首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Amyloid beta-peptide (Abeta) is implicated as the toxic agent in Alzheimer's disease and is the major component of brain amyloid plaques. In vitro, Abeta causes cell death, but the molecular mechanisms are unclear. We analyzed the early signaling mechanisms involved in Abeta toxicity using the SH-SY5Y neuroblastoma cell line. Abeta caused cell death and induced a 2- to 3-fold activation of JNK. JNK activation and cell death were inhibited by overexpression of a dominant-negative SEK1 (SEK1-AL) construct. Butyrolactone I, a cdk5 inhibitor, had an additional protective effect against Abeta toxicity in these SEK1-AL-expressing cells suggesting that cdk5 and JNK activation independently contributed to this toxicity. Abeta also weakly activated ERK and Akt but had no effect on p38 kinase. Inhibitors of ERK and phosphoinositide 3-kinase (PI3K) pathways did not affect Abeta-induced cell death, suggesting that these pathways were not important in Abeta toxicity. Insulin-like growth factor I protected against Abeta toxicity by strongly activating ERK and Akt and blocking JNK activation in a PI3K-dependent manner. Pertussis toxin also blocked Abeta-induced cell death and JNK activation suggesting that G(i/o) proteins were upstream activators of JNK. The results suggest that activation of the JNK pathway and cdk5 may be initial signaling cascades in Abeta-induced cell death.  相似文献   

2.
Neurotrophins are a family of growth factors that attenuate several forms of pathological neuronal cell death and may represent a putative therapeutic approach to neurodegenerative diseases. In Alzheimer disease, amyloid-beta (Abeta) is thought to play a central role in the neuronal death occurring in brains of patients. In the present study, we evaluate the ability of neurotrophin-3 (NT-3) to protect neurons against the toxicity induced by aggregated Abeta. We showed that in primary cultures of cortical neurons, NT-3 reduces Abeta-induced apoptosis by limiting caspase-8, caspase-9, and caspase-3 cleavage. This neuroprotective effect of NT-3 was concomitant to an increased level of Akt phosphorylation and was abolished by an inhibitor of the phosphatidylinositol-3 kinase (PI-3K), LY294002. In parallel, NT-3 treatment reduced Abeta induced caspase-3 processing to control levels. In an attempt to link PI-3K/Akt to caspase inhibition, we evaluated the influence of the PI-3K/Akt axis on the expression of a member of the inhibitors of apoptosis proteins (IAPs), the neuronal apoptosis inhibitory protein-1. We demonstrated that NT-3 induces an up-regulation of neuronal apoptosis inhibitory protein-1 expression in neurons that promotes the inhibition of Abeta-induced neuronal apoptosis. Together, these findings demonstrate that NT-3 signaling counters Abeta-dependent neuronal cell death and may represent an innovative therapeutic intervention to limit neuronal death in Alzheimer disease.  相似文献   

3.
4.
The phosphatidylinositol 3 kinase (PI3K)-Akt/PKB pathway protects neurons from apoptosis caused by diverse stress stimuli. However, its protective role against the amyloid beta peptide (Abeta), a major constituent of Alzheimer's disease plaques, has not been studied. We investigated the effect of the Abeta-derived Abeta(25-35) peptide on apoptosis and on the Akt survival pathway in PC12 cells. Cells submitted to micromolar concentrations of Abeta(25-35) exhibited increased production of reactive oxygen species (ROS) and morphological alterations consistent with apoptosis. Akt1 was activated shortly after incubation with Abeta(25-35) and Abeta(1-40) with a kinetics different to that of nerve-derived growth factor. Akt1 activation was blocked by the PI3K inhibitor wortmannin. We tested the hypothesis that Akt1 might modify the vulnerability of neural cells to apoptosis induced by Abeta(25-35). Overexpression of an active version of Akt1 attenuated the apoptotic effect of Abeta(25-35) as determined by flow cytometry. Moreover, PC12 cells overexpressing a membrane-targeted N-myristylated fusion protein of enhanced green fluorescence protein (EGFP) and mouse Akt1 exhibited lower levels of ROS than control EGFP-transfected cells. The present findings demonstrate that Akt1 is activated in response to Abeta(25-35) in a PI3K-dependent manner and that active Akt1 protects PC12 cells against the pro-apoptotic action of this peptide.  相似文献   

5.
Tauroursodeoxycholic acid (TUDCA) prevents amyloid beta-peptide (Abeta)-induced neuronal apoptosis, by modulating both classical mitochondrial pathways and specific upstream targets. In addition, activation of nuclear steroid receptors (NSRs), such as the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) differentially regulates apoptosis in the brain. In this study we investigated whether TUDCA, a cholesterol-derived endogenous molecule, requires NSRs for inhibiting Abeta-induced apoptosis in primary neurons. Our results confirmed that TUDCA significantly reduced Abeta-induced apoptosis; in addition, the fluorescently labeled bile acid molecule was detected diffusely in both cytoplasm and nucleus of rat cortical neurons. Interestingly, experiments using small interfering RNAs (siRNAs) revealed that, in contrast to GR siRNA, MR siRNA abolished the antiapoptotic effect of TUDCA. Abeta incubation reduced MR nuclear translocation while increasing nuclear GR levels. Notably, pretreatment with TUDCA markedly altered Abeta-induced changes in NSRs, including MR dissociation from its cytosolic chaperone, heat shock protein 90, and subsequent translocation to the nucleus. Furthermore, when a carboxy terminus-deleted form of MR was used, nuclear trafficking of both MR and the bile acid was abrogated, suggesting that they translocate to the nucleus as a steroid-receptor complex. Transfection experiments with wild-type or mutant MR confirmed that this interaction was required for TUDCA protection against Abeta-induced apoptosis. Finally, in cotransfection experiments with NSR response element reporter and overexpression constructs, pretreatment with TUDCA significantly modulated Abeta-induced changes in MR and GR transactivation. In conclusion, these results provide novel insights into the specific cellular mechanism of TUDCA antiapoptotic function against Abeta-induced apoptosis and suggest targets for potential therapeutic intervention.  相似文献   

6.
Amyloid beta-peptide (Abeta) is a major constituent of senile plaques in the brains of Alzheimer's disease (AD) patients. We have previously demonstrated ceramide production secondary to Abeta-induced activation of neutral sphingomyelinase (nSMase) in cerebral endothelial cells and oligodendrocytes, which may contribute to cellular injury during progression of AD. In this study, we first established the "Abeta --> nSMase --> ceramide --> free radical --> cell death" pathway in primary cultures of fetal rat cortical neurons. We also provided experimental evidence showing that S-nitrosoglutathione (GSNO), a potent endogenous antioxidant derived from the interaction between nitric oxide (NO) and glutathione, caused dose-dependent protective effects against Abeta/ceramide neurotoxicity via inhibition of caspase activation and production of reactive oxygen species (ROS). This GSNO-mediated neuroprotection appeared to involve activation of cGMP-dependent protein kinase (PKG), phosphatidylinositol 3-kinase (PI3K), and extracellular signal-regulated kinase (ERK). Activation of the cGMP/PKG pathway induced expression of thioredoxin and Bcl-2 that were beneficial to cortical neurons in antagonizing Abeta/ceramide toxicity. Consistently, exogenous application of thioredoxin exerted remarkable neuroprotective efficacy in our experimental paradigm. Results derived from the present study establish a neuroprotective role of GSNO, an endogenous NO carrier, against Abeta toxicity via multiple signaling pathways.  相似文献   

7.
The mechanisms of peroxynitrite-induced apoptosis are not fully understood. We report here that peroxynitrite-induced apoptosis of PC12 cells requires the simultaneous activation of p38 and JNK MAP kinase, which in turn activates the intrinsic apoptotic pathway, as evidenced by Bax translocation to the mitochondria, cytochrome c release to the cytoplasm and activation of caspases, leading to cell death. Peroxynitrite induces inactivation of the Akt pathway. Furthermore, overexpression of constitutively active Akt inhibits both peroxynitrite-induced Bax translocation and cell death. Peroxynitrite-induced death was prevented by overexpression of Bcl-2 and by cyclosporin A, implicating the involvement of the intrinsic apoptotic pathway. Selective inhibition of mixed lineage kinase (MLK), p38 or JNK does not attenuate the decrease in Akt phosphorylation showing that inactivation of the Akt pathway occurs independently of the MLK/MAPK pathway. Together, these results reveal that peroxynitrite-induced activation of the intrinsic apoptotic pathway involves interactions with the MLK/MAPK and Akt signaling pathways.  相似文献   

8.
Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but redistributes to mitochondria in response to apoptotic stimuli, where it induces cytochrome c release. In this study, we show that the phosphatidylinositol 3-OH kinase (PI3K)-Akt pathway plays an important role in the regulation of Bax subcellular localization. We found that LY294002, a PI3K inhibitor, blocked the effects of serum to prevent Bax translocation to mitochondria and that expression of an active form of PI3K suppressed staurosporine-induced Bax translocation, suggesting that PI3K activity is essential for retaining Bax in the cytoplasm. In contrast, both U0126, a MEK inhibitor, and active MEK had little effect on Bax localization. In respect to downstream effectors of PI3K, we found that expression of active Akt, but not serum and glucocorticoid-induced protein kinase (SGK), suppressed staurosporine-induced translocation of Bax, whereas dominant negative Akt moderately promoted Bax translocation. Expression of Akt did not alter the levels of Bax, Bcl-2, Bcl-X(L), or phosphorylated JNK under the conditions used, suggesting that there were alternative mechanisms for Akt in the suppression of Bax translocation. Collectively, these results suggest that the PI3K-Akt pathway inhibits Bax translocation from cytoplasm to mitochondria and have revealed a novel mechanism by which the PI3K-Akt pathway promotes survival.  相似文献   

9.
The serine/threonine kinase Akt has been shown to mediate the anti-apoptotic activity through hexokinase (HK)–mitochondria interaction. We previously reported that Akt activation in retinal rod photoreceptor cells is mediated through the light-dependent insulin receptor (IR)/PI3K pathway. Our data indicate that light-induced activation of IR/PI3K/Akt results in the translocation of HK-II to mitochondria. We also found that PHLPPL, a serine/threonine phosphatase, enhanced the binding of HK-II to mitochondria. We found a mitochondrial targeting signal in PHLPPL and our study suggests that Akt translocation to mitochondria could be mediated through PHLPPL. Our results suggest that the light-dependent IR/PI3K/Akt pathway regulates hexokinase–mitochondria interaction in photoreceptors. Down-regulation of IR signaling has been associated with ocular diseases of retinitis pigmentosa, diabetic retinopathy, and Leber Congenital Amaurosis-type 2, and agents that enhance the binding interaction between hexokinase and mitochondria may have therapeutic potential against these ocular diseases.  相似文献   

10.
Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery.  相似文献   

11.
Early onset familial Alzheimer's disease (FAD) is linked to autosomal dominant mutations in the amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2) genes. These are critical mediators of total amyloid beta-peptide (Abeta) production, inducing cell death through uncertain mechanisms. Tauroursodeoxycholic acid (TUDCA) modulates exogenous Abeta-induced apoptosis by interfering with E2F-1/p53/Bax. Here, we used mouse neuroblastoma cells that express either wild-type APP, APP with the Swedish mutation (APPswe), or double-mutated human APP and PS1 (APPswe/DeltaE9), all exhibiting increased Abeta production and aggregation. Cell viability was decreased in APPswe and APPswe/DeltaE9 but was partially reversed by z-VAD.fmk. Nuclear fragmentation and caspase 2, 6 and 8 activation were also readily detected. TUDCA reduced nuclear fragmentation as well as caspase 2 and 6, but not caspase 8 activities. p53 activity, and Bcl-2 and Bax changes, were also modulated by TUDCA. Overexpression of p53, but not mutant p53, in wild-type and mutant neuroblastoma cells was sufficient to induce apoptosis, which, in turn, was reduced by TUDCA. In addition, inhibition of the phosphatidylinositide 3'-OH kinase pathway reduced TUDCA protection against p53-induced apoptosis. In conclusion, FAD mutations are associated with the activation of classical apoptotic pathways. TUDCA reduces p53-induced apoptosis and modulates expression of Bcl-2 family.  相似文献   

12.
Lee CJ  Liao CL  Lin YL 《Journal of virology》2005,79(13):8388-8399
Flaviviruses such as dengue virus (DEN) and Japanese encephalitis virus (JEV) are medically important in humans. The lipid kinase, phosphatidylinositol 3-kinase (PI3K) and its downstream target Akt have been implicated in the regulation of diverse cellular functions such as proliferation, and apoptosis. Since JEV and DEN appear to trigger apoptosis in cultured cells at a rather late stage of infection, we evaluated the possible roles of the PI3K/Akt signaling pathway in flavivirus-infected cells. We found that Akt phosphorylation was noticeable in the JEV- and DEN serotype 2 (DEN-2)-infected neuronal N18 cells in an early, transient, PI3K- and lipid raft-dependent manner. Blocking of PI3K activation by its specific inhibitor LY294002 or wortmannin greatly enhanced virus-induced cytopathic effects (CPEs), even at an early stage of infection, but had no effect on virus production. This severe CPE was characterized as apoptotic cell death as evidenced by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining and cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP). Mechanically, the initiator and effector caspases involved are mainly caspase-9 and caspase-6, since only a pan-caspase inhibitor and the inhibitors preferentially target caspase-9 and -6, but not the ones antagonizing caspase-8, -3, or -7 alleviated the levels of PARP cleavage after virus infection and PI3K blockage. Furthermore, Bcl-2 appears to be a crucial mediator downstream of PI3K/Akt signaling, since overexpression of Bcl-2 reduced virus-induced apoptosis even when PI3K activation was repressed. Collectively, our results suggest an anti-apoptotic role for the PI3K/Akt pathway triggered by JEV and DEN-2 to protect infected cells from early apoptotic cell death.  相似文献   

13.
p53 is activated by stress leading to oncogenic alteration, which induces either cell cycle arrest or apoptosis, although the mechanism involved in this decision has not been fully clarified as yet. This work was undertaken to change the cellular response by inducing apoptosis with PI3K inhibitors to Saos-2 cells that had been growth-arrested in both G1 and G2/M by the wild-type activity of temperature-sensitive (ts) p53. We found that the PI3K/Akt inhibitors LY294002 and wortmannin, but not the MEK inhibitor U0126, were capable of inducing apoptosis in growth-arrested Saos-2 cells, as assessed by an increase in the sub-G1 population, pyknotic nuclei, and DNA ladder formation. We detected the cleavage of caspases 9 and 3, and PARP after LY294002 addition, accompanied by a loss of cytochrome c from the mitochondria, and observed Bax translocation to the mitochondria and down-regulation of phospho-Akt, suggesting that blocking of survival signals triggered the apoptotic signal through the mitochondrial apoptotic pathway. It is thus suggested that the PI3K/Akt pathway played an important role in determining cell fate between growth arrest and apoptosis.  相似文献   

14.
Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.  相似文献   

15.
1. Cultured cerebellar granule neurons maintained in medium containing 26 mM potassium (high K+ or HK+) undergo cell death when switched to medium with 5 mM potassium (low K+ or LK+). This low K(+)-induced cell death has typical features of apoptosis. The intracellular signaling pathway of low K(+)-induced apoptosis has been investigated. 2. Cerebellar granule neurons become committed to undergo apoptosis between 2 and 5 h after K+ deprivation, judging from the inability of high K+ to rescue them after this time. Although the levels of most mRNAs decrease markedly concomitant with commitment, expression of c-jun mRNA increases 2-3 h after K+ deprivation. Among the family of caspases, a caspase-3-like protease is activated within 4 h of lowering the K+ concentration. A caspase-1-like protease is also activated within 2 h of K+ deprivation. 3. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity by LY294002 or wortmannin also induces apoptosis in cerebellar granule neurons. The intracellular signaling pathway of LY294002-induced apoptosis has been investigated. The activity of c-Jun N-terminal kinase (JNK) increases 8 h after addition of LY294002 to high K+ medium or low K+ medium containing BDNF. Expression of c-Jun protein also increases almost simultaneously. 4. The low K(+)-induced apoptosis of cerebellar granule neurons is prevented by high K+ (membrane depolarization by high K+), BDNF, IGF-1, bFGF or cAMP. The intracellular signaling pathways by which these agents prevent low K(+)-induced apoptosis have been investigated. Agents other than cAMP prevent apoptosis through PI3-K and a Ser/Thr kinase, Akt/PKB. The survival-promoting effect of cAMP does not depend on the PI3-K-Akt pathway.  相似文献   

16.
Peroxynitrite is usually considered as a neurotoxic nitric oxide-derivative. However, an increasing body of evidence suggests that, at low concentrations, peroxynitrite affords transient cytoprotection, both in vitro and in vivo. Here, we addressed the signaling mechanism responsible for this effect, and found that rat cortical neurons in primary culture acutely exposed to peroxynitrite (0.1 mmol/L) rapidly elicited Akt-Ser(473) phosphorylation. Inhibition of phosphoinositide-3-kinase (PI3K)/Akt pathway with wortmannin or Akt small hairpin RNA (shRNA) abolished the ability of peroxynitrite to prevent etoposide-induced apoptotic death. Endogenous peroxynitrite formation by short-term incubation of neurons with glutamate stimulated Akt-Ser(473) phosphorylation, whereas Akt shRNA enhanced the vulnerability of neurons against glutamate. We further show that Akt-Ser(473) phosphorylation was consequence of the oxidizing, but not the nitrating properties of peroxynitrite. Peroxynitrite failed to nitrate or phosphorylate neurotrophin tyrosine kinase receptors (Trks), and it did not modify the ability of brain-derived neurotrophic factor (BDNF), to phosphorylate its cognate receptor, TrkB; however, peroxynitrite enhanced BDNF-mediated Akt-Ser(473) phosphorylation. Finally, we found that peroxynitrite-stimulated Akt-Ser(473) phosphorylation was associated with an increased proportion of oxidized phosphoinositide phosphatase, PTEN, in neurons. Moreover, peroxynitrite prevented the increase of apoptotic neuronal death caused by over-expression of PTEN. Thus, peroxynitrite exerts neuroprotection by inhibiting PTEN, hence activating the anti-apoptotic PI3K/Akt pathway in primary neurons.  相似文献   

17.
Control of host cell death is of paramount importance for the survival and replication of obligate intracellular bacteria. Among these, human pathogenic Chlamydia induces the inhibition of apoptosis in a variety of different host cells by directly interfering with cell death signaling. However, the evolutionary conservation of cell death regulation has not been investigated in the order Chlamydiales, which also includes Chlamydia-like organisms with a broader host spectrum. Here, we investigated the apoptotic response of human cells infected with the Chlamydia-like organism Simkania negevensis (Sn). Simkania infected cells exhibited strong resistance to apoptosis induced by intrinsic stress or by the activation of cell death receptors. Apoptotic signaling was blocked upstream of mitochondria since Bax translocation, Bax and Bak oligomerisation and cytochrome c release were absent in these cells. Infected cells turned on pro-survival pathways like cellular Inhibitor of Apoptosis Protein 2 (cIAP-2) and the Akt/PI3K pathway. Blocking any of these inhibitory pathways sensitized infected host cell towards apoptosis induction, demonstrating their role in infection-induced apoptosis resistance. Our data support the hypothesis of evolutionary conserved signaling pathways to apoptosis resistance as common denominators in the order Chlamydiales.  相似文献   

18.
Nitric oxide is a chemical messenger implicated in neuronal damage associated with ischemia, neurodegenerative disease, and excitotoxicity. Excitotoxic injury leads to increased NO formation, as well as stimulation of the p38 mitogen-activated protein (MAP) kinase in neurons. In the present study, we determined if NO-induced cell death in neurons was dependent on p38 MAP kinase activity. Sodium nitroprusside (SNP), an NO donor, elevated caspase activity and induced death in human SH-SY5Y neuroblastoma cells and primary cultures of cortical neurons. Concomitant treatment with SB203580, a p38 MAP kinase inhibitor, diminished caspase induction and protected SH-SY5Y cells and primary cultures of cortical neurons from NO-induced cell death, whereas the caspase inhibitor zVAD-fmk did not provide significant protection. A role for p38 MAP kinase was further substantiated by the observation that SB203580 blocked translocation of the cell death activator, Bax, from the cytosol to the mitochondria after treatment with SNP. Moreover, expressing a constitutively active form of MKK3, a direct activator of p38 MAP kinase promoted Bax translocation and cell death in the absence of SNP. Bax-deficient cortical neurons were resistant to SNP, further demonstrating the necessity of Bax in this mode of cell death. These results demonstrate that p38 MAP kinase activity plays a critical role in NO-mediated cell death in neurons by stimulating Bax translocation to the mitochondria, thereby activating the cell death pathway.  相似文献   

19.
The phosphoinositide 3-OH kinase (PI3K)-PKB/Akt signaling pathway has been shown to mediate both Ras- and cytokine-induced protection from apoptosis. In addition, apoptosis induced by the p53 tumor suppressor protein can be inhibited by Ras- and cytokine-mediated signaling pathways. It was therefore of interest to determine if the PI3K-PKB/Akt signaling pathway was capable of conferring protection from apoptosis induced by p53. We demonstrate in this report that constitutively active PI3K and PKB/Akt are capable of significantly delaying the onset of p53-mediated apoptosis. This was manifested as a delay in the kinetics of DNA degradation and cell death as well as a profound attenuation in the accumulation of cells with a sub-G(1) DNA content. Moreover, we found that this effect is mediated in the absence of changes in expression of Bcl-2, Bcl-Xl, and the pro-apoptotic protein Bax. Our results provide the first direct and unambiguous link between p53-mediated apoptosis and the PI3K-PKB/Akt signaling pathway.  相似文献   

20.
The anthracycline antibiotic doxorubicin (DOX) is a potent cancer chemotherapeutic agent that exerts both acute and chronic cardiotoxicity. Here we show that in adult mouse cardiomyocytes, DOX activates (i) the pro-apoptotic p53, (ii) p38MAPK and JNK, (iii) Bax translocation, (iv) cytochrome c release, and (v) caspase 3. Further, it (vi) inhibits expression of anti-apoptotic Akt, Bcl-2 and Bcl-xL, and (vii) induces internucleosomal degradation and cell death. WNT1-inducible signaling pathway protein-1 (WISP1), a CCN family member and a matricellular protein, inhibits DOX-mediated cardiomyocyte death. WISP1 inhibits DOX-induced p53 activation, p38 MAPK and JNK phosphorylation, Bax translocation to mitochondria, and cytochrome c release into cytoplasm. Additionally, WISP1 reverses DOX-induced suppression of Bcl-2 and Bcl-xL expression and Akt inhibition. The pro-survival effects of WISP1 were recapitulated by the forced expression of mutant p53, wild-type Bcl-2, wild-type Bcl-xL, or constitutively active Akt prior to DOX treatment. WISP1 also induces the pro-survival factor Survivin via PI3K/Akt signaling. Overexpression of wild-type, but not mutant Survivin, blunts DOX cytotoxicity. Further, WISP1 stimulates PI3K–Akt-dependent GSK3β phosphorylation and β-catenin nuclear translocation. Importantly, WISP1 induces its own expression. Together, these results provide important insights into the cytoprotective effects of WISP1 in cardiomyocytes, and suggest a potential therapeutic role for WISP1 in DOX-induced cardiotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号