首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Oxidative stress is a major component of cryoinjury in plant tissues. This study investigated the ability of recalcitrant (i.e. desiccation sensitive) Amaryllis belladonna L. and Haemanthus montanus Baker zygotic embryos to survive cryopreservation, in relation to oxidative stress. The study also investigated whether glycerol cryoprotection promoted embryo post-cryo survival by protecting enzymic antioxidant activities. Zygotic embryos excised from hydrated stored seeds were subjected to various combinations of rapid dehydration (to < or >0.4 g g?1 [dmb]), cryoprotection (with sucrose or glycerol), and cooling (either rapidly or slowly), and were thereafter assessed for viability, extracellular superoxide (·O??) production, lipid peroxidation (TBARS) and antioxidant enzyme activities. Short-term hydrated storage of whole seeds was accompanied by ·O?? production and lipid peroxidation, but ·O?? levels were lower than in dehydrated and cooled embryos and viability was 100%, possibly associated with the high activities of certain antioxidant enzymes. Partial dehydration and cryoprotection (in H. montanus only) increased ·O?? production (especially in cryoprotected-dried embryos) and was associated with some viability loss, but this was not correlated with enhanced lipid peroxidation. Cooling was generally accompanied by the greatest increase in ·O?? production, and with a decline in viability. In A. belladonna only, post-cryo TBARS levels were generally higher than for fresh and pre-conditioned embryos. Partial dehydration and cooling decreased antioxidant activities, but these were consistently less severe in glycerol cryoprotected-dried, as opposed to non-cryoprotected-dried embryos. Post-cryo viability retention for glycerol cryoprotected-dried embryos was significantly higher than for non-cryoprotected-dried embryos, possibly facilitated by relatively low post-drying TBARS levels and high post-drying and post-rewarming activities of some antioxidant enzymes in the former. Pre-conditioning treatments such as glycerol cryoprotection, when used in combination with partial drying, may enhance post-cryo viability retention in recalcitrant zygotic embryos by protecting the activities of certain antioxidant enzymes during pre-conditioning for, and after retrieval from, cryostorage.  相似文献   

2.
Agrobacterium tumefaciens -mediated transformation of soybean [Glycine max (L.) Merrill. cv. Jack] using immature zygotic cotyledons was investigated to identify important factors that affected transformation efficiency and resulted in the production of transgenic soybean somatic embryos. The factors evaluated were initial immature zygotic cotyledon size, Agrobacterium concentration during inoculation and co-culture and the selection regime. Our results showed that 8- to 10-mm zygotic cotyledons exhibited a higher transformation rate, as indicated by transient GUS gene expression, whereas the smaller zygotic cotyledons, at less than 5 mm, died shortly after co-cultivation. However, the smaller zygotic cotyledon explants were found to have a higher embryogenic potential. Analysis of Agrobacterium and immature cotyledon explant interactions involved two Agrobacterium concentrations for the inoculation phase and three co-culture regimes. No differences in explant survival or somatic embyogenic potential were observed between the two Agrobacterium concentrations tested. Analysis of co-culture regimes revealed that the shorter co-culture times resulted in higher explant survival and higher somatic embryo production on the explants, whereas the co-culture time of 4 days severely reduced survival of the cotyledon explants and lowered their embryogenic potential. Analysis of selection regimes revealed that direct placement of cotyledon explants on hygromycin 25 mg/l was detrimental to explant survival, whereas 10 mg/l gave continued growth and subsequent somatic embryo development and plant regeneration. The overall transformation frequency in these experiments, from initial explant to whole plant, was 0.03 %. Three fertile soybean plants were obtained during the course of these experiments. Enzymatic GUS assays and Southern blot hybridizations confirmed the integration of T-DNA and expression of the GUS-intron gene in the three primary transformants. Analysis of 48 progeny revealed that three copies of the transgene were inherited as a single Mendelian locus. Received: 6 December 1999 / Revised: 11 February 2000 / Accepted: 14 March 2000  相似文献   

3.
Hardwood species are valuable biological resources that have an important role in the economy and ecology of ecosystems worldwide. Non-zygotic or somatic embryogenesis (SE) is a powerful tool in plant biotechnology as it is a form of clonal propagation, amenable to cryopreservation of valuable germplasm and genetic transformation including gene editing. The SE process involves five steps and includes somatic embryo induction, proliferation, maturation, plantlet conversion, and subsequent plant acclimatization. This review aims to provide a general overview of these steps in different SE systems developed for hardwood species. Factors that influence the induction stage such as the age of the donor plant, genotype and culture media are discussed. The role of different explant types, i.e. zygotic embryos and non-zygotic tissues, such as roots, flower tissues, nodes, internodes, leaves or shoot apices, in SE induction are especially emphasized. Histological studies of the origin of somatic embryos and the sequence of events leading to their development from initial explants are assessed. Maintenance of embryogenic capacity carried out by subculture of embryogenic inocula on semisolid or liquid media through cell suspension cultures or by temporary immersion systems is described. At present, the main concerns associated with the application of SE for large-scale propagation of elite hardwoods are related to the embryo maturation, germination, and plantlet conversion steps, and these are highlighted in this review. Finally, molecular aspects associated with somatic embryo induction and development are also described. Attempts to overcome the hurdles identified in the embryogenic process, and future lines of research are proposed.  相似文献   

4.
Immature zygotic embryos from spring barley cv. Dissa were used to induce somatic embryogenenesis. Up to 158 germinated somatic embryos could be recovered per plated zygotic embryo. Critical factors for obtaining a high yield of regenerants were the size of the explant, the level of 2,4-D used for callus induction and the careful division of callus at each subculture. Use of microsections of immature embryos as explants revealed a pronounced gradient of callus formation and embryogenic response across the scutellum. Sections from the scutellar tissue at the coleoptilar end of the embryo gave the most callus and were highly embryogenic. The regeneration response of sectioned explants was comparable to that recovered from intact embryos of similar size.  相似文献   

5.
Somatic embryogenesis in soybean via somatic embryo cycling   总被引:4,自引:0,他引:4  
Summary The objectives of the present research were: a) to develop an efficient soybean embryogenic regeneration system characterized by a high frequency of explant response and a large number of somatic embryos per explant; b) to evaluate the factors affecting somatic embryogenesis via somatic embryo cycling; and c) to identify the origin of somatic embryos in the system. A highly improved and efficient system for soybean somatic embryogenesis was established using somatic embryo cotyledons and somatic embryo hypocotyl/radicle explants plated on α-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) supplemented MS basal media. The system included somatic embryo cycling between liquid and solid medium and it consistently gave rise to a much higher frequency of explant response and a larger number of embryos per responding explant than those obtained from zygotic cotyledon explant tissues. Genotype, differences were observed for response in some of the treatments with cv “Fayette” being more responsive than “J103”. Histological studies revealed that somatic embryos induced in the somatic embryo cycling system originated almost exclusively from epidermal cells on both 2,4-D and NAA inductive media. The cells of the epidermis proliferated to produce somatic embryos directly without an intervening callus phase. A single-cell origin of somatic embryos was observed in cultures on a 40 mg/liter 2,4-D treatment. A large number of responding cells in the epidermis was also observed in the 10 mg/liter NAA treatment. The single-cell origin of somatic embryos from epidermal layers of the explant tissues should facilitate development of an efficient transformation system for soybean.  相似文献   

6.
花楸合子胚诱导体细胞胚胎发生研究   总被引:2,自引:0,他引:2  
分别以完整成熟胚、切去一个子叶的成熟胚和切下的子叶为外植体,以MS为基本诱导培养基、1/2MS为基本分化培养基,进行了花楸体细胞胚胎发生研究。结果表明:以完整合子胚作为外植体的体胚诱导率最高,为100%,最佳植物生长调节剂组合为5 mg.L-1NAA+2 mg.L-16-BA;NAA和6-BA浓度及二者的交互作用对愈伤组织和体胚诱导率的影响极显著;光照配合延长继代间隔时间有利于体胚发生。实体观察结果表明,花楸体胚发生方式有直接发生和间接发生两种;体胚发育经历了球形期、心形期、鱼雷形期和子叶期。组织学观察结果表明,体胚具有两极性,子叶期体胚结构完整。  相似文献   

7.
Biodiversity conservation programmes are underpinned by seed banking following drying to low water contents (WC), and supported by both the assessment and prediction of seed viability over time. The means of judging viability is thus crucial to the comprehension of seed vigour. We selected seeds of three species and one hybrid in the Salicaceae likely to have variation in tolerance to drying, processing and storage, including in relation to cryobanking, and compared survival growth as radicle emergence (germination) and normal seedling production. With three seed lots of Salix gracilistyla, air-drying to 8–10 % WC enhanced seed survival after 40 days’ storage at 5 °C as compared with non-treated seeds at 14–20 % WC. Four seed lots of Populus alba × P. glandulosa showed equally high germination (88–100 %) and proportions of normal seedlings (81–99 %) when stored at 5 °C for 7–10 weeks. Among seven seed lots of S. gracilistyla, two groups with different storage behaviour could be statistically distinguished with normal seedling production ranging from 0 to 45 % after storage at 5 °C for 13 weeks. Seed tolerance to WC manipulation and cryopreservation was very variable among species and seed lots. Seed lots of S. hallaisanensis and S. gracilistyla with ~80 % germination survived cryopreservation at 10 % WC, but were sensitive to lower WCs. In contrast, Populus seeds had greater desiccation tolerance combined with cryopreservation capability. With seed lots of all species and hybrids, cryopreservation had little effect on viability unless the high moisture freezing limit had been exceeded (~10–20 % WC, depending on seed lot). However, under all conditions of handling (drying, rehydration, storage at 5 °C or cryopreservation) using germination as the only indicator of viability over-estimated survival compared with normal seedling production.  相似文献   

8.
以成熟和未成熟合子胚为外植体,研究影响兴安落叶松(Larix gmelinii)胚性愈伤组织诱导的几种主要因子。结果表明兴安落叶松合子胚带胚乳培养有利于胚性愈伤组织的诱导;内蒙沙地种源成熟合子胚的诱导率显著(p<0.05)高于加格达奇山地种源;冷藏处理可以提高成熟合子胚胚性愈伤组织的诱导率;不同发育时期的未成熟合子胚的诱导率存在显著差别(p<0.05),其中以子叶初期合子胚(7月5日)诱导率最高;2,4-D对胚性愈伤组织诱导的影响较大,且与BA、KT存在一定的协同作用;S培养基比DCR和MS培养基更有利于胚性愈伤组织的诱导;培养基中琼脂含量为4 g·L-1时,诱导率较高。  相似文献   

9.
Cotyledon explants of Panax ginseng zygotic embryos directly produced somatic embryos on Murashige and Skoog medium without growth regulators. Somatic embryos were formed only near the proximal excised region of cotyledons. Multiple and/or single embryos were formed and the frequency of these formations differed according to the degree of maturity of the zygotic embryos used as the explant source. When cotyledon explants pre-plasmolysed (1.0 M sucrose for 24 h), the frequency of single embryo formation was enhanced regardless of cotyledon maturity. In addition, the distribution pattern of somatic embryos changed markedly because the embryos were formed over the whole surface of the cotyledons. Histological observation revealed that plasmolyzing pretreatment broke the plasmodesmatal connection between cells and when the embryogenic cell divisions commenced, plasmodesmatal strands were hardly observed except for newly formed cell walls. This indicates that the enhanced single embryo formation over the entire surfaces of cotyledon explants might be the result of an interruption of cell–cell interaction by plasmolyzing pretreatment.  相似文献   

10.
Red oaks (Quercus rubra L.) were regenerated via direct and indirect asexual embryogenesis from immature zygotic embryo tissues. Late heart and early cotyledonary explants cultured in light on modified MS medium proved to be most embryogenic. Embryoids arose from explants cultured on various combinations of 2,4-D and BA. However, the highest percentages of normal polar embryoids were produced by explants cultured on growth-regulator-free media. Epicotyl dormancy of embryoids was overcome by desiccation (air drying and use of an osmoticum) and rehydration treatments. Asexual plantlet development paralleled developmental changes associated with seed germination. White oak (Quercus alba L.) embryoids were also regenerated, but failed to germinate.  相似文献   

11.
Changes in protein profiles associated with somatic embryogenesis in peanut   总被引:6,自引:0,他引:6  
The somatic embryogenesis potential of zygotic embryo axes of peanut (Arachis hypogaea L. cv. DRG-12) at different stages of development was evaluated by culturing on MS medium with 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D). A 100 % frequency with 18.3 somatic embryos per explant was observed from 4 mm long immature zygotic embryo axes collected 31 – 40 d after pollination. Medium supplemented with 16.6 μM picloram resulted in slow development of somatic embryos whereas in the presence of 21.5 μM α-naphthaleneacetic acid (NAA), the explants underwent maturation with induction of roots after 30 d. The changes in protein profiles in zygotic embryo axes at different stages of development correlated with their potential to form somatic embryos. Immature zygotic embryo axes exhibited high frequency somatic embryogenesis in the stage preceding abundant accumulation of 22 and 65 kDa proteins. The content of 22 and 65 kDa proteins decreased immediately after culture on medium fortified with 18.1 μM 2,4-D and increased again after 12 d of culture coinciding with the development of somatic embryos on the explants. The content of 22 and 65 kDa proteins was low at 15 d of culture on medium supplemented with 16.6 μM picloram possibly due to slow development of the somatic embryos on the explant. On maturation medium containing 21.5 μM NAA, a marked increase in the content of 22 and 65 kDa proteins in 15 d-old cultures was observed.  相似文献   

12.
The influence of light regime, explant position and orientation on direct embryo formation from leaf explants of two Phalaenopsis, P. amabilis and P. Nebula, were investigated to optimize the protocol for regenerating of this orchid. When explants were cultured in light, direct embryogenesis was retarded in both species. Embryos showed whitish to pale green in color and larger size than those cultured in darkness. Furthermore, light regime induced explant browning, embryo necrosis and eventually low plantlet conversion rate. Sixty days of culture in darkness is the most suitable duration for direct embryo induction. Explant orientation also significantly affected direct embryo formation, and explants placed adaxial-side-up on culture medium had higher embryogenic response than abaxial-side-up orientation. In both species, the cut end had highest embryogenic competence than other parts of the explant. Moreover, when the leaf explant was cut transversely into two segments, the leaf basal segment had higher embryogenic competence than the leaf tip segment.  相似文献   

13.
Somatic embryogenesis, the in vitro developmental program by which somatic cells are reprogrammed to undergo cellular and molecular changes that make them competent to produce somatic embryos, has been achieved with many woody plants. The program involves the stages of competence acquisition, induction and expression of the morphogenic pathway by the cultured cells and tissues. The ability to express the program in cultured cells/tissues is regulated by many factors, including genotype, explant type and age and culture conditions. In many woody plants, somatic embryogenesis was achieved with mature, immature explants or both. Juvenile tissues as immature and mature zygotic embryos are regarded best explants to establish embryogenic cultures in woody plants and potential to obtain the cultures decline with increasing maturity of the explant.  相似文献   

14.
Micropropagated plants of two annual haloxerophytic Asiatic Salsola species (S. pestifer and S. lanata) were obtained from zygotic embryos cultured on Murashige and Skoog (MS) agar medium supplemented with 0.5 μM benzylamino-purine (BAP) and 0.3 μM indole-3-acetic acid (IAA) or with 0.5 μM 6 γ, γ-dimethylallylaminopurine and 0.3 μM IAA. The callus induction from shoot and leaf explants derived from plants propagated in vitro were obtained on MS agar medium with various concentration of auxins and cytokinins. The best medium for growth and proliferation of calluses of both studied species was MS medium containing 9.0 μM 2,4-dichlorophenoxyacetic acid. It was also determined that beginning of plant regeneration from callus of S. lanata was induced by 8.8 μM BAP. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Immature zygotic embryos of ginseng produced somatic embryos on MS medium without growth regulators. However, in the culture of mature zygotic embryos, excision of the embryo was required for somatic embryo induction. Somatic embryos formed only on excised cotyledons without an embryo axis or on excised embryos without the plumule and radicle of the axis. This observation suggests that the axis tip of the embryo might suppress somatic embryo production although the cotyledon tissues have predetermined embryogenic competency. To clarify the role of the embryo axis on somatic embryo formation, excised plumules or radicles were placed in direct contact with the basal cut-ends of cotyledons. The adhesion of plumules or radicles highly suppressed somatic embryo formation from cotyledon explants. When an agar block containing exudate from excised plumules or radicles was placed in contact with the cut end of the cotyledon, a similar inhibition was observed. These results suggest that embryogenic competence is suppressed by endogenous inhibitors present in the axis tip of the zygotic embryo.  相似文献   

16.
Summary We describe a protocol, and several experiments that helped lead to its development, for sunflower regeneration. Important factors for sunflower regeneration were explant age, cytokinin type and concentration, basal medium, and explant source. We could not induce shoot regeneration from the explants derived from mature tissues including leaf, petiole, and stem. However, use of juvenile explants such as embryo meristem and primordial leaf tissues allowed routine regeneration of 17 different sunflower genotypes. High frequency of shoot regeneration was achieved with these explants taken from seedlings up to 5 d after germination. Explant age was less critical for embryo meristem explants than for primordial leaf tissues. Of the four basal media tested, MS and B5 media produced higher shoot-regeneration frequencies than did Anderson and woody plant media. The highest shoot-regeneration frequency was obtained with MS medium supplemented with 2 μM BA and without auxin. Addition of 1 μM naphthalene-acetic acid to the medium significantly reduced both the percentage of explants producing shoots and average number of shoots per explant. Regenerated shoots were grown to maturity in a greenhouse.  相似文献   

17.
以暴马丁香成熟胚为外植体进行愈伤组织和体胚发生诱导,通过调节诱导培养基中植物生长调节剂的种类和浓度,分析其对愈伤组织诱导和体胚诱导的影响,同时对培养过程中的外植体进行形态发生观察和生理状态分析。结果表明:①暴马丁香成熟胚外植体培养30 d可见直接体胚发生、60 d可见子叶型体胚;②BA在愈伤组织诱导过程中起到了主导作用,在0.5 mg·mL-1BA和5~6 mg·mL-1NAA组合下,愈伤组织诱导率可达100%;在0.5 mg·mL-1BA和5 mg·mL-1NAA组合体胚诱导率可达8%;③多酚含量在愈伤组织形成初期急剧上升且在培养过程中保持较高水平,子叶型胚期PAL和POD活性升高、MDA和SOD活性略下降。  相似文献   

18.
Efficient micropropagation and cryopreservation of Hypericum richeri ssp. transsilvanicum, an endemic species in Romania, and Hypericum umbellatum, a rare and endangered Daco-Balkan species, was achieved. The effects of type of explant and cytokinin on in vitro plant regeneration were investigated. Shoot organogenesis was achieved in all explants, but stem nodes regenerated best. Organogenesis from nodal segments was promoted by incubating these explants on Murashige and Skoog (MS) medium in the presence of cytokinins (6-benzyladenine, thidiazuron, kinetin or 6-??,??-dimethylallylaminopurine), each tested at four concentrations. The best morphogenic response for both Hypericum species (number of shoots per explant, shoot length, axillary branching of shoot, and frequency of shoot organogenesis) was observed when explants were incubated on MS medium containing 0.44 or 1.11???M 6-benzyladenine. Root induction was achieved only when regenerated shoots were transferred to fresh medium with or without auxin. Maximum rooting was recorded on MS medium supplemented with 2.45???M indole-3-butyric acid. Plantlets grown in vitro were successfully acclimatized in the greenhouse and showed normal development. Shoot tips and axillary buds excised from the in vitro regenerated plants were successfully cryopreserved in liquid nitrogen by the droplet-vitrification method. Following preculture in 0.25?M sucrose, dehydration and cryopreservation, the highest regeneration rates were obtained in both species by using axillary buds (68?% for H. richeri ssp. transsilvanicum and 71?% for H. umbellatum).  相似文献   

19.
To elucidate the mechanism of determination and regulation of hemopoiesis in the early Xenopus embryo, explants of dorsal and ventral mesoderm from various stage embryos were cultured alone or combined with various tissues derived from the same stage embryo. Western blot analysis of larvae-specific globin expression using monoclonal antibody L5.41 revealed that extensive erythropoiesis occurred in the explants of ventral mesoderm from st. 22 tailbud embryo, but not in those of dorsal mesoderm. Experiments using combined explants at this stage demonstrated that the in vitro differentiation of erythrocytes in the ventral mesoderm could be completely inhibited by the dorsal tissue, including neural tube, notochord, and somite mesoderm, but not by other mesoderms, gut endoderm, or forebrain. Subsequent explant studies showed that the notochord alone is sufficient for this inhibition. Furthermore, the ventral mesoderm explant from the st. 10+ early gastrula embryo was not able to differentiate into erythroid cells. However, small amounts of globin were expressed if ventral mesoderm of this stage was combined with animal pole cells which were mainly differentiated to epidermis. This stimulation was enhanced when both tissues were excised together without separation, while none of the other parts of st. 10+ embryo had this stimulatory effect. These observations found in the combined explants suggest that in vivo interactions between the ventral mesoderm and adjacent tissues are important for normal development of erythroid precursor cells.  相似文献   

20.
The influence of sucrose or mannitol on in vitro zygotic embryo germination, seedling development and explant propagation of olive tree (Olea europaea L.) was compared. Embryos germinated without sucrose in the medium but for adequate development of the seedlings to yield viable plants, a carbohydrate supply was necessary; both sucrose and mannitol were equally suitable for this purpose. However, when explants obtained from in vitro germinated embryos were cultured with mannitol or sucrose, then the polyalcohol promoted significantly more growth than sucrose by increasing shoot length, pairs of leaves formed, and breaking apical dominance. This improved the in vitro culture of olive plant material, thus allowing new olive clonal lines to be obtained in shorter times. This will assist in future breeding experiments with the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号