 (DDX6) that interacts with the VEGF mRNA 5′-UTR. Recombinant DDX6 inhibits VEGF IRES-mediated translation in normoxic MCF-7 extract. Under hypoxia the level of DDX6 declines, and its interaction with VEGF mRNA is diminished in vivo. Depletion of DDX6 by RNAi further promotes VEGF expression in MCF-7 cells. Increased secretion of VEGF from DDX6 knockdown cells positively affects vascular tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. Our results indicate that the decrease of DDX6 under hypoxia contributes to the activation of VEGF expression and promotes its proangiogenic function.  相似文献   

4.
5.
6.
The protein DDX3X is a DEAD-box RNA helicase that is essential for the hepatitis C virus (HCV) life cycle. The HCV core protein has been shown to bind to DDX3X both in vitro and in vivo. However, the specific interactions between these two proteins and the functional importance of these interactions for the HCV viral life cycle remain unclear. We show that amino acids 16–36 near the N-terminus of the HCV core protein interact specifically with DDX3X both in vitro and in vivo. Replication of HCV replicon NNeo/C-5B RNA (genotype 1b) is significantly suppressed in HuH-7-derived cells expressing green fluorescent protein (GFP) fusions to HCV core protein residues 16–36, but not by GFP fusions to core protein residues 16–35 or 16–34. Notably, the inhibition of HCV replication due to expression of the GFP fusion to HCV core protein residues 16–36 can be reversed by overexpression of DDX3X. These results suggest that the protein interface on DDX3X that binds the HCV core protein is important for replicon maintenance. However, infection of HuH-7 cells by HCV viruses of genotype 2a (JFH1) was not affected by expression of the GFP fusion protein. These results suggest that the role of DDX3X in HCV infection involves aspects of the viral life cycle that vary in importance between HCV genotypes.  相似文献   

7.
8.
9.
The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA‐binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA‐binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA–protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin‐1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure‐dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.  相似文献   

10.
The DEAD-box RNA helicase DDX3X promotes translation initiation and associates with stress granules. A range of diverse viruses produce proteins that target DDX3X, including hepatitis C, dengue, vaccinia, and influenza A. The interaction of some of these viral proteins with DDX3X has been shown to affect antiviral intracellular signaling, but it is unknown whether and how viral proteins impact the biochemical activities of DDX3X and its physical roles in cells. Here we show that the protein K7 from vaccinia virus, which binds to an intrinsically disordered region in the N-terminus of DDX3X, inhibits RNA helicase and RNA-stimulated ATPase activities, as well as liquid–liquid phase separation of DDX3X in vitro. We demonstrate in HCT 116 cells that K7 inhibits association of DDX3X with stress granules, as well as the formation of aberrant granules induced by expression of DDX3X with a point mutation linked to medulloblastoma and DDX3X syndrome. The results show that targeting of the intrinsically disordered N-terminus is an effective viral strategy to modulate the biochemical functions and subcellular localization of DDX3X. Our findings also have potential therapeutic implications for diseases linked to aberrant DDX3X granule formation.  相似文献   

11.
12.
13.
Orofaciodigital syndrome (OFD) is a recognized clinical entity with core defining features in the mouth, face, and digits, in addition to various other features that have been proposed to define distinct subtypes. The three genes linked to OFD—OFD1, TMEM216, and TCTN3—play a role in ciliary biology, a finding consistent with the clinical overlap between OFD and other ciliopathies. Most autosomal-recessive cases of OFD, however, remain undefined genetically. In two multiplex consanguineous Arab families affected by OFD, we identified a tight linkage interval in chromosomal region 1q32.1. Exome sequencing revealed a different homozygous variant in DDX59 in each of the two families, and at least one of the two variants was accompanied by marked reduction in the level of DDX59. DDX59 encodes a relatively uncharacterized member of the DEAD-box-containing RNA helicase family of proteins, which are known to play a critical role in all aspects of RNA metabolism. We show that Ddx59 is highly enriched in its expression in the developing murine palate and limb buds. At the cellular level, we show that DDX59 is localized dynamically to the nucleus and the cytoplasm. Consistent with the absence of DDX59 representation in ciliome databases and our demonstration of its lack of ciliary localization, ciliogenesis appears to be intact in mutant fibroblasts but ciliary signaling appears to be impaired. Our data strongly implicate this RNA helicase family member in the pathogenesis of OFD, although the causal mechanism remains unclear.  相似文献   

14.
The mammalian intestinal epithelium is one of the most rapidly self-renewing tissues in the body, and its integrity is preserved through strict regulation. The RNA-binding protein (RBP) ELAV-like family member 1 (CELF1), also referred to as CUG-binding protein 1 (CUGBP1), regulates the stability and translation of target mRNAs and is implicated in many aspects of cellular physiology. We show that CELF1 competes with the RBP HuR to modulate MYC translation and regulates intestinal epithelial homeostasis. Growth inhibition of the small intestinal mucosa by fasting in mice was associated with increased CELF1/Myc mRNA association and decreased MYC expression. At the molecular level, CELF1 was found to bind the 3′-untranslated region (UTR) of Myc mRNA and repressed MYC translation without affecting total Myc mRNA levels. HuR interacted with the same Myc 3′-UTR element, and increasing the levels of HuR decreased CELF1 binding to Myc mRNA. In contrast, increasing the concentrations of CELF1 inhibited formation of the [HuR/Myc mRNA] complex. Depletion of cellular polyamines also increased CELF1 and enhanced CELF1 association with Myc mRNA, thus suppressing MYC translation. Moreover, ectopic CELF1 overexpression caused G1-phase growth arrest, whereas CELF1 silencing promoted cell proliferation. These results indicate that CELF1 represses MYC translation by decreasing Myc mRNA association with HuR and provide new insight into the molecular functions of RBPs in the regulation of intestinal mucosal growth.  相似文献   

15.
16.
Here, we show a novel molecular mechanism promoted by the DEAD-box RNA helicase DDX3 for translation of the HIV-1 genomic RNA. This occurs through the adenosine triphosphate-dependent formation of a translation initiation complex that is assembled at the 5′ m7GTP cap of the HIV-1 mRNA. This is due to the property of DDX3 to substitute for the initiation factor eIF4E in the binding of the HIV-1 m7GTP 5′ cap structure where it nucleates the formation of a core DDX3/PABP/eIF4G trimeric complex on the HIV-1 genomic RNA. By using RNA fluorescence in situ hybridization coupled to indirect immunofluorescence, we further show that this viral ribonucleoprotein complex is addressed to compartmentalized cytoplasmic foci where the translation initiation complex is assembled.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号