首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
2.
Two problems in defining the germline repertoire of immunoglobulin kappa genes were investigated. One concerns putative transposed V kappa genes (orphons), the other one weak hybridization signals which may or may not turn out to be V kappa genes (UHOs). It was shown by sequencing that the three V kappa genes Z2, Z3 and Z4 are very closely related to the Z1 and V118 genes and to two other genes which had been localized on chromosomes 1 and 22, i.e. outside the kappa locus on chromosome 2. It is therefore likely that also the Z2-Z4 genes are orphons and not part of the kappa locus. Two UHOs turned out not to contain V kappa-like structures. This together with previous results makes it likely that we have detected all germline V kappa genes with the available hybridization probes.  相似文献   

3.
The Z family, a group of transposed human immunoglobulin V kappa genes   总被引:3,自引:0,他引:3  
B Straubinger  R Thiebe  M Pech  H G Zachau 《Gene》1988,69(2):209-214
A group of highly homologous transposed human V kappa I genes, which we call the Z family, was characterized. To date four members, ZI-ZIV, comprising about 230 kb, have been analyzed on cosmid clones. The largest region (ZI) has a length of 85 kb. The Z regions show extensive homology to each other according to restriction maps and hybridization data. In each Z region a solitary V kappa I gene was found. No V kappa genes of other subgroups were detected by hybridization. The nucleotide sequence of the ZI gene revealed a non-processed V kappa I pseudogene. Hybridization experiments with DNAs from rodent/human cell hybrids and other experimental data indicate that some and possibly all members of the Z family lie outside of the kappa locus which is located on chromosome 2; they have been transposed to other chromosomes. Because of their separation from the J kappa C kappa gene segment, the Z genes can be classified as pseudogenes independent of their sequences. We postulate that the Z family arose by amplification event(s). The Z regions can also be regarded as a small family of very long repetitive sequences.  相似文献   

4.
The genes encoding the variable, joining and constant regions of human immunoglobulin light chains have been localized to the short arm of chromosome 2. However, several VK genes lie outside of the locus: a single copy cluster of five VK genes is located on chromosome 22; an isolated but amplified VkI gene is found on chromosome 1; and several isolated VkI genes are on as-yet-unidentified chromosomes other than chromosome 2. Vk genes not contained within the kappa locus are termed orphons. We have attempted to gain insight into the mechanism of transposition of both the chromosome 22 cluster and the several amplified VkI genes by searching in the kappa locus for a parent copy of the former, and by analyzing the junctions between transposed VKI-containing segments and adjacent non-amplified regions. The chromosome 22 orphon cluster must have been non-duplicatively transposed. Sequence features at the junctions of this and other orphon regions are direct and inverted repeats, and, in one case, an Alu repeat. These unusual features may have predisposed the orphon regions to transposition by serving as target sites for enzymes involved in recombination.  相似文献   

5.
The VK gene segments that have been transposed from the kappa locus on the short arm of chromosome 2 at 2p11-12 to other chromosomal sites are called orphons. The 18 VK orphons sequenced up to now carry defects and are to be considered pseudogenes. We now describe the VKI gene segment V108 whose sequence is without any defects and which was localized to the long arm of chromosome 2 at 2q12-14 by in situ hybridization. The V108 region may have been transposed from the short to the long arm of chromosome 2 by a pericentric inversion. Possible reasons for the conservation of its sequence are discussed. In spite of its bona fide sequence V108 is considered to be an unlikely candidate for a VK-JK rearrangement and subsequent functional expression.  相似文献   

6.
The major source of immunoglobulin diversity is variation in DNA sequence among multiple copies of variable region (V) genes of the heavy- and light-chain multigene families. In order to clarify the evolutionary pattern of the multigene family of immunoglobulin light kappa chain V region (V kappa) genes, phylogenetic analyses of V kappa genes from humans and other vertebrate species were conducted. The results obtained indicate that the V kappa genes so far sequenced can be grouped into three major monophyletic clusters, the cartilaginous fish, bony fish and amphibian, and mammalian clusters, and that the cartilaginous fish cluster first separated from the rest of the V kappa genes and then the remaining two clusters diverged. The mammalian V kappa genes can further be divided into 10 V kappa groups, 7 of which are present in the human genome. Human and mouse V kappa genes from different V kappa groups are intermingled rather than clustered on the chromosome, and there are a large number of pseudogenes scattered on the chromosome. This indicates that the chromosomal locations of V kappa genes have been shuffled many times by gene duplication, deletion, and transposition in the evolutionary process and that many genes have become nonfunctional during this process. This mode of evolution is consistent with the model of birth-and-death evolution rather than with the model of concerted evolution. An analysis of duplicate V kappa functional genes and pseudogenes in the human genome has indicated that pseudogenes evolve faster than functional genes but that the rate of nonsynonymous nucleotide substitution in the complementarity-determining regions of V kappa genes has been enhanced by positive Darwinian selection.   相似文献   

7.
As part of the ongoing work in our laboratory on the structural organization of the human V kappa locus we screened cosmid libraries with V kappa gene probes and obtained numerous V kappa gene-containing cosmid clones. Several genomic regions of the V kappa locus were reconstructed from overlapping cosmid inserts and were extended by one step of chromosomal walking. The regions that are called Wa, Wb, Oa, Ob and Ob' comprise about 370 kb (10(3) bases) of DNA and contain 24 V kappa genes and pseudogenes. The V kappa genes belong to the three dominant subgroups (V kappa I, V kappa II, V kappa III) and are arranged to form mixed clusters with members of the different subgroups being intermingled with each other. The distances between the genes range from 1 to 15 kb. Three genes of the Wa and Wb regions that were sequenced turned out to be pseudogenes. Terminal parts of the regions Wa and Ob that do not contain V kappa genes of one of the known subgroups may represent extended spacer regions within the V kappa locus. Wa and Wb are duplicated regions located at different positions of the locus. Region Wb was found to comprise inversely repeated sections of at least 14 kb each that contain V kappa genes oriented in opposite polarity. This finding is consistent with inversion-deletion models of V-J joining; it also shows that the V kappa locus contains not only unique and duplicated but also triplicated parts. The data on the W and O regions are discussed together with those on the L regions and on other regions established in our laboratory. Although the picture of the human V kappa locus with, to date, about 70 different non-allelic V kappa genes is still incomplete, some general features with respect to the organization of the genes and the limited duplication of genomic regions have emerged.  相似文献   

8.
Zachau HG 《Biological chemistry》2000,381(9-10):951-954
Some aspects of the work of our group on the human and mouse immunoglobulin kappa genes are reviewed. The human kappa locus contains a large duplication: a 600 kb Ckappa-proximal copy with 40 Vkappa genes is found in the close vicinity of a 440 kb Ckappa-distal copy with 36 very similar, but not identical, Vkappa genes. The chimpanzee has only the Ckappa-proximal copy of the locus. The kappa locus of the mouse is close to 3.2 Mb in size, of which 3.1 Mb have been cloned in four contigs, leaving three small gaps of together about 90 kb; 140 Vkappa genes and pseudogenes were localized and sequenced. In parallel to the elucidation of the structure of the kappa loci, the mechanisms of the V-J rearrangement, somatic hypermutation and kappa gene expression were studied. Various polymorphisms were detected in the human population and a number of haplotypes defined. In addition to the Vkappa genes within the loci numerous Vkappa orphons were localized on different chromosomes. Comparing the kappa loci of different species allows some interesting conclusions as to the evolution of this multigene family. Finally our strategy of elucidating the structure and function of the kappa loci, which has been termed a 'cottage industry approach', is discussed in relation to the large-scale genome analysis as pursued today using automated methods.  相似文献   

9.
The rearrangement of a variable (V) and a constant (C) gene appears to be a necessary prerequisite for immunoglobulin gene expression. Multiple different rearranged kappa genes were found in several mouse myelomas, although these cells produce only one type of kappa chain [Wilson, R., Miller, J., & Storb, U. (1979) Biochemistry 18, 5013--5021]. It is therefore of interest to understand how only one allele within a lymphoid cell becomes expressed, while the other allele remains nonfunctional ("allelic exclusion"). We have studied the chromatin conformation of kappa genes by making use of the preferential digestion of potentially active genes by DNase I described, for example, for globin genes [Weintraub, H., & Groudine, M. (1976) Science (Washington, D.C.) 193, 848--856]. The DNase I sensitivity of kappa genes in myeloma tumors, in a B cell lymphoma, and in liver was determined by hybridization with DNA on Southern blots. It was found that rearranged C kappa genes are DNase I sensitive in myelomas in which several kappa genes are rearranged, regardless of whether the rearranged genes code for the kappa chains synthesized by the cell. Furthermore, the C kappa gene in germline configuration is also DNase I sensitive in a B cell lymphoma; i.e., it is in the same chromatin state as the rearranged C kappa gene which probably codes for the kappa chains produced by the cell. The altered chromatin state appears to be localized: V kappa genes in germline context are not DNase I sensitive in myeloma or B lymphoma cells while C kappa genes present in a kappa gene cluster on the same chromosomes are sensitive. When rearranged, however, the V kappa genes are as sensitive to DNase I as are rearranged C kappa genes. V lambda and C lambda genes are not DNase I sensitive in kappa myelomas. Thus, commitment to kappa gene expression is apparently correlated with a chromatin conformation which confers increased DNase I sensitivity to the DNA in the vicinity of all C kappa genes in the cell. "Allelic exclusion" does not operate on the level of chromatin conformation which can be detected by altered DNase I sensitivity.  相似文献   

10.
An 80,000 base-pair region from the gene locus encoding the variable regions of the human immunoglobulins of the kappa type (V kappa genes) was cloned and analysed. The region comprises five V kappa sequences of subgroup I and one interspersed V kappa pseudogene of subgroup II. The six genes and pseudogenes are arranged at different distances but in the same orientation. The organization of the cluster can be explained by a series of amplification steps; the existence of a V kappa II pseudogene in a V kappa I gene cluster may have been the result of a transposition event; a final duplication step led to a second closely related copy of the cluster. From sequence data for altogether 16,000 base-pairs it appears that gene conversion-like events and subsequent selection contribute to both homogeneity and diversity of the V kappa repertoire.  相似文献   

11.
We previously demonstrated that the human anti-Haemophilus influenzae type b polysaccharide (Hib-PS) VL repertoire is dominated by a product of the V kappa II gene, A2, and that V kappa II-A2 anti-Hib-PS antibodies have little or no somatic mutation in VL. To further study this VL repertoire, we studied non-A2 anti-Hib-PS antibodies that were identified either serologically or by amino-terminal amino acid sequence analysis. Of 15 non-A2 anti-Hib-PS antibodies from 12 vaccinated adults, we found four V lambda, five V kappa I, one non-A2 V kappa II, four V kappa III, and one V kappa IV antibodies. As expected, all but two of these subjects also produced V kappa II-A2 antibodies. Interestingly, one of these subjects lacks the A2 gene in the germ line. However, both subjects who did not produce detectable V kappa II antibody did produce normal amounts of total anti-Hib-PS antibody after vaccination. Candidate V kappa genes for the non-A2 antibodies were identified by comparison of up to 60 VL amino acid residues, including CDR1 and CDR2, with all sequenced V kappa genes. V kappa I antibodies appear to be products of three newly sequenced V kappa I genes, O8, O18, and L11, that are reported here. The O8 and O18 genes encode identical amino acid sequences. The non-A2 V kappa II antibody is a likely product of the A1 or A17 genes, the V kappa III antibodies are likely products of the A27 gene, and the V kappa IV antibody is a product of the single V kappa IV gene, B3. Unlike V kappa II-A2 antibodies, the V kappa I, V kappa III, and V kappa IV antibodies differed by one to five CDR residues from the germ line product of the candidate genes, suggesting the presence of somatic mutations. Thus, anti-Hib-PS antibodies can be divided into two types, the most frequently observed A2 antibodies with little or no somatic mutation and non-A2 antibodies that likely contain somatic mutations.  相似文献   

12.
The V kappa 10 family in BALB/c mice is composed of three members, two of which are utilized in a variety of immune responses. We previously demonstrated that the product of the third gene, V kappa 10C, has never been detected as part of a functional antibody and productive rearrangements are selectively lost during B-cell development. Here we analyzed germline V kappa 10 genes from inbred and wild-derived mice by RFLP and sequencing in order to determine the origin of the V kappa 10C gene, as well as to examine the evolutionary relationships of V kappa 10 genes. Our results demonstrated that the V kappa 10 family is highly conserved across Mus species and subspecies, but that V kappa 10C is rare, being found in only inbred mice of V kappa 10 allelic group b and two of six M. m. domesticus isolates. It was not found in other M. musculus subspecies or M. spretus. V kappa 10A and V kappa 10B were found in all strains, with the exception of one M. m. domesticus isolate, which had only V kappa 10B genes. Overall, V kappa 10A sequences were more highly conserved than V kappa 10B, indicating that different selective pressures may be operating on these genes. The two V kappa 10C sequences from M. m. domesticus were 100% identical to that found in inbred mice. V kappa 10C is more closely related to V kappa 10B than to V kappa 10A and our data suggest that it is a recent duplication of the V kappa 10B gene.  相似文献   

13.
Polytene chromosomes of Chironomus tentans were hybridized in situ with in vivo labelled nuclear and chromosomal RNA. Nuclear RNA formed hybrids preferentially in five distinct regions considered to contain clustered, repeated DNA sequences. These are the two nucleolar organizer regions, Balbiani ring 1 and 2, and the 5 S RNA genes in region 2A of chromosome II, which together comprised almost 70% of the total number of grains over the complement. The remaining grains were diffusely distributed over the chromosomes. There was a significant difference in the distribution of grains when RNA from different chromosomes was used for hybridization. Chromosome I RNA hybridized preferentially with chromosome I, and chromosome II+III RNA preferentially with chromosome II+III. Some regions within the chromosomes hybridized significantly more chromosomal RNA than other regions. A considerable cross-hybridization of RNA from one particular type of chromosome with the other chromosomes was also found. It is concluded that repeated DNA sequences which hybridize with heterogeneous chromosomal RNA in C. tentans are widely dispersed in the genome. Some of these sequences have a delimited localization, others are dispersed, and some sequences which are transcribed in one particular chromosome are present also in the other chromosomes.  相似文献   

14.
Adenylyl cyclase activity plays a central role in the regulation of most cellular processes. At least eight different adenylyl cyclases have been identified, which are endowed with various and sometimes opposing regulatory properties. Recently we have localized the human genes encoding two of these adenylyl cyclases: the gene for type 11 adenylyl cyclase is located on chromosome 2 (sub-band 2p15.3), the gene for type VIII is located on chromosome 8 (sub-band 8824.2). More recently the type I gene has been located on chromosome 7 (sub-band 7pl2–7p13). Using in situ hybridization, we have now localized the genes for three other adenylyl cyclases: the type III gene has been localized on chromosome 2 in the sub-band 2p22–2p24, the type V gene on chromosome 3 at position 3q13.2–3q21, and the type VI gene on chromosome 12 at position 12q12–12q13. It therefore appears that all adenylyl cyclase genes, known at present are located on different chromosomes and thus are likely to be independently regulated.  相似文献   

15.
The seven transmembrane receptor (str) and srj (renamed from stl) families of chemoreceptors have been updated and the genes formally named following completion of the Caenorhabditis elegans genome sequencing project. Analysis of gene locations revealed that 84% of the 320 genes and pseudogenes in these two families reside on the large chromosome V. Movements to other chromosomes, especially chromosome IV, have nevertheless been relatively common, but only one has led to further gene family diversification. Comparisons with homologs in C. briggsae indicated that 22.5% of these genes have been newly formed by gene duplication since the species split, while also showing that four have been lost by large deletions. These patterns of gene evolution are similar to those revealed by analysis of the equally large srh family of chemoreceptors, and are likely to reflect general features of nematode genome dynamics. Thus large random deletions presumably balance the rapid proliferation of genes and their degeneration into pseudogenes, while gene movement within and between chromosomes keeps these nematode genomes in flux.  相似文献   

16.
Molecular cloning studies have elucidated the presence of multiple isoforms of mammalian adenylyl cyclase. So far, six different isoforms (I to VI) have been fully characterized. Comparison of their structural and biochemical characteristics suggests that the mammalian adenylyl cyclase family can be classified into four sub-families: type I, type III, type II/IV, and type V/VI. We have determined the chromosomal localization of these genes. Type I gene was assigned to chromosome 7, type III to chromosome 2, types II and IV to chromosomes 5 and 14, and types V and VI to chromosomes 3 and 12. Our results indicate that the different adenylyl cyclase isoforms, even within the same subfamily, are distributed randomly in the genome, in contrast to the chromosomal organization of other components within the same signaling pathway, such as catecholamine receptors and G proteins.  相似文献   

17.
The V-J-intergenic region of the human kappa locus   总被引:2,自引:0,他引:2  
The 23-kb region between the V kappa and J kappa gene clusters was investigated in some detail. The region was found to be free of V kappa genes or V kappa gene-like structures, confirming the previous supposition that the V kappa gene B3 is the J kappa proximal V kappa gene. The B3-J kappa distance of 23 kb was found to be the same in the DNAs of several individuals. A HindIII restriction fragment length polymorphism was detected within this region. A sequence of 533 bp located approximately in the middle of the region has a highly homologous counterpart (called homox) on another chromosome. The two sequences are 96% identical. Possible mechanisms for the generation of such a duplicate are discussed.  相似文献   

18.
Germ line genes encoding mouse Ig kappa-chains belonging to the V kappa-1 group have been isolated from BALB/c, NZB, and CE, three inbred strains of differing kappa haplotype. The V kappa-1A and V kappa-1C germ line genes isolated from BALB/c (Ig kappa c) were identical to those previously described. These are the two major V kappa-1 germ line genes in BALB/c and together account for 40 of the 53 expressed V kappa-1 sequences that have been reported to date. Allelic differences in a single germ line variable region gene (V kappa-1A) in different strains of mice explain the differences in L chain IEF patterns previously associated with the Ig kappa-Ef2 locus. The rearranged kappa-gene expressed in the BALB/c myeloma MOPC-460 has been isolated and found to represent a V kappa-1A somatic variant differing by three nucleotides from the germ line V kappa-1A gene. Germ line genes isolated from NZB (Ig kappa b) and CE (Ig kappa f) show greater than 95% identity with the BALB/c genes over the 1700 nucleotides compared. Comparison by region indicated the greatest conservation of sequence occurs in and around the leader exon followed by the V-region exon. The NZB gene encodes the amino acid sequence found in the myeloma PC-2205, previously designated V kappa-1B. The V kappa-1 gene isolated from CE is likely an allele of the BALB/c V kappa-1C gene as the two share greater than 96% identity over 1700 nucleotides. The CE gene has been designated V kappa-1Cf. Ancient remnants of LINE-1 repetitive elements were detected approximately 400 bp downstream of all of the V kappa-1 genes. These possess greater homology with repetitive elements found near other kappa genes than they do with the native L1Md sequence.  相似文献   

19.
Evolution of a multigene family of V kappa germ line genes   总被引:10,自引:2,他引:8       下载免费PDF全文
We have isolated a series of related V kappa germ line genes from a BALB/c sperm DNA library. DNA sequence analysis of four members of this V kappa 24 multigene family implies that three V kappa genes are functional whereas the fourth one (psi V kappa 24) is a pseudogene. The prototype gene (V kappa 24) encodes the variable region gene segment expressed in an immune response against phosphorylcholine. The other two functional genes (V kappa 24A and V kappa 24B) may be expressed against streptococcal group A carbohydrate. The time of divergence of the four genes was estimated by the rate of synonymous nucleotide changes. This implies that an ancestral gene has duplicated approximately 33-35 million years ago and a subsequent gene duplication event has occurred approximately 23 million years ago.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号