首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type VII collagen, the major component of anchoring fibrils, consists of a central collagenous triple-helical domain flanked by two noncollagenous domains, NC1 and NC2. The NC2 domain has been implicated in catalyzing the antiparallel dimer formation of type VII procollagen. In this study, we produced the entire 161 amino acids of the NC2 domain plus 186 amino acids of adjacent collagenous domain (NC2/COL) and purified large quantities of the recombinant NC2/COL protein. Recombinant NC2/COL readily formed disulfide-bonded hexamers, each representing one antiparallel dimer of collagen VII. Removal of the collagenous helical domain from NC2/COL by collagenase digestion abolished the antiparallel dimer formation. Using site-directed mutagenesis, we found that mutation of either cysteine 2802 or cysteine 2804 alone within the NC2 domain blocked antiparallel dimer formation. In contrast, a single cysteine mutation, 2634, within the collagenous helical domain had no effect. A generated methionine to lysine substitution, M2798K, that is associated with recessive dystrophic epidermolysis bullosa, was unable to form antiparallel dimers. Furthermore, autoantibodies from epidermolysis bullosa acquisita patients also reacted with NC2/COL. We conclude that NC2 and its adjacent collagenous segment mediate antiparallel dimer formation of collagen VII. Epidermolysis bullosa acquisita autoantibodies bound to this domain may destabilize anchoring fibrils by interfering with antiparallel dimer assembly leading to epidermal-dermal disadherence.  相似文献   

2.
Procollagen VII is a homotrimer of 350-kDa proalpha1(VII) chains. Each chain has a central collagenous domain flanked by a noncollagenous amino-terminal NC1 domain and a carboxy-terminal NC2 domain. After secretion from cells, procollagen VII molecules form antiparallel dimers with a 60 nm overlap. These dimers are stabilized by disulfide bonds formed between cysteines present in the NC2 domain and cysteines present in the triple-helical domain. Electron microscopy has provided direct evidence for the existence of collagen VII dimers, but the dynamic process of dimer formation is not well understood. In the present study, we tested the hypothesis that, during dimer formation, the NC2 domain of one procollagen VII molecule specifically recognizes and binds to the triple-helical region adjacent to Cys-2625 of another procollagen VII molecule. We also investigated the role of processing of the NC2 domain by the procollagen C-proteinase/BMP-1 in dimer assembly. We engineered mini mouse procollagen VII variants consisting of intact NC1 and NC2 domains and a shortened triple helix in which the C-terminal region encompassing Cys-2625 was either preserved or substituted with the region encompassing Cys-1448 derived from the N-terminal part of the triple-helical domain. The results indicate that procollagen VII self-assembly depends on site-specific interactions between the NC2 domain and the triple-helical region adjacent to Cys-2625 and that this process is promoted by the cleavage of the NC2 by procollagen C-proteinase/BMP1.  相似文献   

3.
Type VII collagen (Col7) is important for skin stability. This is underlined by the severe skin blistering phenotype in the Col7 related diseases dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita (EBA). Col7 has a large N-terminal non-collagenous domain (NC1) that is followed by the triple helical collagenous domain. The NC1 domain has subdomains with homology to adhesion molecules and mediates important interactions within the extracellular matrix. An 185 amino acid long part of the NC1-subdomain termed fibronectin III like domains 7 and 8 (FNIII7-8) was investigated. Antibodies against this region are pathogenic in a mouse model of EBA and one reported missense mutations of Col7 lies within these domains. The nearly complete NMR resonance assignment of recombinant FNIII7-8 of Col7 is reported.  相似文献   

4.
Collagen VII is the major structural component of the anchoring fibrils at the dermal-epidermal junction in the skin. It is secreted by keratinocytes as a precursor, procollagen VII, and processed into mature collagen during polymerization of the anchoring fibrils. We show that bone morphogenetic protein-1 (BMP-1), which exhibits procollagen C-proteinase activity, cleaves the C-terminal propeptide from human procollagen VII. The cleavage occurs at the BMP-1 consensus cleavage site SYAA/DTAG within the NC-2 domain. Mammalian tolloid-like (mTLL)-1 and -2, two other proteases of the astacin enzyme family, were able to process procollagen VII at the same site in vitro. Immunohistochemical and genetic evidence supported the involvement of these enzymes in cleaving type VII procollagen in vivo. Both BMP-1 and mTLL-1 are expressed in the skin and in cultured cutaneous cells. A naturally occurring deletion in the human COL7A1 gene, 8523del14, which is associated with dystrophic epidermolysis bullosa and eliminates the BMP-1 consensus sequence, abolished processing of procollagen VII, and in mutant skin procollagen VII accumulated at the dermal-epidermal junction. On the other hand, deficiency of BMP-1 in the skin of knockout mouse embryos did not prevent processing of procollagen VII to mature collagen, suggesting that mTLL-1 and/or mTLL-2 can substitute for BMP-1 in the processing of procollagen VII in situ.  相似文献   

5.
Type VII collagen (C7) is a major component of anchoring fibrils, structures that mediate epidermal-dermal adherence. Mutations in gene COL7A1 encoding for C7 cause dystrophic epidermolysis bullosa (DEB), a genetic mechano-bullous disease. The biological consequences of specific COL7A1 mutations and the molecular mechanisms leading to DEB clinical phenotypes are unknown. In an attempt to establish genotype-phenotype relationships, we generated four individual substitution mutations that have been associated with recessive DEB, G2049E, R2063W, G2569R, and G2575R, and purified the recombinant mutant proteins. All mutant proteins were synthesized and secreted as a 290-kDa mutant C7 alpha chain at levels similar to wild type C7. The G2569R and G2575R glycine substitution mutations resulted in mutant C7 with increased sensitivity to protease degradation and decreased ability to form trimers. Limited proteolytic digestion of mutant G2049E and R2063W proteins yielded aberrant fragments and a triple helix with reduced stability. These two mutations next to the 39-amino acid helical interruption hinge region caused local destabilization of the triple-helix that exposed an additional highly sensitive proteolytic site within the region of the mutation. Our functional studies demonstrated that C7 is a potent pro-motility matrix for skin human keratinocyte migration and that this activity resides within the triple helical domain. Furthermore, G2049E and R2063W mutations reduced the ability of C7 to support fibroblast adhesion and keratinocyte migration. We conclude that known recessive DEB C7 mutations perturb critical functions of the C7 molecule and likely contribute to the clinical phenotypes of DEB patients.  相似文献   

6.
Collagen VII is the major structural constituent of anchoring fibrils in the skin. It is synthesized as a procollagen that is larger than the collagen deposited in the tissue. In this study, we investigated the conversion of procollagen VII to collagen VII in human skin and in cutaneous cells in vitro and identified the propeptide using domain- specific antibodies. For this purpose, two bacterial fusion proteins containing unique sequences of the carboxy-terminal globular NC-2 domain of procollagen VII were prepared, and polyclonal antibodies raised against them. Immunoblotting showed that the anti-NC2 antibodies reacted with procollagen VII isolated from cultured keratinocytes, but not with collagen VII extracted from the skin. Immunohistochemical experiments with the NC-2 antibodies revealed a strong reaction in cultured keratinocytes, but the basement membrane zone of normal skin remained negative. The staining could not be rendered positive by chemical or enzymatic unmasking of potential hidden epitopes in the skin, indicating that most of the NC-2 domain is absent from normal skin. In contrast, a positive staining with NC-2 antibodies was observed in the skin of a patient with NC-2 antibodies was observed in the skin of a patient with dystrophic epidermolysis bullosa, who carried a 14-bp deletion at one of the intro-exon junctions of the collagen VII gene. This aberration led to an in-frame skipping of exon 115 from the mRNA and eliminated 29 amino acids from the NC-2 domain which include the putative cleavage site for the physiological processing enzyme, procollagen C-proteinase. The results indicate that in normal human skin, the removal of the NC-2 domain from procollagen VII precedes its deposition at the dermal-epidermal junction. Furthermore, they suggest that an aberration in the procollagen VII cleavage interferes with the normal fibrillogenesis of the anchoring fibrils.  相似文献   

7.
8.
Dominant-negative interference by glycine substitution mutations in the COL7A1 gene causes dominant dystrophic epidermolysis bullosa (DDEB), a skin fragility disorder with mechanically induced blistering. Although qualitative and quantitative alterations of the COL7A1 gene product, collagen VII, underlie DDEB, the lack of direct correlation between mutations and the clinical phenotype has rendered DDEB less amenable to therapeutic targeting. To delineate the molecular mechanisms of DDEB, we used recombinant expression of wild-type (WT) and mutant collagen VII, which contained a naturally occurring COL7A1 mutation, G1776R, G2006D, or G2015E, for characterization of the triple helical molecules. The mutants were co-expressed with WT in equal amounts and could form heterotrimeric hybrid triple helices, as demonstrated by affinity purification and mass spectrometry. The thermal stability of the mutant molecules was strongly decreased, as evident in their sensitivity to trypsin digestion. The helix-to-coil transition, Tm, of the mutant molecules was 31–34 °C, and of WT collagen VII 41 °C. Co-expression of WT with G1776R- or G2006D-collagen VII resulted in partial intracellular retention of the collagen, and mutant collagen VII had reduced ability to support cell adhesion. Intriguingly, controlled overexpression of WT collagen VII gradually improved the thermal stability of the collective of collagen VII molecules. Co-expression in a ratio of 90% WT:10% mutant increased the Tm to 41 °C for G1776R-collagen VII and to 39 °C for G2006D- and G2015E-collagen VII. Therefore, increasing the expression of WT collagen VII in the skin of patients with DDEB can be considered a valid therapeutic approach.Mutations in the collagen VII gene, COL7A1, cause dystrophic epidermolysis bullosa (DEB),3 a heritable skin fragility disorder characterized by mechanically induced blistering of the skin and mucosa, and excessive scarring (1). DEB is classified into clinical subtypes with dominant or recessive inheritance (2), and so far more than 400 different COL7A1 mutations are known, which underlie a broad spectrum of clinical presentations.Collagen VII is the major molecular constituent of anchoring fibrils in the skin. These centro-symmetrically banded fibrils extend from the epidermal basement membrane into the underlying dermal stroma and connect the epidermis to the dermis. Collagen VII is synthesized as three identical pro-α1(VII) polypeptide chains, which are hydroxylated and glycosylated in a coordinated manner and then fold into triple-helical procollagen VII in the endoplasmic reticulum (ER). The procollagen, which contains a central collagenous triple-helix flanked by two non-collagenous domains, NC-1 and NC-2, is secreted into the extracellular space, where the C-terminal NC-2 propeptide is proteolytically removed by bone morphogenetic protein-1 (3). Subsequently, mature collagen VII undergoes a multistep fibril polymerization process to form the anchoring fibrils (4).The pathology in DDEB has been thought to result from negative interference of mutant pro-α1(VII) chains that are incorporated into the triple-helical monomers and affect folding and registration of normal polypeptides. Typically, substitution of a glycine within the collagenous domain by a larger amino acid residue causes imperfections and delays in triple-helix folding and increased post-translational modifications (5). These can have different consequences: 1) newly synthesized mutant pro-α(VII) chains or procollagen VII molecules do not pass the ER quality control and are retained in the ER or designated for ubiquitin-proteasome degradation (6), resulting in reduced amounts of collagen VII in the skin; 2) assembly into loosely folded collagen VII monomers, which are secreted, incorporated into anchoring fibrils, and perturb the fibril architecture and render them sensitive to tissue proteases; 3) a combination of the above. All variants lead to paucity of anchoring fibrils at the dermal-epidermal junction, impaired resistance of the skin to shearing forces, and to skin blistering as a clinical symptom.Accessibility makes the skin an ideal organ for testing of molecular therapies. Development of causal treatments for DEB is urged by the severe impact of permanent skin fragility on the life of affected individuals. Therapeutic considerations for DDEB have included an array of approaches including oligonucleotides and oligoribonucleotides (7, 8). Intriguingly, findings in a mouse model for epidermolysis bullosa simplex (EBS), a skin fragility disorder associated with dominant keratin mutations, delivered first evidence that increasing the ratio of wild-type (WT) to mutated polypeptides may improve the phenotype (9). Furthermore, our recent investigation of the collagen VII hypomorphic mouse suggested that relatively small biological changes, e.g. moderately raised levels of collagen VII, can have substantial clinical effects (10). These observations encouraged us to test the possibility that controlled overexpression of normal collagen VII may have therapeutic potential for DDEB.Here we used protein biochemical, mass spectrometry and cell biological in vitro analysis to show that mutant α1(VII) chains can fold with WT α1(VII) chains into hybrid triple helices and exert dominant-negative interference on the protein function. The resulting destabilization and partial intracellular accumulation of the mutant molecules can be diminished by controlled overexpression of WT collagen VII.  相似文献   

9.
The dermis and the epidermis of normal human skin are functionally separated by a basement membrane but, together, form a stable structural continuum. Anchoring fibrils reinforce this connection by insertion into the basement membrane and by intercalation with banded collagen fibrils of the papillary dermis. Structural abnormalities in collagen VII, the major molecular constituent of anchoring fibrils, lead to a congenital skin fragility condition, dystrophic epidermolysis bullosa, associated with skin blistering. Here, we characterized the molecular basis of the interactions between anchoring fibrils and banded collagen fibrils. Suprastructural fragments of the dermo-epidermal junction zone were generated by mechanical disruption and by separation with magnetic Immunobeads. Anchoring fibrils were tightly attached to banded collagen fibrils. In vitro binding studies demonstrated that a von Willebrand factor A-like motif in collagen VII was essential for binding of anchoring fibrils to reconstituted collagen I fibrils. Since collagen I and VII molecules reportedly undergo only weak interactions, the attachment of anchoring fibrils to collagen fibrils depends on supramolecular organization of their constituents. This complex is stabilized in situ and resists dissociation by strong denaturants.  相似文献   

10.
Type VII collagen, located in human epidermal basement membrane, is the primary pathogenic target molecule in epidermolysis bullosa acquisita and epidermolysis bullosa dystrophica. Using a monoclonal antibody against the non-collagenous domain of type VII collagen, approximately 1 Kb cDNA was isolated from human keratinocyte library. The deduced primary structure of this clone thus reflects the non-collagenous domain of type VII collagen that may be involved in cell attachment. This region shows a weak homology (approximately 23%) to the cell attachment domain of fibronectin. Northern blot revealed approximately 9.5 Kb single band.  相似文献   

11.
Type VII collagen (Col7) is the major component of anchoring fibrils and very important for skin integrity. This is emphasized by the Col7 related skin blistering diseases dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. Structural data that provides insights into the interaction network of Col7 and thus providing a basis for a better understanding of the pathogenesis of the diseases is missing.We proved that the von-Willebrand-factor A like domain 2 (vWFA2) of Col7 is responsible for type I collagen binding. The interaction has a KD value of 90 μM as determined by SPR and is enthalpy driven as derived from the van’t Hoff equation. Furthermore, a hitherto unknown interaction of this domain with type IV collagen was identified. The interaction of vWFA2 with type I collagen is sensitive to the presence of magnesium ions, however, vWFA2 does not contain a magnesium binding site thus magnesium must bind to type I collagen.A lysine residue has been identified to be crucial for type I collagen binding. This allowed localization of the binding site. Mutational analysis suggests different interaction mechanisms in different species and that these interactions might be of covalent nature.  相似文献   

12.
Recessive dystrophic epidermolysis bullosa (RDEB) is characterized clinically by blister formation due to minor trauma and ultrastructurally by a progressive disappearance of anchoring fibrils at the dermoepidermal junction and of the oxytalan-type fibers which belong to the elastic fiber system. In this study, we determined the elastase-type activity in blister fluid obtained from 8 patients suffering from RDEB as compared to the suction fluid of experimental blisters in a healthy person and to the blister fluid of a patient suffering from epidermolysis bullosa simplex. One patient with dominant dystrophic epidermolysis of the albopapuloid type was also studied. Seven of the eight children with RDEB showed highly elevated values. The eighth child, treated with etretinate, as well as the patient suffering from dominant epidermolysis bullosa had moderately increased values. The determination of elastase-type activity in the blister fluid could therefore be useful to establish the differential diagnosis of recessive dystrophic epidermolysis bullosa.  相似文献   

13.
Type VII procollagen has been characterized as a product of epithelial cell lines. As secreted, it contains a large triple-helical domain terminated by a multi-globular-domained carboxyl terminus (NC-1), and a smaller amino-terminal globule (NC-2). The triple helix and the NC-1 domain have previously been identified in anchoring fibril-containing tissues by biochemical and immunochemical means, leading to the conclusion that type VII collagen is a major component of anchoring fibrils. In order to better characterize the tissue form of type VII collagen, we have produced a panel of monoclonal antibodies which recognize the NC-1 domain. Peptide mapping of these epitopes indicate that they are independent and span approximately 125,000 kDa of the total 150,000 kDa of each alpha chain contained in NC-1. All these antibodies elicit immunofluorescent staining of the basement membrane zone in tissues. Type VII collagen has been extracted from tissues. As previously reported, it is smaller than type VII procollagen, (Woodley, D. T., Burgeson, R. E., Lunstrum, G. P., Bruckner-Tuderman, L., and Briggaman, R. A., submitted for publication), and we now find that it predominantly occurs as a dimer. Following clostridial collagenase digestion, intact NC-1 has been recognized, indicating that the difference in apparent Mr between the tissue form of the molecule and type VII procollagen results from modification of the amino terminus. The size of the amino-terminal globule has been determined to be between approximately 96 and 102 kDa. Rotary shadowing analyses of extracted molecules indicate that dimeric molecules contain the NC-1 domain, but are missing intact NC-2. We propose that the tissue form monomer, Mr = 960,000, be referred to as "type VII collagen." These studies strongly suggest that anchoring fibrils contain dimeric molecules with intact NC-1 domains. The data also support the previous suggestion that the NC-2 domain is involved in the formation of disulfide bond-stabilized type VII collagen dimers, and is subsequently removed by physiological proteolytic processing.  相似文献   

14.
Drebrin is a mammalian neuronal protein that binds to and organizes filamentous actin (F-actin) in dendritic spines, the receptive regions of most excitatory synapses that play a crucial role in higher brain functions. Here, the structural effects of drebrin on F-actin were examined in solution. Depolymerization and differential scanning calorimetry assays show that F-actin is stabilized by the binding of drebrin. Drebrin inhibits depolymerization mainly at the barbed end of F-actin. Full-length drebrin and its C-terminal truncated constructs were used to clarify the domain requirements for these effects. The actin binding domain of drebrin decreases the intrastrand disulfide cross-linking of Cys-41 (in the DNase I binding loop) to Cys-374 (C-terminal) but increases the interstrand disulfide cross-linking of Cys-265 (hydrophobic loop) to Cys-374 in the yeast mutants Q41C and S265C, respectively. We also demonstrate, using solution biochemistry methods and EM, the rescue of filament formation by drebrin in different cases of longitudinal interprotomer contact perturbation: the T203C/C374S yeast actin mutant and grimelysin-cleaved skeletal actin (between Gly-42 and Val-43). Additionally, we show that drebrin rescues the polymerization of V266G/L267G, a hydrophobic loop yeast actin mutant with an impaired lateral interface formation between the two filament strands. Overall, our data suggest that drebrin stabilizes actin filaments through its effect on their interstrand and intrastrand contacts.  相似文献   

15.
Anchoring fibrils are adhesive suprastructures that ensure the connection of the epidermal basement membrane with the dermal extracellular matrix. The fibrils represent polymers of collagen VII, the major structural fibril component, but may also contain other proteins. Remarkable progress has been made in the last few years in understanding the functions of skin basement membrane components including the anchoring fibrils. Novel insights into the biology of the anchoring fibrils have been gained from experimental studies on dystrophic epidermolysis bullosa (DEB), a group of inherited blistering disorders caused by mutations in the gene for collagen VII, COL7A1. Mutation analyses of DEB families have disclosed more than 100 COL7A1 gene defects so far, but the unusual complexity of the mutation constellations and their biological consequences are only beginning to emerge. In analogy to heritable disorders of other collagen genes, predictable phenotypes of COL7A1 mutations causing premature termination codons or dominant negative interference have been observed. However, collagen VII seems to represent a remarkable exception among collagens in that many mutations, including heterozygous glycine substitutions and deletions, lead to minimal phenotypes, or to no phenotype at all. In contrast to fibrillar collagens, structural abnormalities of collagen VII molecules in anchoring fibrils appear to be tolerated to a certain extent. However, the mild DEB phenotypes can be severely modulated by a second aberration in individuals compound heterozygous for two different COL7A1 mutations. Therefore, not only definition of mutation(s) but also cell biological, protein chemical and suprastructural studies of the mutated molecules yield novel insight into the molecular pathomechanisms underlying disease.  相似文献   

16.
Type VII collagen is a major component of anchoring fibrils, attachment structures that mediate dermal-epidermal adherence in human skin. Dystrophic epidermolysis bullosa (DEB) is an inherited mechano-bullous disorder caused by mutations in the type VII collagen gene and perturbations in anchoring fibrils. In this study, we produced recombinant human type VII collagen in stably transfected human 293 cell clones and purified large quantities of the recombinant protein from culture media. The recombinant type VII collagen was secreted as a correctly folded, disulfide-bonded, helical trimer resistant to protease degradation. Purified type VII collagen bound to fibronectin, laminin-5, type I collagen, and type IV collagen and also supported human dermal fibroblast adhesion. In an attempt to establish genotype-phenotype relationships, we generated two individual substitution mutations that have been associated with recessive DEB, R2008G and G2749R, and purified the recombinant mutant proteins. The G2749R mutation resulted in mutant type VII collagen with increased sensitivity to protease degradation and decreased ability to form trimers. The R2008G mutation caused the intracellular accumulation of type VII collagen. We conclude that structural and functional studies of in vitro generated type VII collagen mutant proteins will aid in correlating genetic mutations with the clinical phenotypes of DEB patients.  相似文献   

17.
The dystrophic forms of epidermolysis bullosa (DEB) are characterized by fragility of the skin and mucous membranes. DEB can be inherited in either an autosomal dominant or autosomal recessive pattern, and the spectrum of clinical severity is highly variable. The unifying diagnostic hallmark of DEB is abnormalities in the anchoring fibrils, which consist of type VII collagen, and, recently, mutations in the corresponding gene, COL7A1, have been disclosed in a number of families. In this study, we report six families with glycine substitution mutations in the triple-helical region of type VII collagen. Among the six families, two demonstrated a mild phenotype, and the inheritance of the mutation was consistent with the dominantly inherited form of DEB. In the four other families, the mutation was silent in the heterozygous state but, when present in the homozygous state, or combined with a second mutation, resulted in a recessively inherited DEB phenotype. Type VII collagen is, therefore, unique among the collagen genes, in that different glycine substitutions can be either silent in heterozygous individuals or result in a dominantly inherited DEB. Inspection of the locations of the glycine substitutions along the COL7A1 polypeptide suggests that the consequences of these mutations, in terms of phenotype and pattern of inheritance, are position independent.  相似文献   

18.
Pretibial epidermolysis bullosa (PEB) is an extremely rare subtype of dominant dystrophic epidermolysis bullosa (DDEB) caused by mutation of the COL7A1 gene. More than 730 mutations have been identified in patients with DDEB, but only five mutations have been found to be related to PEB. In this study, a novel heterozygous nucleotide G > T transition at position 6101 in exon 73 of COL7A1 was detected, which resulted in a glycine to valine substitution (G2034V) in the triple-helical domain of type-VII collagen. This is the first report to show that one mutation caused a broad range of severity of disease in one family with PEB. These data suggest that c.6101G > T may influence the phenotype of PEB. They also contribute to the expanding database on COL7A1 mutations.  相似文献   

19.
Dystrophic epidermolysis bullosa (DEB) is an inherited mechano-bullous disorder of skin caused by mutations in the type VII collagen gene. The lack of therapy for DEB provides an impetus to develop gene therapy strategies. However, the full-length 9-kilobase type VII collagen cDNA exceeds the cloning capacity of current viral delivery vectors. In this study, we produced a recombinant type VII minicollagen containing the intact noncollagenous domains, NC1 and NC2, and part of the central collagenous domain using stably transfected human 293 cell clones and purified large quantities of the recombinant minicollagen VII from culture media. Minicollagen VII was secreted as correctly-folded, disulfide-bonded, helical trimers resistant to protease degradation. Purified minicollagen VII bound to fibronectin, laminin-5, type I collagen, and type IV collagen. Furthermore, retroviral-mediated transduction of the minigene construct into DEB keratinocytes (in which type VII collagen was absent) resulted in persistent synthesis and secretion of a 230-kDa recombinant minicollagen VII. In comparison with parent DEB keratinocytes, the gene-corrected DEB keratinocytes demonstrated enhanced cell-substratum adhesion, increased proliferative potential, and reduced cell motility, features that reversed the DEB phenotype toward normal. We conclude that the use of the minicollagen VII may provide a strategy to correct the cellular manifestations of gene defects in DEB.  相似文献   

20.
Integrases (INs) of retroviruses and long terminal repeat retrotransposons possess a C-terminal domain with DNA binding activity. Other than this binding activity, little is known about how the C-terminal domain contributes to integration. A stretch of conserved amino acids called the GP(Y/F) domain has been identified within the C-terminal IN domains of two distantly related families, the gamma-retroviruses and the metavirus retrotransposons. To enhance understanding of the C-terminal domain, we examined the function of the GP(Y/F) domain in the IN of Tf1, a long terminal repeat retrotransposon of Schizosaccharomyces pombe. The activities of recombinant IN were measured with an assay that modeled the reverse of integration called disintegration. Although deletion of the entire C-terminal domain disrupted disintegration activity, an alanine substitution (P365A) in a conserved amino acid of the GP(Y/F) domain did not significantly reduce disintegration. When assayed for the ability to join two molecules of DNA in a reaction that modeled forward integration, the P365A substitution disrupted activity. UV cross-linking experiments detected DNA binding activity in the C-terminal domain and found that this activity was not reduced by substitutions in two conserved amino acids of the GP(Y/F) domain, G364A and P365A. Gel filtration and cross-linking of a 71-amino acid fragment containing the GP(Y/F) domain revealed a surprising ability to form dimers, trimers, and tetramers that was disrupted by the G364A and P365A substitutions. These results suggest that the GP(Y/F) residues may play roles in promoting multimerization and intermolecular strand joining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号