首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Norio Murata 《BBA》1971,226(2):422-432
The effects of monovalent cations on the light energy distribution between two pigment systems of photosynthesis were studied in isolated spinach chloroplasts by measuring chlorophyll a fluorescence and photochemical reactions.

The addition of NaCl to the chloroplast suspension produced a 40–80% increase in fluorescence yield measured at 684 nm at room temperature. The fluorescence increase was completed about 5 min after the addition. The effect saturated at 100 mM NaCl. Low-temperature fluorescence spectra showed that NaCl increased the yields of two fluorescence bands of pigment system II at 684 and 695 nm but decreased that of pigment system I at 735 nm. Similar effects on chlorophyll a fluorescence at room and at low temperatures were obtained with NaBr, NaNO3, Na2SO4, LiCl, KCl, RbCl, CsCl, NH4Cl and CH3NH3Cl.

NaCl suppressed the quantum efficiency of NADP+ reduction supported by the ascorbate-2,6-dichlorophenolindophenol (DCIP) couple as an electron donor system in the presence of 3-(3′,4′-chlorophenyl)-1,1-dimethylurea (DCMU). On the other hand, NaCl only slightly enhanced the quantum yield of photoreaction II measured by the Hill reaction with DCIP.

It is concluded that the monovalent cations tested suppressed the excitation transfer from pigment system II to pigment system I; the effects were the same as those of alkaline earth metals and Mn2+ (refs. 1, 2).  相似文献   


2.
Fluorescence emission spectra were measured of intact cells and subcellular preparations of the green photosynthetic bacterium Prosthecochloris aestuarii in the presence and in the absence of dithionite. A 3–5-fold increase in bacteriochlorophyll a fluorescence at 816 nm occurred upon addition of dithionite in a membrane vesicle preparation (Complex I), in a photochemically active pigment-protein complex and in a bacteriochlorophyll a protein complex free from reaction centers. The pigment-protein complex showed a relatively strong long-wave emission band (835 nm) of bacteriochlorophyll a, which was preferentially excited by light absorbed at 670 nm and was not stimulated by dithionite. With Complex I, which contains some bacteriochlorophyll c in addition to bacteriochlorophyll a, a 3–4-fold stimulation of bacteriochlorophyll c emission was also observed. Emission bands at shorter wavelengths, probably due to artefacts, were quenched by dithionite. With intact cells, the effect of dithionite was smaller, and consisted mainly of an increase of bacteriochlorophyll a emission.

The results indicate that the strong increase in the yield of bacteriochlorophyll emission that occurred upon generating reducing conditions is, at least mainly, due to a direct effect on the light-harvesting systems, and does not involve the reaction center as had been earlier postulated.  相似文献   


3.
George Papageorgiou  Govindjee 《BBA》1971,234(3):428-432
The pH of the suspension medium was found to have a remarkable influence on the “slow” (min) time course of Chlorophyll a fluorescence yield in the green alga Chlorella pyrenoidosa and in the blue-green alga Anacystis nidulans. In Chlorella, the decay of fluorescence yield, in the 1- to 5-min region, is strongly retarded at alkaline pH; this decay rate shows an optimum at pH 6–7. In Anacystis, the rise of fluorescence yield, in the same time range, is decreased optimally at pH 6–7; poisoning with 3(3,4-dichlorophenyl)-1,1-dimethylurea reverses the direction of this pH effect. These observations suggest a correlation of the H+ status (or the processes associated with it such as photophosphorylation and resulting conformational changes) of the chloroplast to the yield of chlorophyll a fluorescence in vivo.  相似文献   

4.
Absorption and fluorescence emission spectra of Rhodopseudomonas capsulata, strains 37b4 (wild type), A1a+ (blue-green mutant strain), Y5 (phototroph negative, having only B-800–850 bacteriochlorophyll-carotenoid-protein complex) at 4 K, 77 K and 300 K were measured. The fluorescence emission at 890 nm of the B-870 bacteriochlorophyll band dominates the emission of other spectral forms of the strains 37b4 and A1a+, while in strain Y5 a fluorescence emission band at 865 nm of the B-850 bacteriochlorophyll dominates. Very little fluorescence was observed at 805 nm. A linear relation between relative fluorescence intensity and the exciting light intensity was observed. The integrated fluorescence yield increased as the temperature was lowered from 300 K to 4 K. The results are discussed in the light of the arrangement of pigment molecules in the membrane and the process of energy migration within the photosynthetic apparatus.  相似文献   

5.
M. Kitajima  W.L. Butler 《BBA》1975,408(3):297-305
The parameters listed in the title were determined within the context of a model for the photochemical apparatus of photosynthesis.

The fluorescence of variable yield at 750 nm at −196 °C is due to energy transfer from Photosystem II to Photosystem I. Fluorescence excitation spectra were measured at −196 °C at the minimum, FO, level and the maximum, FM, level of the emission at 750 nm. The difference spectrum, FMFO, which represents the excitation spectrum for FV is presented as a pure Photosystem II excitation spectrum. This spectrum shows a maximum at 677 nm, attributable to the antenna chlorophyll a of Photosystem II units, with a shoulder at 670 nm and a smaller maximum at 650 nm, presumably due to chlorophyll a and chlorophyll b of the light-harvesting chlorophyll complex.

Fluorescence at the FO level at 750 nm can be considered in two parts; one part due to the fraction of absorbed quanta, , which excites Photosystem I more-or-less directly and another part due to energy transfer from Photosystem II to Photosystem I. The latter contribution can be estimated from the ratio of FO/FV measured at 692 nm and the extent of FV at 750 nm. According to this procedure the excitation spectrum of Photosystem I at −196 °C was determined by subtracting 1/3 of the excitation spectrum of FV at 750 nm from the excitation spectrum of FO at 750 nm. The spectrum shows a relatively sharp maximum at 681 nm due to the antenna chlorophyll a of Photosystem I units with probably some energy transfer from the light-harvesting chlorophyll complex.

The wavelength dependence of was determined from fluorescence measurements at 692 and 750 nm at −196 °C. is constant to within a few percent from 400 to 680 nm, the maximum deviation being at 515 nm where shows a broad maximum increasing from 0.30 to 0.34. At wavelengths between 680 and 700 nm, increases to unity as Photosystem I becomes the dominant absorber in the photochemical apparatus.  相似文献   


6.
Fluorescence and energy transfer properties of bean leaves greened by brief, repetitive xenon flashes were studied at −196 °C. The bleaching of P-700 has no influence on the yield of fluorescence at any wavelength of emission. The light-induced fluorescence yield changes which are observed in both the 690 and 730 nm emission bands in the low temperature fluorescence spectra are due to changes in the state of the Photosystem II reaction centers. The fluorescence yield changes in the 730 nm band are attributed to energy transfer from Photosystem II to Photosystem I. Such energy transfer was also confirmed by measurements of the rate of photooxidation of P-700 at −196 °C in leaves in which the Photosystem II reaction centers were either all open or all closed. It is concluded that energy transfer from Photosystem II to Photosystem I occurs in the flashed bean leaves which lack the light-harvesting chlorophyll a/b protein.  相似文献   

7.
M. Das  Govindjee 《BBA》1967,143(3):570-576
When Chlorella cells are ruptured at pH 4.6 by sonication in air, its absorption spectrum can be best explained if one assumes that a long-wave chlorophyll a form (Chl a 693) is preferentially destroyed. Using these preparations, and comparing them with the algal suspension and the sonicates prepared at pH 7.8 under argon, we make the following conclusions: (a) The red drop beginning at about 675–680 nm in the action spectrum* of fluorescence at 298 °K must be due to the presence of a non-(or weakly) fluorescent form of chlorophyll a. We suggest that this form is Chl a 693. The red drop is absent in the aerobic sonicates. (b) The red drop in fluorescence in whole algal cells is not due to any errors in absorption measurements; this drop is clearly present in the anaerobic sonicates. (c) The emission band at 723 nm, discovered by in whole Chlorella cells at 77 °K, may be due to increased fluorescence efficiency of Chl a 693 at low temperature; the F723 band is absent in aerobic sonicates.  相似文献   

8.
J. Amesz  M.P.J. Pulles  B.R. Velthuys 《BBA》1973,325(3):472-482

1. 1. Spinach chloroplasts were stored in the dark for at least 1 h, rapidly cooled to −40 °C, and illuminated with continuous light or short saturating flashes. In agreement with the measurements of Joliot and Joliot, chloroplasts that had been preilluminated with one or two flashes just before cooling showed a less efficient increase in the yield of chlorophyll a fluorescence upon illumination at −40 °C than dark-adapted chloroplasts. The effect disappeared below −150 °C, but reappeared again upon warming to −40 °C. Little effect was seen at room temperature in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), added after the preillumination.

2. 2. Light-induced absorbance difference spectra at −40 °C in the region 500–560 nm indicated the participation of two components, the socalled 518-nm change (P518) and C-550. After preillumination with two flashes the absorbance change at 518 nm was smaller, and almost no C-550 was observed. After four flashes, the bands of C-550 were clearly visible again.

3. 3. The fluorescence increase and the absorbance change at 518 nm showed the same type of flash pattern with a minimum after the second and a maximum at the fourth flash. In the presence of 100 μM hydroxylamine, the fluorescence response was low after the fourth and high again after the sixth flash, which confirmed the hypothesis that the flash effect was related to the so-called S-state of the electron transport pathway from water to Photosystem 2.

4. 4. The kinetics of the light-induced absorbance changes were the same at each wavelength, and, apart from the size of the deflection, they were independent of preillumination. Flash experiments indicated that the absorbance changes were a one-quantum reaction. This was also true for the fluorescence increase in dark-adapted chloroplasts, but with preilluminated chloroplasts several flashes were needed to approximately saturate the fluorescence yield.

5. 5. The results are discussed in terms of a mechanism involving two electron donors and two electron acceptors for System 2 of photosynthesis.

Abbreviations: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea  相似文献   


9.
Wolfgang Kowallik 《Planta》1966,69(3):292-295
Summary Increasing blue light intensity inhibits the growth of Chlorella pyrenoidosa in glucose culture in which photosynthesis is blocked by DCMU, whereas red light supports growth which is the same as or better than that in dark controls.The action spectrum of light induced protein synthesis from exogenous glucose (photosynthesis inhibited, blue light addition resulting in growth >90% of the dark control) shows only one broad maximum at 450–490 nm which resembles the absorption spectrum of carotenoids.  相似文献   

10.
Chlorella pyrenoidosa has been cultivated in radiation of wavelengths between 690–975 nm for several months. Absorption spectra and action spectra of photo-synthesis have been determined for far red and “white” light brown cultures, In vivo spectrophotometric analyses and action spectra showed that fur red growth Chlorella adapted to the extreme light conditions by an increase both in absorption and photosynthesis above 700 nm. It is proposed that som of the in vivo normal chlorophyll a forms were converted to a far red absorbing chlorophyll a form, giving the far red exposed suspension an increased photosynthetic activity between 700–740 nm. The analyses of far red grown Chlorella have also shown an increased photosynthesis in the blue part of the spectrum, presumably due to a decrease in photosynthetically inactive carotenoid content. By culturing Chlorella in a “white” light gradient between 0.5 × 104 and 3.7 × 104 erg cm?2 s?1, it has been demonstrated that light intensity did not influence pigment ratios between 500–750 nm. In the blue part, however, high light levels caused increased absorption because of increased carotenoid content. Some ecological aspects of this far red effect have also been discussed.  相似文献   

11.
From Emerson enhancement measurements of O2 evolution in Chlorella pyrenoidosa, it was possible to establish a relationship between the concentration of photosystem II open reaction centers (E) and the distribution of photons between photosystems I and II [(1 − )/] during steady state. The superposition of lights of two different wavelengths (1 and 2) gives concentrations of E and intermediate between those obtained with light 1 and 2 separately. This relationship extends a previous one based on quantum yield measurements. It has been expressed here by a curve corresponding to a fixed value of the intersystem apparent equilibrium constant (K). Up to 700 nm, K remains equal to 6. Above this wavelength, although the margin of error is rather great, K apparently increases to 12 or more.

The possibility of “spill-over” of light absorbed by System II to System I was studied. There is no probability that this spill-over, if any, exceeds 25% in Chlorella.

The apparent equilibrium constant is decreased by 3(3,4-dichlorophenyl)-1,1-dimethylurea. This is not in favor of the hypothesis of fully independent electron-transfer chains in photosynthesis; it is therefore likely that some communication between those chains exists.  相似文献   


12.
E. Gantt  C.A. Lipschultz 《BBA》1973,292(3):858-861
Allophycocyanin appears to be the pigment through which energy trapped by phycobiliproteins is funneled to the chloroplast lamellae. Isolated, intact phycobilisomes from Porphyridium cruentum have a maximum fluorescence emission peak at 675–680 nm when excited at 545 nm. Upon dissociation, when the energy transfer is interrupted the 675–680-nm peak declines. Excitation at 435 nm produced no significant fluorescence at this wavelength.  相似文献   

13.
Richard L. Van Metter   《BBA》1977,462(3):642-658
The “light-harvesting chlorophyll a/b · protein” described by Thornber has been prepared electrophoretically from spinach chloroplasts. The optical properties relevant to energy transfer have been measured in the red region (i.e. 600–700 nm). Measurements of the absorption spectrum, fluorescence excitation spectrum and excitation dependence of the fluorescence emission spectrum of this protein confirm that energy transfer from chlorophyll b to chlorophyll a is highly efficient, as is the case in concentrated chlorophyll solutions and in vivo. The excitation dependence of the fluorescence polarization shows a minimum polarization of 1.9 % at 650 nm which is the absorption maximum of chlorophyll b in the protein and rises steadily to a maximum value of 13.8 % at 695 nm, the red edge of the chlorophyll a absorption band. Analysis of these measurements shows that at least two unresolved components must be responsible for the chlorophyll a absorption maximum. Comparison of polarization measurements with those observed in vivo shows that most of the depolarization observed in vivo can take place within a single protein. Circular dichroism measurements show a doublet structure in the chlorophyll b absorption band which suggests an exciton splitting not resolved in absorption. Analysis of these data yields information about the relative orientation of the S0→S1 transition moments of the chlorophyll molecules within the protein.  相似文献   

14.
The fluorescence induction and other fluorescence properties of spinach chloroplasts at room temperature were probed utilizing two 30-ps wide laser pulses (530 nm) spaced Δt (s) apart in time (Δt = 5–110 ns). The energy of the first pulse (P1) was varied (1012–1016 photons · cm−2), while the energy of the second (probe) pulse (P2) was held constant (5 · 1013 photons · cm−2). A gated (10 ns) optical multichannel analyzer-spectrograph system allowed for the detection of the fluorescence generated either by P1 alone, or by P2 alone (preceded by P1). The dominant effect observed for the fluorescence yield generated by P1 alone is the usual singlet-singlet exciton annihilation which gives rise to a decrease in the yield at high energies. However, when the fluorescence yield of dark-adapted chloroplasts is measured utilizing P2 (preceded by pulse P1) an increase in this yield is observed. The magnitude of this increase depends on Δt, and is characterized by a time constant of 28 ± 4 ns. This rise in the fluorescence yield is attributed to a reduction of the oxidized (by P1) reaction center P-680+ by a primary donor. At high pulse energies (P1 = 4 · 1014 photons · cm−2) the magnitude of this fluorescence induction is diminished by another quenching effect which is attributed to triplet excited states generated by intense P1 pulses. Assuming that the P1 pulse energy dependence of the fluorescence yield rise reflects the closing of the reaction centers, it is estimated that about 3–4 photon hits per reaction center are required to close completely the reaction centers, and that there are 185–210 chlorophyll molecules per Photosystem II reaction center.  相似文献   

15.
Bacon Ke  Thomas H. Chaney 《BBA》1971,226(2):341-353
Triton treatment of chromatophores of carotenoid-deficient Chromatium followed by density-gradient centrifugation led to a separation into three subchromatophore fractions. Unlike the case with chromatophores of regular Chromatium, Triton releases about 1/3 of the total bulk bacteriochlorophyll into one fraction (designated G, for green) whose major absorption-band maximum is at 780 nm. One fraction (H, for heavy) absorbs at 805 and 885 nm, with an absorbance ratio A885 nm/A805 nm between 1.5 and 2; another fraction (L, for light) absorbs at 805 nm and has a shoulder at 825 nm. The absorption and fluorescence emission spectra of the three fractions at room temperature and 77°K indicate that the different bacteriochlorophyll forms are efficiently separated by Triton treatment.

The reaction center P890 is concentrated exclusively in the H-fraction, at a level of 5–7% of the bulk bacteriochlorophyll. The solubilized bacteriochlorophyll absorbing at 780 nm can be totally and irreversibly bleached by 5 mM ferricyanide. The other bacteriochlorophyll forms in the H- and L-fractions are also irreversibly bleached by ferricyanide to variable extents. P890 is the only component that can be re-reduced by ascorbate after ferricyanide oxidation. The P890 content estimated by reversible chemical bleaching agrees well with that obtained by reversible light bleaching. The different bacteriochlorophyll forms, with the exception of the 780-nm absorbing form, are relatively stable toward light bleaching. Again, only P890 is reversibly bleached by light.

Cytochromes-555 and -553 are distributed in both the H-and L-fractions, but not in the solubilized-bacteriochlorophyll G-fraction. However, only cytochromes in the H-fraction which contains all of the P890 can undergo coupled oxidation. Excitation with 20-nsec ruby-laser pulses shows that cytochrome-555 can be oxidized in 2–3 μsec by photooxidized P890, indicating that necessary conformation for rapid electron transport is retained in the subchromatophore particles.

The data on fractionation and redox reactions obtained here, together with direct kinetic measurements recently reported in the literature lend further support to the view that oxidation of these two cytochromes is mediated by the same reaction center, P890.  相似文献   


16.
K. Erixon  W. L. Butler 《BBA》1971,234(3):381-389
Absorbance changes and fluorescence yield changes induced by irradiating spinach chloroplasts with red light at −196° were measured as a function of the redox potential of the chloroplast suspension. Absorbance changes at 546 nm indicate the photoreduction of C-550 and changes at 556 nm indicate the photooxidation of cytochrome b 559. The changes of fluorescence yield indicate the photoreduction of Q, the fluorescence quencher of chlorophylla a in Photosystem II. The titration curves for all three changes were essentially the same and showed the same midpoint potential. In other experiments as well, it was found that when C-550 is in the reduced state the fluorescence yield of the chloroplasts is high and the low-temperature photooxidation of cytochrome b 559 is blocked. These data indicate that C-550 may be equivalent to Q and that cytochrome b 559 serves as the electron donor for the photoreduction of C-550 at low temperature.  相似文献   

17.
The kinetics of fluorescence yield inChlorella pyrenoidosa and spinach chloroplasts were studied in the time range of 0.5 μs to several hundreds of microseconds in the presence of hydroxylamine. Fluorescence was excited with a just-saturating xenon flash with a halfwidth of 13 μs (λ = 420 nm). The fast rise of the fluorescence yield which was limited by the rate of light influx, was, in the presence of 10−3–10−2 M hydroxylamine, replaced by a slow component which had a half risetime of 25 μs in essence independent of light intensity. This slow fluorescence yield increase reflects a dark reaction on the watersplitting side of Photosystem II. Simultaneous oxygen evolution measurements suggested that a fast fluorescence component is only present in organisms with intact O2-evolving system, whereas a slow rise predominantly occurs in organisms with the watersplitting system irreversibly inhibited by hydroxylamine.

The results can be explained by the following hypotheses: (a) The primary donor of Photosystem II in its oxidized state, P+, is a fluorescence quencher. (b) Hydroxylamine prevents the secondary electron donor Z from reducing the oxidized reaction center pigment P+ rapidly. This inhibition is dependent on hydroxylamine concentration and is complete at a concentration of 10−2 M. (c) A second donor (not transporting electrons from water) transfers electrons to P+ with a half time of roughly 25 μs.  相似文献   


18.
1. The wavelength dependence of the fluorescence polarization (FP) ratio and dichroism has been studied with magneto-oriented (10–13 kG) whole cells of Chlorella pyrenoidosa, Scenedesmus obliquus, Euglena gracilis and spinach chloroplasts suspended in their aqueous growth media (or Tris-buffered sucrose solution in the case of the chloroplasts) under physiological conditions. The FP ratio is defined as the fluorescence intensity polarized parallel divided by the intensity polarized perpendicular to the membrane planes.

2. The FP ratio is typically in the range of 1.2–1.9 in Chlorella, 1.20–1.25 in Scenedesmus and 1.4–1.5 in spinach chloroplasts at fluorescence wavelengths above 690 nm. Below 690 nm the FP ratio decreases steadily with decreasing wavelength and may be as low as approx. 1.05 at 660 nm. These results are interpreted in terms of the orientation of the Qy transition moment vectors of the different spectroscopic forms of chlorophyll. For the chlorophyll a 680 form these vectors are inclined at angles of 30° or less (in Chlorella) with respect to the membrane planes, while the shorter wavelength chlorophyll a 670 forms appear to be not nearly as well oriented.

3. The Euglena fluorescence peak is red shifted to 714 nm (in the other algae and chloroplasts it is situated at 685 nm) and the FP ratio is approx. 1.20 in the 720–730 nm region and decreases with decreasing wavelength below 720 nm and is only 1.05 at 690 nm. This wavelength dependence is in good qualitative agreement with the fluorescence microscope studies of single chloroplasts of Euglena by Olson, R. A., Butler, W. H. and Jennings, W. H. ((1961) Biochim. Biophys. Acta, 54, 615–617).

4. By means of a model calculation it is shown that the high FP ratios observed with Chlorella are entirely consistent with the low values of the degree of polarization (0.01–0.06) determined by previous workers with unoriented cell suspensions.

5. The influence of reabsorption and the resulting distortion in the wavelength dependence of the FP ratio are described. The possibility that the fluorescence is polarized by scattering artifacts, rather than being a result of the intrinsic orientation of chlorophyll, is considered.

6. Linear dichroism studies with Chlorella and spinach chloroplasts confirm the orientation of the Qy transition moment vectors deduced from the FP ratio. Furthermore, it appears that the porphyrin rings are tilted out of the membrane plane and that the carotenoid molecules tend to lie with their long axes in the lamellar plane.

7. In Euglena, dichroism studies indicate that chlorophyll a 680 is unoriented, while chlorophyll a 695 appears to be oriented similar to chlorophyll a 680 in Chlorella or spinach chloroplasts, a result which is also in accord with the measured FP ratio of Euglena.

8. The possibility that the magnetic field gives rise to the reorientation of individual chlorophyll molecules is shown to be highly unlikely.  相似文献   


19.
Chromatophores of the purple photosynthetic bacteria Rhodospirillum rubrum and Rhodobacter (Rhodopseudomonas) sphaeroides were excited by means of 35-ps flashes at 532 nm of varying intensities, both at room temperature and at 4 K. With increasing exciting energy densities the integrated yield of fluorescence produced by these flashes was found to decrease considerably due to singlet-singlet annihilation. An analysis of the results showed that in R. rubrum the number of connected antenna molecules between which energy transfer is possible decreases from about 1000 to about 150 when the temperature is lowered from 298 to 4 K. In Rb. sphaeroides the B875 light-harvesting complex appears to contain about 100 connected bacteriochlorophyll (BChl) 875 molecules at 4 K, while the B800–850 complex contains about 45 BChl 850 molecules. The data are explained by a model for the antenna of Rb. sphaeroides in which units of B875, containing about four reaction centres, are separated by an array of B800–850 units that surrounds B875. By applying a random walk model we found that in both species the rate of energy transfer between neighbouring antenna molecules decreased about 10-fold upon lowering the temperature. The rate of energy transfer from antenna molecules to either open or closed reaction centres decreased only 3- to 4-fold in R. rubrum and remained approximately constant in Rb. sphaeroides upon cooling. A blue shift of the emission spectra at 4 K of both species was observed when the excitation energy density was increased to a level where singlet-singlet annihilation plays a significant role. This observation appears to support the notion that an additional long-wave pigment exists in the antenna of these bacteria.  相似文献   

20.
Photosynthetic features of Zostera marina L. and its autotrophic epiphyte community were investigated in a population inhabiting a shallow (1.3 m depth) water meadow in Great Harbor, Woods Hole, MA (U.S.A.). Photosynthesis versus irradiance (P-I) relationships were measured with respect to leaf age determined by the leaf position in the shoot bundle and by location of the tissue along the leaf axis. Therefore both age and light intensity gradients along the leaf axis were considered. The maximum photosynthesis (Pmax) per dm2 typically increased nearly two-fold along the leaf axis from leaf bases to apices. Photosynthetic rate on a chlorophyll (Chl) basis did not increase as dramatically along the leaf axis, and rates were usually lowest in tissues with the highest Chl content. The P-I relationships of leaves of different ages did not reveal photoinhibition even at light intensities > 1400 μE • m−2 • s −1. Furthermore, no photoinhibition was observed in tissues from leaf blade bases, which never experienced high light levels (> 500 μE • m −2 • s−1) in situ in Great Harbor. The initial slopes of the P-I curves and light compensation and saturation values varied along the leaf axis in relation to in situ light intensity gradients and in relation to leaf or tissue age. It appeared that leaf and/or tissue age was more important than light environment in determining P-I responses. The contribution of the autotrophic epiphyte community on Z. marina leaves to total photosynthesis per dm2 was between 27 and 50%, and between 10 and 44% per mg chlorophyll. These levels of epiphyte photosynthesis can double the primary production of Z. marina leaves. No detrimental effects of epiphyte cover were realized in leaf maximal photosynthesis or P-I relationships. Non-epiphytized leaves and leaves from which epiphytes were removed showed essentially identical photosynthetic features. Light intensity and age gradients along the leaf axis control both the photosynthetic performance of the leaves and epiphyte biomass and photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号