首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bcl11b(-/-) mice show developmental arrest at the CD44(-)CD25(+) double-negative 3 (DN3) or immature CD8(+)single-positive stage of alphabeta T cell. We have performed detailed analysis of sorted subsets of Bcl11b(-/-) thymocytes, DN3 and CD44(-)CD25(-) double-negative 4 (DN4) cells. Surface expression of TCRbeta proteins was not detected in DN3 thymocytes and markedly reduced in DN4 thymocytes, whereas expression within the cell was detected in both, suggesting some impairment in processing of TCRbeta proteins from the cytoplasm to the cell surface. This lack of expression, resulting in the absence of pre-TCR signaling, could be responsible for the arrest, but the transgenic TCRbeta or TCRalphabeta expression on the cell surface failed to promote transition from the DN3 to CD4(+)CD8(+) double-positive stage of development. This suggests that the pre-TCR signal cannot compensate the deficiency of Bcl11b for development. Bcl11b(-/-) DN3 thymocytes showed normal DNA rearrangements between Dbeta and Jbeta segments but limited DNA rearrangements between Vbeta and DJbeta without effect of distal or proximal positions. Because this impairment may be due to chromatin accessibility, we have examined histone H3 acetylation in Bcl11b(-/-) DN3 cells using chromatin immunoprecipitation assay. No change was observed in acetylation at the Vbeta and Dbeta gene locus. Analysis of Bcl11b(-/-) DN4 thymocytes showed apoptosis, accompanied with lower expression of anti-apoptotic proteins, Bcl-x(L) and Bcl-2, than wild-type DN4 thymocytes. Interestingly, the transgenic TCRalphabeta in those cells reduced apoptosis and raised their protein expression without increased cellularity. These results suggest that Bcl11b deficiency affects many different signaling pathways leading to development arrests.  相似文献   

2.
3.
4.
Crosslinking CD81 results in activation of TCRgammadelta T cells   总被引:1,自引:0,他引:1  
CD81 is expressed on most cells and is associated with other glycoproteins, including CD4 and CD8, to form multimolecular membrane complexes. Crosslinking of CD81 on TCRalphabeta(+) T cells results in costimulatory signals that have been proposed to be mediated via CD4 or CD8. In this study, we show that CD81 is also expressed on TCRgammadelta(+)CD4(-)CD8(-) T cells. CD81 crosslinking greatly enhanced anti-CD3 activation of both TCRalphabeta(+) (CD4+ and CD8+) and TCRgammadelta(+) T cells with regard to IFN-gamma production. However, crosslinking of CD81 molecules on TCRgammadelta(+) T cells, in the absence of anti-CD3 stimulation, resulted in cytokine production and enhanced IL-2-induced proliferation, demonstrating that physical association with CD4 or CD8 is not necessary for CD81 signaling. In contrast, crosslinking of CD81 on TCRalphabeta(+) T cells, in the absence of anti-CD3 stimulation, failed to activate these T cells. These results suggest that CD81 signaling may be mediated via a different mechanism(s) in TCRgammadelta(+) versus TCRalphabeta(+) T cells.  相似文献   

5.
Editing autoreactive TCR enables efficient positive selection   总被引:2,自引:0,他引:2  
Allelic exclusion is inefficient at the TCRalpha locus, allowing a sizeable portion of T cells to carry two functional TCRs. The potential danger of dual TCR expression is a rescue of autoreactive TCRs during selection in the thymus and subsequent development of autoimmunity. In this study, we examine the reason(s) for replacing an autoreactive TCR and for allowing the survival of cells carrying two TCRs. We compared development of TCR transgenic CD4(+)CD8(-) thymocytes in the presence or absence of MHC class II autoantigen that does not induce deletion of thymocytes. Contrary to the expected negative effect of the presence of autoantigen, approximately 100% more CD4(+)CD8(-) thymocytes were found in the presence of MHC class II autoantigen than in the neutral background. A further increase in the strength of autoantigenic signal via expression of a human CD4 transgene led to an additional increase in the numbers of CD4(+)CD8(-) thymocytes. Thus, editing autoreactive TCR results in more efficient positive selection, and this may be both a reason and a reward for risking autoimmunity.  相似文献   

6.
Maturation to the CD4+8+ double-positive (DP) stage of thymocyte development is restricted to cells that have passed TCRbeta selection, an important checkpoint at which immature CD4-8- double-negative (DN) cells that express TCRbeta polypeptide chains are selected for further maturation. The generation of DP thymocytes following TCRbeta selection is dependent on cellular survival, differentiation, and proliferation, and the entire process appears to be mediated by the pre-TCR/CD3 complex. In this study, we investigate the signaling requirements for TCRbeta selection using mice single deficient and double deficient for CD3zeta/eta and/or p56lck. While the numbers of DP cells are strongly reduced in the single-deficient mice, a further drastic reduction in the generation of DP thymocytes is seen in the double-deficient mice. The poor generation of DP cells in the mutant mice is primarily due to an impaired ability of CD25+ DN thymocytes to proliferate following expression of a TCRbeta-chain. Nevertheless, the residual DP cells in all mutant mice are strictly selected for expression of TCRbeta polypeptide chains. DN thymocytes of mutant mice expressed TCRbeta and CD3epsilon at the cell surface and contained mRNA for pre-Talpha, but not for clonotypic TCRalpha-chains, together suggesting that TCRbeta selection is mediated by pre-TCR signaling in all cases. The data suggest differential requirements of pre-TCR signaling for cell survival on the one hand, and for the proliferative burst associated with TCRbeta selection on the other.  相似文献   

7.
During alphabeta T cell development, CD4(-)CD8(-) thymocytes first express pre-TCR (pTalpha/TCR-beta) before their differentiation to the CD4(+)CD8(+) stage. Positive selection of self-tolerant T cells is then determined by the alphabeta TCR expressed on CD4(+)CD8(+) thymocytes. Conceivably, an overlap in surface expression of these two receptors would interfere with the delicate balance of thymic selection. Therefore, a mechanism ensuring the sequential expression of pre-TCR and TCR must function during thymocyte development. In support of this notion, we demonstrate that expression of TCR-alpha by immature thymocytes terminates the surface expression of pre-TCR. Our results reveal that expression of TCR-alpha precludes the formation of pTalpha/TCR-beta dimers within the endoplasmic reticulum, leading to the displacement of pre-TCR from the cell surface. These findings illustrate a novel posttranslational mechanism for the regulation of pre-TCR expression, which may ensure that alphabeta TCR expression on thymocytes undergoing selection is not compromised by the expression of pre-TCR.  相似文献   

8.
Positive selection of developing thymocytes is initiated at the double-positive (DP) CD4(+)CD8(+) stage of their maturation. Accordingly, expression of a human CD4 (hCD4) transgene beginning at the DP stage has been shown to restore normal T cell development and function in CD4-deficient mice. However, it is unclear whether later onset CD4 expression would still allow such a restoration. To investigate this issue, we used transgenic mice in which a hCD4 transgene is not expressed on DP, but only on single-positive cells. By crossing these animals with CD4-deficient mice, we show that late hCD4 expression supports the maturation of T cell precursors and the peripheral export of mature TCRalphabeta(+) CD8(-) T cells. These results were confirmed in two different MHC class II-restricted TCR transgenic mice. T cells arising by this process were functional in the periphery because they responded to agonist peptide in vivo. Interestingly, thymocytes of these mice appeared refractory to peptide-induced negative selection. Together, these results indicate that the effect of CD4 on positive selection of class II-restricted T cells extends surprisingly late into the maturation process by a previously unrecognized pathway of differentiation, which might contribute to the generation of autoreactive T cells.  相似文献   

9.
The host-parasite interactions of Brugia malayi in mice are complex and multifactorial. In order to study the role of T cells in early B. malayi development, we infected TCRalpha(null) mice, which retain a population of CD4+ TCRbeta+ cells and TCRbeta(null) mice, which lack all TCRalphabeta(+) T cells. TCRalpha(null) mice were permissive to L4 larval and adult worm development but TCRbeta(null) mice were not. Depletion of the CD4(+) T cells in the former abrogated the permissive phenotype. It appears that the CD4(+) TCRbeta(+) T cells that have been described in TCRalpha(null) mice may facilitate early B. malayi development. These data are similar to our earlier demonstration of the role of NK cells in facilitating worm growth in SCID mice.  相似文献   

10.
T cell receptor signaling in the thymus can result in positive selection, and hence progressive maturation to the CD4(+)8(-) or CD4(-)8(+) stage, or induction of apoptosis by negative selection. Although it is poorly understood how TCR ligation at the CD4(+)8(+) stage can lead to such different cell fates, it is thought that the strength of signal may play a role in determining the outcome of TCR signaling. In this study, we have characterized the formation of an active signaling complex in thymocytes undergoing positive selection as a result of interaction with thymic epithelial cells. Although this signaling complex involves redistribution of cell surface and intracellular molecules, reminiscent of that observed in T cell activation, accumulation of GM1-containing lipid rafts was not observed. However, enforced expression of the costimulatory molecule CD80 on thymic epithelium induced GM1 polarization in thymocytes, and was accompanied by reduced positive selection and increased apoptosis. We suggest that the presence or absence of CD80 costimulation influences the outcome of TCR signaling in CD4(+)8(+) thymocytes through differential lipid raft recruitment, thus determining overall signal strength and influencing developmental cell fate.  相似文献   

11.
We examined the role of class IA PI3K in pre-TCR controlled beta-selection and TCR-controlled positive/negative selection in thymic development. Using mice deficient for p85alpha, a major regulatory subunit of the class IA PI3K family, the role of class IA PI3K in beta-selection was examined by injection of anti-CD3epsilon mAb into p85alpha(-/-)Rag-2(-/-) mice, which mimics pre-TCR signals. Transition of CD4(-)CD8(-) double-negative (DN) to CD4(+)CD8(+) double-positive (DP) thymocytes triggered by anti-CD3epsilon mAb was significantly impaired in p85alpha(-/-)Rag-2(-/-) compared with p85alpha(+/-)Rag-2(-/-) mice. Furthermore, DP cell numbers were lower in p85alpha(-/-)DO11.10/Rag-2(-/-) TCR-transgenic mice than in DO11.10/Rag-2(-/-) mice. In addition, inhibition by IC87114 of the major class IA PI3K catalytic subunit expressed in lymphocytes, p110delta, blocked transition of DN to DP cells in embryonic day 14.5 fetal thymic organ culture without affecting cell viability. In the absence of phosphatase and tensin homolog deleted on chromosome 10, where class IA PI3K signals would be amplified, the DN to DP transition was accelerated. In contrast, neither positive nor negative selection in Rag-2(-/-)TCR-transgenic mice was perturbed by the lack of p85alpha. These findings establish an important function of class IA PI3K in the pre-TCR-controlled developmental transition of DN to DP thymocytes.  相似文献   

12.
13.
14.
Generation of CD3+CD8low thymocytes in the HIV type 1-infected thymus   总被引:3,自引:0,他引:3  
Infection with the HIV type 1 (HIV-1) can result both in depletion of CD4(+) T cells and in the generation of dysfunctional CD8(+) T cells. In HIV-1-infected children, repopulation of the peripheral T cell pool is mediated by the thymus, which is itself susceptible to HIV-1 infection. Previous work has shown that MHC class I (MHC I) molecules are strongly up-regulated as result of IFN-alpha secretion in the HIV-1-infected thymus. We demonstrate in this study that increased MHC I up-regulation on thymic epithelial cells and double-positive CD3(-/int)CD4(+)CD8(+) thymocytes correlates with the generation of mature single-positive CD4(-)CD8(+) thymocytes that have low expression of CD8. Treatment of HIV-1-infected thymus with highly active antiretroviral therapy normalizes MHC I expression and surface CD8 expression on such CD4(-)CD8(+) thymocytes. In pediatric patients with possible HIV-1 infection of the thymus, a low CD3 percentage in the peripheral circulation is also associated with a CD8(low) phenotype on circulating CD3(+)CD8(+) T cells. Furthermore, CD8(low) peripheral T cells from these HIV-1(+) pediatric patients are less responsive to stimulation by Ags from CMV. These data indicate that IFN-alpha-mediated MHC I up-regulation on thymic epithelial cells may lead to high avidity interactions with developing double-positive thymocytes and drive the selection of dysfunctional CD3(+)CD8(low) T cells. We suggest that this HIV-1-initiated selection process may contribute to the generation of dysfunctional CD8(+) T cells in HIV-1-infected patients.  相似文献   

15.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

16.
We have reported the existence of biochemical and conformational differences in the alphabeta T cell receptor (TCR) complex between CD4(+) and CD8(+) CD3gamma-deficient (gamma(-)) mature T cells. In the present study, we have furthered our understanding and extended the observations to primary T lymphocytes from normal (gamma(+)) individuals. Surface TCR.CD3 components from CD4(+) gamma(-) T cells, other than CD3gamma, were detectable and similar in size to CD4(+) gamma(+) controls. Their native TCR.CD3 complex was also similar to CD4(+) gamma(+) controls, except for an alphabeta(deltaepsilon)(2)zeta(2) instead of an alphabetagammaepsilondeltaepsilonzeta(2) stoichiometry. In contrast, the surface TCRalpha, TCRbeta, and CD3delta chains of CD8(+) gamma(-) T cells did not possess their usual sizes. Using confocal immunofluorescence, TCRalpha was hardly detectable in CD8(+) gamma(-) T cells. Blue native gels (BN-PAGE) demonstrated the existence of a heterogeneous population of TCR.CD3 in these cells. Using primary peripheral blood T lymphocytes from normal (gamma(+)) donors, we performed a broad epitopic scan. In contrast to all other TCR.CD3-specific monoclonal antibodies, RW2-8C8 stained CD8(+) better than it did CD4(+) T cells, and the difference was dependent on glycosylation of the TCR.CD3 complex but independent of T cell activation or differentiation. RW2-8C8 staining of CD8(+) T cells was shown to be more dependent on lipid raft integrity than that of CD4(+) T cells. Finally, immunoprecipitation studies on purified primary CD4(+) and CD8(+) T cells revealed the existence of TCR glycosylation differences between the two. Collectively, these results are consistent with the existence of conformational or topological lineage-specific differences in the TCR.CD3 from CD4(+) and CD8(+) wild type T cells. The differences may be relevant for cis interactions during antigen recognition and signal transduction.  相似文献   

17.
18.
Themis1, a recently identified T cell protein, has a critical function in the generation of mature CD4(+)CD8(-) and CD4(-)CD8(+) (CD4 and CD8 single-positive [SP]) thymocytes and T cells. Although Themis1 has been shown to bind to the adaptor proteins LAT and Grb2, previous studies have yielded conflicting results regarding whether thymocytes from Themis1(-/-) mice exhibit TCR-mediated signaling defects. In this study, we demonstrate that, in the absence of Themis1, TCR-mediated signaling is selectively impaired in CD4 SP and CD8 SP thymocytes but is not affected in CD4(+)CD8(+) double-positive thymocytes despite high expression of Themis1 in double-positive thymocytes. Like Themis1, Themis2, a related member of the Themis family, which is expressed in B cells and macrophages, contains two conserved cysteine-based domains, a proline-rich region, and a nuclear localization signal. To determine whether Themis1 and Themis2 can perform similar functions in vivo, we analyzed T cell development and TCR-mediated signaling in Themis1(-/-) mice reconstituted with either Themis1 or Themis2 transgenes. Notably, Themis1 and Themis2 exhibited the same potential to restore T cell development and TCR-mediated signaling in Themis1(-/-) mice. Both proteins were tyrosine phosphorylated and were recruited within Grb2 signaling complexes to LAT following TCR engagement. These results suggest that conserved molecular features of the Themis1 and Themis2 proteins are important for their biological activity and predict that Themis1 and Themis2 may perform similar functions in T and B cells, respectively.  相似文献   

19.
The NK1.1(+)TCRalphabeta(int) CD4(+), or double negative T cells (NK T cells) consist of a mixture of CD1d-restricted and CD1d-unrestricted cells. The relationships between CD4(+)NK1.1(+) T cells and conventional T cells are not understood. To compare their respective TCR repertoires, NK1.1(+)TCRalphabeta(int), CD4(+) T cells have been sorted out of the thymus, liver, spleen, and bone marrow of C57BL/6 mice. Molecular analysis showed that thymus and liver used predominantly the Valpha14-Jalpha281 and Vbeta 2, 7, and 8 segments. These cells are CD1d restricted and obey the original definition of NK T cells. The complementarity-determining region 3 (CDR3) sequences of the TCR Vbeta8.2-Jbeta2.5 chain of liver and thymus CD4(+) NK T cells were determined and compared with those of the same rearrangements of conventional CD4(+) T cells. No amino acid sequence or usage characteristic of NK T cells could be evidenced: the Vbeta8.2-Jbeta2.5 diversity regions being primarily the same in NK T and in T cells. No clonal expansion of the beta-chains was observed in thymus and liver CD1d-restricted CD4(+)NK T cells, suggesting the absence of acute or chronic Ag-driven stimulation. Molecular analysis of the TCR used by Valpha14-Jalpha281 transgenic mice on a Calpha(-/-) background showed that the alpha-chain can associate with beta-chains using any Vbeta segment, except in NK T cells in which it paired predominately with Vbeta 2, 7, and 8(+) beta-chains. The structure of the TCR of NK T cells thus reflects the affinity for the CD1d molecule rather than a structural constraint leading to the association of the invariant alpha-chain with a distinctive subset of Vbeta segment.  相似文献   

20.
Syngeneic mixed lymphocyte reaction (SMLR) has been considered to represent T cell response to self antigens. In this study using stimulator dendritic cells (DC), we analyzed cellular components responding to the syngeneic DC. It was shown that the predominant dividing cells were CD8(+) T cells although the response of CD4(+) T cells was essential for initiation of SMLR. In spite of the vigorous proliferation and expression of several activation markers, these SMLR-activated CD8(+) T cells hardly killed syngeneic targets and most of the CD8(+) T cells produced no interferon-gamma upon restimulation with DC. Furthermore, in SMLR where CD8(+) T cells were absent or inhibited, a considerable proliferation of CD4(-) CD8(-) double negative-T cells that included TCRalpha/beta(+) natural killer-T cells (NKT cells), TCRgamma/delta(+) NKT cells and TCRgamma/delta(+) T cells was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号