首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campylobacter jejuni is one of the major causes of human diarrhea throughout the world. Attachment to host cells and extracellular matrix proteins is considered to be an essential primary event in the pathogenesis of enteritis. Outer membrane proteins of three C. jejuni strains, one of which was aflagellate, were investigated for their contribution to the process of adhesion to INT 407 cell membranes and the extracellular matrix protein fibronectin. Using a ligand-binding immunoblotting assay the flagellin, the major outer membrane protein and a 59-kDa protein were detected to be involved in adhesion to both substrates. The MOMP was able to inhibit the attachment of the bacteria to INT 407 cell membranes partly, when the protein was isolated under native conditions. However, it was totally lost when the protein was isolated in the presence of SDS. The 59-kDa protein of one strain was identified by N-terminal sequencing, and regarding the first 14 amino acids it was found to be identical to the 37-kDa CadF protein just recently described as fibronectin-binding protein of C. jejuni. Especially for the aflagellate strain this protein may be of special importance for adhesion of the bacteria to different substrates.  相似文献   

2.
Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein   总被引:11,自引:0,他引:11  
Elastin binding proteins from plasma membranes of elastin-producing cells were isolated by affinity chromatography on immobilized elastin peptides. Three proteins of 67, 61, and 55 kDa were released from the elastin resin by guanidine/detergent, soluble elastin peptides, synthetic peptide VGVAPG, or galactoside sugars, but not by synthetic RGD-containing peptide or sugars not related to galactose. All three proteins incorporated radiolabel upon extracellular iodination and contained [3H]leucine following metabolic labeling, confirming that each is a synthetic product of the cell. The 67-kDa protein could be released from the cell surface with lactose-containing buffers, whereas solubilization of the 61- and 55-kDa components required the presence of detergent. Although all three proteins were retained on elastin affinity columns, the 61- and 55-kDa components were retained only in the presence of 67-kDa protein, suggesting that the 67-kDa protein binds elastin and the 61- and 55-kDa proteins bind to the 67-kDa protein. We propose that the 67-, 61-, and 55-kDa proteins constitute an elastin-receptor complex that forms a transmembrane link between the extracellular matrix and the intracellular compartment.  相似文献   

3.
4.
Four proteins of molecular mass 102, 87, 45, and 38 kDa were isolated from plasma membrane preparations by affinity chromatography. The 102-, 87-, and 38-kDa proteins were shown to be collagen receptors involved in the adhesion of HeLa cells to a gelatin substratum. All four proteins were eluted by high salt from affinity columns made of either types I or IV collagen or type I gelatin. Generally, a total of six major proteins were found in the high salt eluates, although the relative amounts of each varied among experiments. Immunoprecipitation, immunoblotting, and limited peptide mapping indicated that the 102-kDa protein was most sensitive to proteolysis leading to the formation of proteins of molecular mass 58 and 54 kDa. Even in the presence of a mixture of protease inhibitors the 58-kDa fragment was usually the more abundant species. Lectin binding indicated that the 102-, 87-, and 38-kDa proteins contain carbohydrate. Phase-partitioning with Triton X-114 and the need to solubilize the proteins in Triton X-100 indicated that the 102-, 87-, 45-, and 38-kDa proteins have a hydrophobic domain. The 87-kDa protein partitioned exclusively with the detergent-rich phase, suggesting that it is the most hydrophobic. Cell surface labeling with 125I indicated that the four proteins have an extracellular domain. Four criteria were used to determine which of the four proteins are collagen receptors mediating cell-substrate adhesion: 1) during HeLa cell adhesion, proteins with Mr values similar to all four proteins or their peptide fragments were cross-linked to a gelatin substratum derivatized with a photoactivatable probe; 2) a pentapeptide containing the Arg-Gly-Asp cell recognition sequence eluted the same four proteins as those found by high salt elution of collagen affinity columns; 3) monospecific antibodies to the 102-, 87-, and 38-kDa proteins, but not the 45-kDa protein, inhibited the spreading of HeLa cells on a gelatin substratum; 4) monospecific antibodies to the 102-, 87-, and 38-kDa proteins, but not the 45-kDa protein, bound to culture dishes substituted for gelatin in mediating the spreading of HeLa cells. Taken together, the data suggest that the 102-, 87-, and 38-kDa proteins are collagen receptors involved in HeLa cell adhesion. Although the 45-kDa protein has two of the characteristics of a collagen receptor defined here, it does not fit the criteria for one involved in cell-substratum adhesion.  相似文献   

5.
Topography of human placental receptors for epidermal growth factor   总被引:1,自引:0,他引:1  
These studies were undertaken to determine whether term human placental microvillus plasma membranes, which are exposed to maternal blood, and basolateral plasma membranes, which are in close proximity to fetal blood capillaries, contain receptors for epidermal growth factor (EGF). These two highly purified membranes bound 125I-EGF with similar affinity (apparent dissociation constants, 0.07-0.12 nM, but the total number of available receptors was greater in microvillus (8.2 pmol/mg protein) compared to basolateral (4.9 pmol/mg protein) plasma membranes. Detailed characterization of 125I-EGF binding to these membranes revealed numerous similarities as well as differences. The two membranes contained two major (155 and 140 kDa) and at least three minor (115, 175, and 210 kDa) specific 125I-EGF binding proteins. The 115-kDa protein was only found in basolateral plasma membranes. The 155-kDa protein was predominantly labeled in microvillus, whereas the 140-kDa protein was labeled predominantly in basolateral plasma membranes. The addition of protease inhibitors did not alter the multiple 125I-EGF binding proteins pattern found in these membranes. EGF stimulated phosphorylation of 140- and 155-kDa proteins in both microvillus and basolateral plasma membranes. However, the 155-kDa protein was phosphorylated to a greater extent in microvillus, whereas both 140- and 155-kDa proteins were phosphorylated equally in basolateral plasma membranes. Light and electron microscope autoradiographic studies revealed that 125I-EGF preferentially associated with microvillus plasma membranes. The data demonstrates the presence of EGF receptors in outer cell membranes of syncytiotrophoblasts and suggests that maternal EGF may influence syncytiotrophoblast function by binding to receptors in microvillus plasma membranes, while fetal EGF may also influence syncytiotrophoblast function but via receptors in basolateral plasma membranes.  相似文献   

6.
Neural cells in culture (NG-108, PC12, chick dorsal root ganglion, chick spinal cord, and rat astrocytes) bind laminin with an apparent Kd of congruent to 10(-9) M. Laminin affinity chromatography of chick brain membranes washed with 150 mM NaCl and eluted with 0.2 M glycine buffer, pH 3.5, yields a single protein with an apparent molecular mass of 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Isoelectric focusing and peptide mapping indicate that the 67-kDa protein is distinct from bovine serum albumin (68 kDa) but indistinguishable from high affinity laminin receptors isolated from skeletal muscle. After electroblotting onto nitrocellulose paper and probing with 125I-laminin, this putative laminin receptor binds laminin specifically (100 ng/ml). A second protein (congruent to 120-140 kDa) is also detected with 125I-laminin (100 ng/ml) in the laminin affinity-purified membrane proteins. Both 67- and congruent to 120-140-kDa proteins can be laminin affinity-purified from cultures enriched for neurons (greater than 90%) following metabolic labeling with [35S]methionine. Our data suggest that neural cells (dorsal root ganglion, central nervous system neurons, astrocytes, and several neural cell lines) have high affinity binding sites for laminin and that two membrane proteins, 67- and congruent to 120-140-kDa, are responsible at least in part for this binding.  相似文献   

7.
Photoaffinity labeling of alpha 1-adrenergic receptors of rat heart   总被引:1,自引:0,他引:1  
The photoaffinity probe [125I]aryl azidoprazosin was used to examine structural aspects of rat left ventricular alpha 1-adrenergic receptor. Autoradiography of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins from photoaffinity-labeled membranes revealed a specifically labeled protein of mass 77 kDa. Adrenergic drugs competed with the photoaffinity probe for binding to the receptor in a manner expected of an alpha 1-adrenergic antagonist. Because the autoradiographic pattern was unaltered by incubating labeled membranes in gel sample buffer containing high concentrations of reducing agents, the binding component of the cardiac alpha 1-adrenergic receptor appears to be a single polypeptide chain. The photoaffinity probe specifically labeled a single protein of approximately 68 kDa in membranes of cardiac myocytes prepared from rat left ventricles. The role played by sulfhydryls in receptor structure and function was also studied. Dithiothreitol (DTT) inhibited [3H]prazosin binding to left ventricular membranes and altered both the equilibrium dissociation constant and maximal number of [3H]prazosin-binding sites but not the ability of the guanine nucleotide guanyl-5'-yl imidodiphosphate to decrease agonist affinity for the receptors. When photoaffinity-labeled membranes were incubated with 40 mM DTT for 30 min at room temperature, two specifically labeled proteins of 77 and 68 kDa were identified. The DTT-induced conversion of the 77-kDa protein to 68 kDa was irreversible with washing, but the effect of DTT on [3H]prazosin binding was reversible. Both 77- and 68-kDa proteins were observed with liver membranes even in the absence of reducing agent. We suggest that the DTT-induced conversion of the 77-kDa protein to 68 kDa is due to enhancement in protease activity by the reductant. These results document that the cardiac alpha 1-adrenergic receptor is a 77-kDa protein, similar in mass to the receptor in liver and other sites. Proteolysis likely accounts for lower Mr forms of this receptor found in cardiac myocytes and in previous publications on hepatic alpha 1-receptors.  相似文献   

8.
Retina cognin does not bind to itself during membrane interaction in vitro   总被引:1,自引:0,他引:1  
Retina cognin (R-cognin) is an intrinsic membrane protein of vertebrate retinal cells which supports tissue-specific cell adhesion and mediates cell type-specific associations during development. As a first step in understanding how R-cognin mediates specific adhesion of retinal cell membranes, we asked if cognin bound to another cognin molecule or to a different macromolecule, a possible cognin-binding protein. To do this, we constructed an affinity column with retinal cell membrane proteins (enriched for cognin) bound to the matrix. Proteins in a detergent extract of retinal cell membranes were exposed to this matrix and those which bound specifically eluted and identified by immunoelectrophoresis. Most prominent among these was a protein with an apparent mass of 64 kDa. The binding of this material to the column was blocked by cognin antibody. To eliminate possible artifacts of molecular interactions in vitro, we sought independent confirmation that 64 kDa protein actually bound R-cognin. Using a modified retina membrane vesicle system, we asked what proteins could be photoaffinity cross-linked to cognin during vesicle aggregation. Cross-linking produced a 114 kDa complex on gels which could be resolved into a 50 kDa (cognin) and a 64 kDa band under reducing conditions. Identification of a 64 kDa protein by independent techniques suggests that cognin promotes association of embryonic chick neural retina cells by binding to this macromolecule or these molecules. Identification of a second component in the mechanism should allow elucidation of cognin's role in mediating cell-cell interactions in developing neural retina.  相似文献   

9.
Extraordinarily high concentrations of Zn (300-500 microg/[g fresh tissue]) are often found in the digestive tract tissue of common carp Cyprinus carpio, and most of the Zn is bound to membrane protein located on plasma membranes that are attached to basal laminae. To isolate the Zn-binding protein, the basolateral plasma membranes were separated from the extracellular matrix by treating the nuclei/cell debris fraction of the tissue with collagenase type IV and Arg-Gly-Asp (RGD) peptide. The Zn-binding protein was isolated from the separated plasma membranes by immobilized metal affinity chromatography and affinity chromatography on laminin-Sepharose. A 43 kDa protein was bound by the laminin-Sepharose and specifically eluted with tirofiban (a mimic of RGD). Affinity chromatography on wheat germ agglutinin and concanavalin A-Sepharose showed that the 43 kDa protein is a glycoprotein. The 43 kDa protein was labelled with 65Zn and became incorporated into liposomes at a high efficiency. Liposomes containing this protein were bound to laminin-Sepharose or reconstituted basement membrane. We propose that the Zn-binding protein is a cell surface receptor involved in the adhesion of cells to laminin.  相似文献   

10.
Calvasculin, an EF-hand protein with a molecular mass of 11 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is present abundantly in bovine aorta (Watanabe, Y., Kobayashi, R., Ishikawa, T., and Hidaka, H. (1992) Arch. Biochem. Biophys. 292, 563-569). This protein is synthesized constitutively by bovine aortic smooth muscle (BASM) cells and rat embryo fibroblast 3Y1 cells in culture. We discovered that calvasculin was secreted by BASM cells and 3Y1 cells. Immunofluorescence staining of BASM cells showed a granular distribution for calvasculin that was typical of a secreted protein. This protein bound with an extracellular matrix protein, 36-kDa microfibril-associated glycoprotein (36-kDa MAP), in a Ca(2+)-dependent manner in vitro. A stoichiometry analysis showed that the 36-kDa MAP bound 2.2 calvasculin eq/mol of protein. Solid-phase binding assays indicated a preferential affinity of native calvasculin for 36-kDa MAP among the extracellular matrices in a Ca(2+)-dependent manner. These results suggest that calvasculin, intracellular Ca(2+)-binding protein, is released to the extracellular space and binds with 36-kDa MAP.  相似文献   

11.
Leishmania donovani, the causative organism of human visceral leishmaniasis, invades host macrophages through its interaction with the cell surface molecules of target cells. The presence of a cell surface protein (Mr 34 kDa) having specific affinity toward hyaluronan (HA), a major extracellular matrix component, has been previously reported in macrophage cell lines. In order to identify the possible role of this HA-binding protein (HABP) in leishmaniasis, initially we demonstrated its overexpression in spleen, liver, macrophages, and serum of hamsters infected with L. donovani. We further observed higher levels of HABP in the macrophage cell line J774.G8 upon infection with L. donovani. Finally, we observed a significant increase in the level of HABP in the serum of patients with kala-azar. In order to understand its functional role in leishmaniasis, we report here a significant inhibition of cellular phosphorylation of HABP in hamster macrophages infected with L. donovani. Interestingly, the 34-kDa HABP was shown to bind with 2 proteins of promastigotes as well as amastigotes of L. donovani (with molecular masses of 55 kDa and 30 kDa respectively), suggesting a possible role for HABP in adhesion during the interaction of promastigotes and macrophages.  相似文献   

12.
Two glutamate-binding proteins (71 and 63 kDa) were previously purified from synaptic plasma membranes (Chen, J.-W., Cunningham, M.D., Galton, V., and Michaelis, E. K. (1988) J. Biol. Chem. 263, 417-426). These proteins may play a role in glutamate neurotransmission in brain. Polyclonal antibodies were raised against the denatured glutamate-binding proteins in rabbits, including sets of antibodies against each of the binding proteins. The antibodies reacted specifically against both 71- and 63-kDa proteins. The antibodies recognized the denatured form of the proteins in Western blots and the native state of the proteins in enzyme-linked immunosorbent assays and in immunoaffinity chromatography and extraction procedures. All antibodies labeled most strongly the 71-kDa protein in Western blots, but extracted both proteins from solubilized synaptic membrane preparations. These findings indicate that the two proteins are closely related immunologically but the reactivity on Western blots differs between these two proteins. Immunoextraction of the 71- and 63-kDa proteins led to a approximately 60% decrease in L-[3H]glutamate-binding activity associated with synaptic membrane proteins. Of the brain subcellular fractions examined, the isolated synaptic plasma membranes had the strongest reaction in enzyme-linked immunosorbent assays toward the antiglutamate-binding protein antisera. Electron microscopy combined with gold particle immunohistochemistry revealed the sites labeled by the antibodies as entities present either on the surface or within the postsynaptic membranes and the associated densities of brain nerve ending particles (synaptosomes). Immunohistochemical procedures of gold labeling with silver enhancement of labeled sites revealed selective neuronal labeling in brain regions enriched in glutamate neurotransmitter pathways such as the hippocampus. Labeling was along dendrites and around cell bodies of pyramidal neurons. Based on the pattern of histochemical labeling, the distribution of immune reactivity in synaptic membranes, and the extractions of a major component of membrane glutamate-recognizing proteins by the antibodies, the glutamate-binding proteins must play a role in glutamate neurotransmission.  相似文献   

13.
Differentiated clonal cell lines were isolated from pluripotent P19 embryonal carcinoma (EC) cells treated as aggregates with retinoic acid. Two were characterized in detail. The lines differ in morphology, proliferation rate, the production of plasminogen activator, and in their mitogenic response to insulin but both produce extracellular matrix proteins and can be serially passaged over extended periods, in contrast to differentiated derivatives of many other EC lines. Further, both lines have receptors for and respond mitogenically to epidermal growth factor (EGF). Endogenous phosphorylation of several proteins, including the EGF receptor (150 kDa) and a 38-kDa protein, is induced by EGF in membranes isolated from these cells. Preincubation of membranes with EGF renders them able to catalyze phosphorylation of tyrosine residues in exogenously added peptide substrates. High voltage electrophoresis confirmed the tyrosine specificity of the phosphorylation on the 150- and 38-kDa bands. By contrast, similar experiments in undifferentiated cells showed that intact P19 EC neither bind nor respond to EGF mitogenically and EGF induces no changes in phosphorylation in isolated membranes.  相似文献   

14.
Fibronectin receptors on mononuclear phagocytes are involved in the localization of monocytes at inflammatory sites and in the subsequent expression of macrophage-like phenotypes. In this study, we have investigated the hypothesis that proteolytically derived fragments of fibronectin may interfere with binding of fibronectin to monocytes in the extracellular matrix. We report on the reactivity of U937 cells with an 80-kDa tryptic fragment of fibronectin which contains the cell-binding domain but lacks the gelatin/collagen-binding domain. U937 cells attached to surfaces coated with the 80-kDa fragment as well as with intact fibronectin. Preincubation of the cells with the 80-kDa fragment inhibited attachment to both surfaces while intact fibronectin had little or no inhibitory effect. The Ki for inhibition of attachment (0.5 microM) was consistent with the Kd for binding of the 3H-labeled 80-kDa fragment (0.34 microM) to U937 cells in suspension. There were 4-5 x 10(5) 80-kDa binding sites per cell. The relatively high affinity of the 80-kDa fragment for the monocyte surface permitted the isolation and characterization of fibronectin-binding proteins from U937 cells and peripheral blood monocytes by affinity chromatography. When octylglucoside lysates of lactoperoxidase iodinated cells were applied to 80-kDa-Sepharose columns, a polypeptide complex of 152/125 kDa was eluted with the synthetic peptide GRGDSPC, but not with GRGESP. This complex resolved into a single diffuse band of 144 kDa upon reduction. Binding of the protein complex to the affinity column required divalent cations. The complex bound to wheat germ agglutinin and could be specifically eluted by N-acetylglucosamine. Similar cell-surface proteins were isolated from peripheral blood monocytes.  相似文献   

15.
Species-specific adhesion of dissociated cells from the marine sponge Microciona prolifera is mediated by a Mr = 2 x 10(7) proteoglycan-like aggregation factor (MAF) via two highly polyvalent functional domains, a cell-binding and a self-interaction domain. Glycopeptide N-glycosidase F release of a major glycan of Mr = 6.3 gamma 10(3) (G-6) from the MAF protein core resulted in the loss of cell binding activity, indicating a role of this polysaccharide molecule in MAF-cell association. The G-6 glycan was isolated and purified after complete Pronase digestion of MAF using gel electrophoresis, gel filtration, and ion exchange chromatography. Quantification of the amount of carbohydrate recovered in G-6 showed that one MAF molecule has about 950 repeats of this glycan. In its monomeric state G-6 did not display any measurable binding to cells (K alpha less than or equal to 10(3) M-1). Intermolecular cross-linking of the G-6 glycan with glutaraldehyde resulted, however, in the concomitant recovery of polyvalency (about 2200 repeats of G-6 per polymer of Mr greater than or equal to 1.5 x 10(7) and species-specific high cell binding affinity (K alpha = 1.6 x 10(9) M-1) but not of the MAF-MAF self-interaction activity. Thus, the G-6 glycan is the multiple low affinity cell-binding site involved in cell-cell recognition and adhesion of sponge cells. The G-6 glycan has 7 glucuronic acids, 3 fucoses, 2 mannoses, 5 galactoses, 14 N-acetylglucosamines, 2 sulfates, and 1 asparagine. Such a unique chemical composition indicates a new type of structure which includes features of glycosaminolycans and N-linked polysaccharides.  相似文献   

16.
Activated monocytic cells and neutrophils adhere to substrates coated with a wide variety of proteins including albumins, catalase, casein, and various extracellular matrix proteins. This adhesion can be specifically inhibited by antibodies directed to the beta 2 integrin subunit. This adhesion to protein substrates shares some similarities with two known protein-protein recognition systems with little apparent binding specificity, namely, the interactions of heat shock proteins and histocompatibility antigens with denatured proteins or peptides. Cell adhesion and affinity chromatography experiments were performed to test the hypothesis that monocytes and neutrophils adhere to and migrate on protein substrates due to the presence of cell surface receptors that recognize common protein structures such as denatured protein epitopes. Adhesion experiments revealed that activated monocytic cells adhere more rapidly and extensively on substrates coated with denatured protein versus native protein. Both adhesion and migration on such substrates in vitro was dependent on beta 2 integrins since blocking antibodies completely interfered with these cellular responses. Affinity chromatography experiments revealed that the Mac-1 and p150,95 integrins could be isolated from monocyte-differentiated HL-60 cells or neutrophils on a denatured protein-Sepharose column. Much greater yields of the receptors were obtained on a denatured versus native protein Sepharose column. The binding of these receptors was specific in that the LFA-1 beta 2 integrin did not bind to the denatured protein column. These data provide evidence that the adhesion of activated monocytes and neutrophils to many protein substrates in vitro is due to the ability of Mac-1 and p150,95 to directly bind to denatured proteins. A model of leukocyte adhesion and invasion whereby activated leukocytes denature extracellular proteins during diapedesis, making them suitable for recognition by beta 2 integrins, is proposed.  相似文献   

17.
Kalinin, a recently characterized novel protein component of anchoring filaments, has been shown to be involved in keratinocyte attachment to culture substrates and to dermis in vivo, and to exist in keratinocyte-conditioned culture medium in two heterotrimeric forms of 440 and 400 kDa (Rousselle, P., Lunstrum, G.P., Keene, D.R., and Burgeson, R.E. (1991) J. Cell Biol. 114, 567-576). This study demonstrates that kalinin is initially synthesized in a cell-associated form estimated to be 460 kDa. By second dimension reduced electrophoresis, V8 protease digestion, and immunoblot analysis, we demonstrate that the cell form contains nonidentical subunits of 200, 155, and 140 kDa. The 440-kDa medium form is derived from the cell form by extracellular processing of the 200-kDa subunit to 165 kDa, a step which also occurs in skin organ culture. The 400-kDa form is derived from the 440-kDa form by extracellular processing of the 155 kDa-subunit to 105 kDa. The cell form is secreted by keratinocytes, deposited onto culture substratum, and is the form which facilitates attachment and adhesion of growing and spreading keratinocytes. It is also the form initially synthesized in skin organ culture. Kalinin purified from tissue, which appears to facilitate epithelial-mesenchymal cohesion in vivo, is closely related to the 400-kDa medium form purified from culture.  相似文献   

18.
Members of the integrin family of adhesion receptors mediate interactions of cells with the extracellular matrix. Besides their role in tissue morphogenesis by anchorage of cells to basement membranes and migration along extracellular matrix proteins, integrins are thought to play a key role in mediating the control of gene expression by the extracellular matrix. Studies over the past 10 years have shown that integrin-mediated cell adhesion can trigger signal transduction cascades involving translocation of proteins and protein tyrosine phosphorylation events. In this review, we discuss approaches used in our lab to study early events in integrin signalling as well as further downstream changes.  相似文献   

19.
R Dardik  J Lahav 《Biochemistry》1991,30(38):9378-9386
Endothelial and other cell types synthesize thrombospondin (TSP), secrete it into their culture medium, and incorporate it into their extracellular matrix. TSP is a large multifunctional protein capable of specific interactions with other matrix components, as well as with cell surfaces, and can modulate cell adhesion to the extracellular matrix. With the aim of understanding the mechanism by which TSP exerts its effect on cell adhesion, we studied the interaction of endothelial cell TSP (EC-TSP) with three different cell types: endothelial cells, granulosa cells, and myoblasts. We find that endothelial cells specifically bind radiolabeled EC-TSP with a Kd of 25 nM, and the number of binding sites is 2.6 X 10(6)/cell. Binding is not inhibitable by the cell-adhesion peptide GRGDS, indicating that the cell-binding site of EC-TSP is not in the RGD-containing domain. Localization of the cell-binding site was achieved by testing two chymotryptic fragments representing different regions of the TSP molecule, the 70-kDa core fragment and the 27-kDa N-terminal fragment, for their ability to bind to the cells. Cell-binding capacity was demonstrated by the 70-kDa fragment but not by the 27-kDa fragment. Binding of both intact [125I]EC-TSP and of the 125I-labeled 70-kDa fragment was inhibited by unlabeled TSP, heparin, fibronectin (FN), monoclonal anti-TSP antibody directed against the 70-kDa fragment (B7-3), and by full serum, but not by heparin-absorbed serum or the cell-adhesion peptide GRGDS. The 70-kDa fragment binds to endothelial cells with a Kd of 47 nM, and the number of binding sites is 5.0 x 10(6)/cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have purified to homogeneity a 38-kDa protein (called p38) from bovine tracheal epithelium. This protein, when reconstituted into liposomes, mediates stilbene disulfonate-sensitive 125I- conductive uptake. On nonreduced or partially reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this protein associates into a doublet of 62-64 kDa. In some experiments a multimer of 141 kDa was also observed. Rabbit polyclonal anti-P38 antibodies have been produced and used to immunopurify the native transporter. Upon reconstitution of the immunoaffinity-purified protein into liposomes, a 260-fold enhancement of 4,4'-bis(isothiocyano)-2,2'-stilbenedisulfonate and valinomycin-sensitive 125I- uptake was observed as compared to proteoliposomes containing unseparated material. On Western blots of total solubilized tracheal membrane proteins or semipurified fractions, the antibody recognized the 62-64-kDa doublet much better than the original 38-kDa antigen. Similar protein bands were detected in T84 and CFPAC cells as well. However, if apical membrane proteins were first separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, the antibody recognized major bands at 140 and approximately 240 kDa. Upon partial reduction, immunolabeling of these proteins diminished with the concomitant appearance of the 62-64-kDa doublet. Upon complete reduction, the appearance of 32- and 38-kDa proteins was evident with the disappearance of the 62-64-kDa doublet. We hypothesize that the native Cl-channel is a heteromer containing at least four subunits connected by S-S bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号