首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We tested the prediction that plants grown in elevated CO2 environments are better able to compensate for biomass lost to herbivory than plants grown in ambient CO2 environments. The herbaceous perennial Plantago lanceolata (Plantaginaceae) was grown in either near ambient (380 ppm) or enriched (700 ppm) CO2 atmospheres, and then after 4 weeks, plants experienced either 1) no defoliation; 2) every fourth leaf removed by cutting; or 3) every other leaf removed by cutting. Plants were harvested at week 13 (9 weeks after simulated herbivory treatments). Vegetative and reproductive weights were compared, and seeds were counted, weighed, and germinated to assess viability.Plants grown in enriched CO2 environments had significantly greater shoot weights, leaf areas, and root weights, yet had significantly lower reproductive weights (i.e. stalks + spikes + seeds) and produced fewer seeds, than plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plants grown in ambient CO2 environments. Relative biomass allocation patterns further illustrated differences in plant responses to enriched CO2 atmospheres: enriched CO2-grown plants only allocated 10% of their carbon resources to reproduction whereas ambient CO2-grown plants allocated over 20%. Effects of simulated herbivory on plant performance were much less dramatic than those induced by enriched CO2 atmospheres. Leaf area removal did not reduce shoot weights or reproductive weights of plants in either CO2 treatment relative to control plants. However, plants from both CO2 treatments experienced reductions in root weights with leaf area removal, indicating that plants compensated for lost above-ground tissues, and maintained comparable levels of reproductive output and seed viability, at the expense of root growth.  相似文献   

2.
To study the single and combined effects of elevated carbon dioxide (CO2), ozone (O3), nitrogen nutrition, and water supply on photosynthetic gas exchange and biomass accumulation of Norway spruce, a four-factorial experiment was conducted in closed environmental chambers. Each factor was applied at two levels: (i) ambient and elevated (ambient + 200 μl 1-1) CO2, (ii) 20 and 80 nl 1-1 O3, (iii) low and high nitrogen fertilization, and (iv) a well watered and a drought treatment. Neither elevated O3 nor CO2 significantly changed stomatal conductances of spruce needles. Adverse effects of elevated O3 on photosynthetic parameters such as net assimilation rate and carboxylation efficiency occurred only when the plants were well watered and in a good nutritional status. After 6 weeks enhanced atmospheric CO2 resulted in increased net assimilation rates provided that nutrition was well balanced and plants were well watered. Acclimation processes became apparent and are interpreted as a consequence of sink regulation. While O3-effects were apparent only in biomass of 1-year-old plant material, elevated CO2 resulted in higher biomass of the buds expanding during the exposure and increased root biomass significantly. Above and below-ground biomass were strongly influenced by the water and nutrition treatments.  相似文献   

3.
Abstract: Growth in elevated CO2 led to an increase in biomass production per plant as a result of enhanced carbon uptake and lower rates of respiration, compared to ambient CO2-grown plants. No down-regulation of photosynthesis was found after six months of growth under elevated CO2. Photosynthetic rates at 15°C or 35 °C were also higher in elevated than in ambient CO2-grown plants, when measured at their respective CO2 growth condition. Stomata of elevated CO2-grown plants were less responsive to temperature as compared to ambient CO2 plants. The after effect of a heat-shock treatment (4 h at 45 °C in a chamber with 80% of relative humidity and 800–1000 tmol m-2 s-1 photon flux density) on Amax was less in elevated than in ambient CO2-grown plants. At the photochemical level, the negative effect of the heat-shock treatment was slightly more pronounced in ambient than in elevated CO2-grown plants. A greater tolerance to oxidative stress caused by high temperatures in elevated CO2-grown plants, in comparison to ambient CO2 plants, is suggested by the increase in superoxide dismutase activity, after 1 h at 45 °C, as well as its relatively high activity after 2 and 4 h of the heat shock in the elevated CO2-grown plants in contrast with the decrease to residual levels of superoxide dismutase activity in ambient CO2-grown plants immediately after 1 h at 45 °C. The observed increase in catalase after 1 h at 45 °C in both ambient and elevated CO2-grown plants, can be ascribed to the higher rates of photorespiration and respiration under this high temperature.  相似文献   

4.
Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles   总被引:13,自引:1,他引:12  
We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

5.
Plants often respond to elevated atmospheric CO2 levels with reduced tissue nitrogen concentrations relative to ambient CO2-grown plants when comparisons are made at a common time. Another common response to enriched CO2 atmospheres is an acceleration in plant growth rates. Because plant nitrogen concentrations are often highest in seedlings and subsequently decrease during growth, comparisons between ambient and elevated CO2-grown plants made at a common time may not demonstrate CO2-induced reductions in plant nitrogen concentration per se. Rather, this comparison may be highlighting differences in nitrogen concentration between bigger, more developed plants and smaller, less developed plants. In this study, we directly examined whether elevated CO2 environments reduce plant nitrogen concentrations independent of changes in plant growth rates. We grew two annual plant species. Abutilon theophrasti (C3 photosynthetic pathway) and Amaranthus retroflexus (C4 photosynthetic pathway), from seed in glass-sided growth chambers with atmospheric CO2 levels of 350 mol·mol–1 or 700 mol·mol–1 and with high or low fertilizer applications. Individual plants were harvested every 2 days starting 3 days after germination to determine plant biomass and nitrogen concentration. We found: 1. High CO2-grown plants had reduced nitrogen concentrations and increased biomass relative to ambient CO2-grown plants when compared at a common time; 2. Tissue nitrogen concentrations did not vary as a function of CO2 level when plants were compared at a common size; and 3. The rate of biomass accumulation per rate of increase in plant nitrogen was unaffected by CO2 availability, but was altered by nutrient availability. These results indicate that a CO2-induced reduction in plant nitrogen concentration may not be due to physiological changes in plant nitrogen use efficiency, but is probably a size-dependent phenomenon resulting from accelerated plant growth.  相似文献   

6.
The long-term interaction between elevated CO2 and soil water deficit was analysed in N2-fixing alfalfa plants in order to assess the possible drought tolerance effect of CO2. Elevated CO2 could delay the onset of drought stress by decreasing transpiration rates, but this effect was avoided by subjecting plants to the same soil water content. Nodulated alfalfa plants subjected to ambient (400 μmol mol?1) or elevated (700 μmol mol?1) CO2 were either well watered or partially watered by restricting water to obtain 30% of the water content at field capacity (ampproximately 0.55 g water cm?3). The negative effects of soil water deficit on plant growth were counterbalanced by elevated CO2. In droughted plants, elevated CO2 stimulated carbon fixation and, as a result, biomass production was even greater than in well-watered plants grown in ambient CO2. Below-ground production was preferentially stimulated by elevated CO2 in droughted plants, increasing nodule biomass production and the availability of photosynthates to the nodules. As a result, total nitrogen content in droughted plants was higher than in well-watered plants grown in ambient CO2. The beneficial effect of elevated CO2 was not correlated with a better plant water status. It is concluded that elevated CO2 enhances growth of droughted plants by stimulating carbon fixation, preferentially increasing the availability of photosynthates to below-ground production (roots and nodules) without improving water status. This means that elevated CO2 enhances the ability to produce more biomass in N2-fixing alfalfa under given soil water stress, improving drought tolerance.  相似文献   

7.
The rapid growth of worldwide energy demands has led to mounting concerns about energy shortages and has promoted the development of biofuels, which are susceptible to climate change. To evaluate the effects of future environmental changes such as CO2 enrichment and water stress on the growth and biodiesel production of bioenergy plants, we exposed Jatropha curcas to two levels of CO2 concentration (ambient and elevated) and three watering regimes (well-watered, moderate drought, and severe drought) to study its biomass accumulation and allocation, energy cost-gain properties, and photosynthetic response. Elevated CO2 enhanced biomass accumulation of J. curcas by 31.5, 25.9, and 14.4 % under well-watered, moderate drought, and severe drought treatments, respectively, indicating that the stimulating effect was greater under optimum water conditions than in water-deficit conditions. Drought stress significantly increased the biomass allocation to roots, especially the fine roots. CO2 enrichment also increased the root mass fraction, though not significantly. CO2 enrichment significantly enhanced the photosynthetic rate measured under growth CO2 concentration (A growth) and decreased foliar N content and therefore construction cost irrespective of watering conditions. Under elevated CO2, J. curcas employed a quicker return energy use strategy indicated by the higher photosynthetic energy use efficiency and lower payback time. There was a pronounced downregulation in the light-saturated photosynthetic rate under the common CO2 concentration (P max) under long-term CO2 exposure, due to a decrease in the initial and total ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities and partially lower foliar N content. The significant interaction of CO2 enrichment and watering regimes implied that the stimulation of plant growth by CO2 enrichment may be negated by soil drought in the future. Long-term field experiments manipulating multiple factors simultaneously are needed to explore how the ecophysiological traits measured for J. curcas translate into bioenergy production.  相似文献   

8.
Increased concentrations of atmospheric carbon dioxide (CO2) and drought stress have greatly influenced plant growth, the status of nitrogen (N) and phosphorus (P), and N:P ratios. We identified the plant biomass, N and P distributional patterns, and N:P stoichiometry of a grass species on the Loess Plateau in China under elevated CO2 concentration and drought stress conditions. Bothriochloa ischaemum, a C4 perennial herbaceous grass, was grown in pots at CO2 concentrations of 400 (ambient) and 800 (elevated) μmol mol?1 and at 60 ± 5 and 40 ± 5 % of field capacity. The elevated CO2 concentration significantly increased plant total biomass, N concentration, N and P content, allocation of biomass to roots, and allocation of N to shoots, and increased the N:P ratios of whole plants and the shoots, especially under well-watered conditions. Drought stress significantly decreased plant biomass and plant N and P content, especially under elevated CO2. Drought stress decreased the N:P ratios, but was only significant in the roots under ambient CO2. Drought stress may attenuate the stimulation of plant growth and N and P acquisition by CO2 enrichment, and projected elevated CO2 concentrations may partially offset the negative effects of increased drought by increasing the assimilation of N and P.  相似文献   

9.
The northern hemisphere temperate and boreal forests currently provide an important carbon sink; however, current tropospheric ozone concentrations ([O3]) and [O3] projected for later this century are damaging to trees and have the potential to reduce the carbon sink strength of these forests. This meta‐analysis estimated the magnitude of the impacts of current [O3] and future [O3] on the biomass, growth, physiology and biochemistry of trees representative of northern hemisphere forests. Current ambient [O3] (40 ppb on average) significantly reduced the total biomass of trees by 7% compared with trees grown in charcoal‐filtered (CF) controls, which approximate preindustrial [O3]. Above‐ and belowground productivity were equally affected by ambient [O3] in these studies. Elevated [O3] of 64 ppb reduced total biomass by 11% compared with trees grown at ambient [O3] while elevated [O3] of 97 ppb reduced total biomass of trees by 17% compared with CF controls. The root‐to‐shoot ratio was significantly reduced by elevated [O3] indicating greater sensitivity of root biomass to [O3]. At elevated [O3], trees had significant reductions in leaf area, Rubisco content and chlorophyll content which may underlie significant reductions in photosynthetic capacity. Trees also had lower transpiration rates, and were shorter in height and had reduced diameter when grown at elevated [O3]. Further, at elevated [O3], gymnosperms were significantly less sensitive than angiosperms. There were too few observations of the interaction of [O3] with elevated [CO2] and drought to conclusively project how these climate change factors will alter tree responses to [O3]. Taken together, these results demonstrate that the carbon‐sink strength of northern hemisphere forests is likely reduced by current [O3] and will be further reduced in future if [O3] rises. This implies that a key carbon sink currently offsetting a significant portion of global fossil fuel CO2 emissions could be diminished or lost in the future.  相似文献   

10.
Saplings of Fagus sylvatica and Picea abies were grown in mono‐ and mixed cultures in a 2‐year phytotron study under all four combinations of ambient and elevated ozone (O3) and carbon dioxide (CO2) concentrations. The hypotheses tested were (1) that the competitiveness of beech rather than spruce is negatively affected by the exposure to enhanced O3 concentrations, (2) spruce benefits from the increase of resource availability (elevated CO2) in the mixed culture and (3) that the responsiveness of plants to CO2 and O3 depends on the type of competition (i.e. intra vs. interspecific). Beech displayed a competitive disadvantage when growing in mixture with spruce: after two growing seasons under interspecific competition, beech showed significant reductions in leaf gas exchange, biomass development and crown volume as compared with beech plants growing in monoculture. In competition with spruce, beech appeared to be nitrogen (N)‐limited, whereas spruce tended to benefit in terms of its plant N status. The responsiveness of the juvenile trees to the atmospheric treatments differed between species and was dominated by the type of competition: spruce growth benefited from elevated CO2 concentrations, while beech growth suffered from the enhanced O3 regime. In general, interspecific competition enhanced these atmospheric treatment effects, supporting our hypotheses. Significant differences in root : shoot biomass ratio between the type of competition under both elevated O3 and CO2 were not caused by readjustments of biomass partitioning, but were dependent on tree size. Our study stresses that competition is an important factor driving plant development, and suggests that the knowledge about responses of plants to elevated CO2 and/or O3, acquired from plants growing in monoculture, may not be transferred to plants grown under interspecific competition as typically found in the field.  相似文献   

11.
Abstract. In order to explore whether seed size affects plant response to elevated CO2, plants grown from red oak (Quercus rubra L.) acorns were studied for differences in their first year response to CO2 concentrations of 350 and 700 μl/l. Overall, at final harvest, total biomass of plants grown in elevated CO2 were 47 % larger than that of plants grown in ambient CO2. There were significant interactions between CO2 treatments and initial acorn mass for total biomass, as well as for root, leaf, and stem biomass. Although total biomass increased with increasing initial acorn mass for both high and ambient CO2 plants, high CO2 plants exhibited a greater increase than ambient CO2 plants, as indicated by a steeper slope in high CO2 plants. However, CO2 levels did not affect biomass partitioning traits, such as root/shoot ratio, leaf, stem, and root weight ratios, and leaf area ratio. These results suggest that variation in seed size or initial plant size can cause intraspecific variation in response to elevated CO2.  相似文献   

12.
The objective of this study was to test whether elevated [CO2], [O3] and nitrogen (N) fertility altered leaf mass per area (LMPA), non‐structural carbohydrate (TNC), N, lignin (LTGA) and proanthocyanidin (PA) concentrations in cotton (Gossypium hirsutum L.) leaves and roots. Cotton was grown in 14 dm3 pots with either sufficient (0·8 g N dm ? 3) or deficient (0·4 and 0·2 g N dm ? 3) N fertilization, and treated in open‐top chambers with either ambient or elevated ( + 175 and + 350 μ mol mol ? 1) [CO2] in combination with either charcoal‐filtered air (CF) or non‐filtered air plus 1·5 times ambient [O3]. At about 50 d after planting, LMPA, starch and PA concentrations in canopy leaves were as much as 51–72% higher in plants treated with elevated [CO2] compared with plants treated with ambient [CO2], whereas leaf N concentration was 29% lower in elevated [CO2]‐treated plants compared with controls. None of the treatments had a major effect on LTGA concentrations on a TNC‐free mass basis. LMPA and starch levels were up to 48% lower in plants treated with elevated [O3] and ambient [CO2] compared with CF controls, although the elevated [O3] effect was diminished when plants were treated concurrently with elevated [CO2]. On a total mass basis, leaf N and PA concentrations were higher in samples treated with elevated [O3] in ambient [CO2], but the difference was much reduced by elevated [CO2]. On a TNC‐free basis, however, elevated [O3] had little effect on tissue N and PA concentrations. Fertilization treatments resulted in higher PA and lower N concentrations in tissues from the deficient N fertility treatments. The experiment showed that suppression by elevated [O3] of LMPA and starch was largely prevented by elevated [CO2], and that interpretation of [CO2] and [O3] effects should include comparisons on a TNC‐free basis. Overall, the experiment indicated that allocation to starch and PA may be related to how environmental factors affect source–sink relationships in plants, although the effects of elevated [O3] on secondary metabolites differed in this respect.  相似文献   

13.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on the carbon requirement for root respiration of plants to predict effects of elevated [CO2] on the carbon budget of natural and managed systems.There is insufficient information to support the contentention that an increase in the concentration of CO2 in the atmosphere will enhance the CO2 concentration in the soil to an extent that is likely to affect root respiration. Moreover, there is no convincing evidence for a direct effect of elevated atmospheric [CO2] on the rate of root respiration per unit root mass or the fraction of carbon required for root respiration. However, there are likely to be indirect effects of elevated [CO2] on the carbon requirement of plants in natural systems.Firstly, it is very likely that the carbon requirement of root respiration relative to that fixed in photosynthesis will increase when elevated [CO2] induces a decrease in nutrient status of the plants. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, these are in fact indirect effects. The increase in root weight ratio is due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. This will decrease the specific rate of root respiration, but increase the carbon requirement as a fraction of the carbon fixed in photosynthesis. It is likely that these effects will be minor in systems where the nutrient supply is very high, e.g. in many managed arable systems, and increase with decreasing soil fertility, i.e. in many natural systems.Secondly, a decrease in rainfall in some parts of the world may cause a shortage in water supply which favours the carbon partitioning to roots. Water stress is likely to reduce rates of root respiration per unit root mass, but enhance the fraction of total assimilates required for root respiration, due to greater allocation of biomass to roots.Increased temperatures are unlikely to affect the specific rate of root respiration in all species. Broadly generalized, the effect of temperature on biomass allocation is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. The root respiration of some species acclimates to growth temperature, so that the effect of global temperature rise is entirely accounted for by the effect of temperature on biomass allocation. The specific rate of root respiration of other species will increase with global warming. In response to global warming the carbon requirement of roots is likely to decrease in temperate regions, when temperatures are suboptimal for the roots' capacity to acquire water. Here global warming will induce a smaller biomass allocation to the roots. Conversely, the carbon requirements are more likely to increase in mediterranean environments, where temperatures are often supraoptimal and a rise in temperature will induce greater allocation of biomass to the roots.  相似文献   

14.
Maroco JP  Edwards GE  Ku MS 《Planta》1999,210(1):115-125
The effects of elevated CO2 concentrations on the photochemistry, biochemistry and physiology of C4 photosynthesis were studied in maize (Zea mays L.). Plants were grown at ambient (350 μL L−1) or ca. 3 times ambient (1100 μL L−1) CO2 levels under high light conditions in a greenhouse for 30 d. Relative to plants grown at ambient CO2 levels, plants grown under elevated CO2 accumulated ca. 20% more biomass and 23% more leaf area. When measured at the CO2 concentration of growth, mature leaves of high-CO2-grown plants had higher light-saturated rates of photosynthesis (ca. 15%), lower stomatal conductance (71%), higher water-use efficiency (225%) and higher dark respiration rates (100%). High-CO2-grown plants had lower carboxylation efficiencies (23%), measured under limiting CO2, and lower leaf protein contents (22%). Activities of a number of C3 and C4 cycle enzymes decreased on a leaf-area basis in the high-CO2-grown plants by 5–30%, with NADP-malate dehydrogenase exhibiting the greatest decrease. In contrast, activities of fructose 1,6-bisphosphatase and ADP-glucose pyrophosphorylase increased significantly under elevated CO2 condition (8% and 36%, respectively). These data show that the C4 plant maize may benefit from elevated CO2 through acclimation in the capacities of certain photosynthetic enzymes. The increased capacity to synthesize sucrose and starch, and to utilize these end-products of photosynthesis to produce extra energy by respiration, may contribute to the enhanced growth of maize under elevated CO2. Received: 30 April 1999 / Accepted: 17 June 1999  相似文献   

15.
Photosynthetic rates and photosynthate partitioning were studied in three-week-old soybean [Glycine max (L.) Merr. cv. Williams] plants exposed to either ambient (35 Pa) or elevated (70 Pa) CO2 in controlled environment chambers. Ambient CO2-grown plants also were given a single 24 h treatment with 70 Pa CO2 1 d prior to sampling. Photosynthetic rates of ambient CO2-grown plants initially increased 36% when the measurement CO2 was doubled from 35 to 70 Pa. Photosynthetic rates of the third trifoliolate leaf, both after 1 and 21 d of elevated CO2 treatment, were 30 to 45% below those of ambient CO2-grown plants when measured at 35 Pa CO2. These reduced photosynthetic rates were not due to increased stomatal resistance and were observed for 2 to 8 h after plants given 1 d of CO2 enrichment were returned to ambient CO2. Initial and total ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities, percent activation, Rubisco protein, soluble protein and leaf chlorophyll content were similar in all CO2 treatments. Quantum yields of photosynthesis, determined at limiting irradiances and at 35 Pa CO2, were 0.049±0.003 and 0.038±0.005 mol CO2 fixed per mol quanta for ambient and elevated CO2-grown plants, respectively (p<0.05). Leaf starch and sucrose levels were greater in plants grown at 70 than at 35 Pa CO2. Starch accumulation rates during the day were greater in ambient CO2-grown plants than in plants exposed to elevated CO2 for either 1 or 21 d. However, the percentage of C partitioned to starch relative to total C fixed was unaffected by 1 d of CO2 enrichment. The above results showed that both photosynthetic and starch accumulation rates of soybean leaflets measured at 35 Pa CO2 were temporarily reduced after 1 and 21 d of CO2 enrichment. The biochemical mechanism affecting these responses was not identified.Abbreviations SLW- specific leaf weight (g m–2) - Rubisco- ribulose 1,5-bisphosphate carboxylase/oxygenase - Rul- 5bisP, ribulose 1,5 bisphosphate - DAP- days after planting - SAR- starch accumulation rate - Ci- intercellular CO2 concentration  相似文献   

16.
Root to shoot ratio of crops as influenced by CO2   总被引:1,自引:0,他引:1  
Crops of tomorrow are likely to grow under higher levels of atmospheric CO2. Fundamental crop growth processes will be affected and chief among these is carbon allocation. The root to shoot ratio (R:S, defined as dry weight of root biomass divided by dry weight of shoot biomass) depends upon the partitioning of photosynthate which may be influenced by environmental stimuli. Exposure of plant canopies to high CO2 concentration often stimulates the growth of both shoot and root, but the question remains whether elevated atmospheric CO2 concentration will affect roots and shoots of crop plants proportionally. Since elevated CO2 can induce changes in plant structure and function, there may be differences in allocation between root and shoot, at least under some conditions. The effect of elevated atmospheric CO2 on carbon allocation has yet to be fully elucidated, especially in the context of changing resource availability. Herein we review root to shoot allocation as affected by increased concentrations of atmospheric CO2 and provide recommendations for further research. Review of the available literature shows substantial variation in R:S response for crop plants. In many cases (59.5%) R:S increased, in a very few (3.0%) remained unchanged, and in others (37.5%) decreased. The explanation for these differences probably resides in crop type, resource supply, and other experimental factors. Efforts to understand allocation under CO2 enrichment will add substantially to the global change response data base.Abbreviations R:S root to shoot ratio, dry weight basis  相似文献   

17.
Impacts of either elevated CO2 or drought stress on plant growth have been studied extensively, but interactive effects of these on plant carbon and nitrogen allocation is inadequately understood yet. In this study the response of the dominant desert shrub, Caragana intermedia Kuanget H.c.Fu, to the interaction of elevated CO2 (700 ± 20 μmol mol−1) and soil drought were determined in two large environmental growth chambers (18 m2). Elevated CO2 increased the allocation of biomass and carbon into roots and the ratio of carbon to nitrogen (C:N) as well as the leaf soluble sugar content, but decreased the allocation of biomass and carbon into leaves, leaf nitrogen and leaf soluble protein concentrations. Elevated CO2 significantly decreased the partitioning of nitrogen into leaves, but increased that into roots, especially under soil drought. Elevated CO2 significantly decreased the carbon isotope discrimination (Δ) in leaves, but increased them in roots, and the ratio of Δ values between root and leaf, indicating an increased allocation into below-ground parts. It is concluded that stimulation of plant growth by CO2 enrichment may be negated under soil drought, and under the future environment, elevated CO2 may partially offset the negative effects of enhanced drought by regulating the partitioning of carbon and nitrogen.  相似文献   

18.
Seedlings of Eucalyptus pauciflora, were grown in open-top chambers fumigated with ambient and elevated [CO2], and were divided into two populations using 10% light transmittance screens. The aim was to separate the effects of timing of light interception, temperature and [CO2] on plant growth. The orientation of the screens exposed plants to a similar total irradiance, but incident during either cold mornings (east-facing) or warm afternoons (west-facing). Following the first autumn freezing event elevated CO2-grown plants had 10 times more necrotic leaf area than ambient CO2 plants. West-facing plants had significantly greater (25% more) leaf damage and lower photochemical efficiency (Fv/Fm) in comparison with east-facing plants. Following a late spring freezing event east-facing elevated CO2 plants suffered a greater sustained loss in Fv/Fm than west-facing elevated CO2- and ambient CO2-grown plants. Stomatal conductance was lower under elevated CO2 than ambient CO2 except during late spring, with the highest leaf temperatures occurring in west-facing plants under elevated CO2. These higher leaf temperatures apparently interfered with cold acclimation thereby enhancing frost damage and reducing the ability to take advantage of optimal growing conditions under elevated CO2.  相似文献   

19.
To understand the responses to external disturbance such as defoliation and possible feedback mechanisms at global change in terrestrial ecosystems, it is necessary to examine the extent and nature of effects on aboveground–belowground interactions. We studied a temperate heathland system subjected to experimental climate and atmospheric factors based on prognoses for year 2075 and further exposed to defoliation. By defoliating plants, we were able to study how global change modifies the interactions of the plant–soil system. Shoot production, root biomass, microbial biomass, and nematode abundance were assessed in the rhizosphere of manually defoliated patches of Deschampsia flexuosa in June in a full‐factorial FACE experiment with the treatments: increased atmospheric CO2, increased nighttime temperatures, summer droughts, and all of their combinations. We found a negative effect of defoliation on microbial biomass that was not apparently affected by global change. The negative effect of defoliation cascades through to soil nematodes as dependent on CO2 and drought. At ambient CO2, drought and defoliation each reduced nematodes. In contrast, at elevated CO2, a combination of drought and defoliation was needed to reduce nematodes. We found positive effects of CO2 on root density and microbial biomass. Defoliation affected soil biota negatively, whereas elevated CO2 stimulated the plant–soil system. This effect seen in June is contrasted by the effects seen in September at the same site. Late season defoliation increased activity and biomass of soil biota and more so at elevated CO2. Based on soil biota responses, plants defoliated in active growth therefore conserve resources, whereas defoliation after termination of growth results in release of resources. This result challenges the idea that plants via exudation of organic carbon stimulate their rhizosphere biota when in apparent need of nutrients for growth.  相似文献   

20.
Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short‐term elevated [CO2] on growth of Al‐tolerant (ET8) and Al‐sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2] using open‐top chambers. Exposure of ET8 plants to elevated [CO2] enhanced root biomass only. In contrast, shoot biomass of ES8 was enhanced by elevated [CO2]. Given that exudation of malate to detoxify apoplastic Al is a mechanism for Al tolerance in wheat plants, ET8 plants exuded greater amounts of malate from root apices than ES8 plants under both ambient and elevated [CO2]. These results indicate that elevated [CO2] has no effect on malate exudation in both ET8 and ES8 plants. These novel findings have important implications for our understanding how plants respond to elevated [CO2] grown in unfavorable edaphic conditions in general and in acid soils in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号