首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The macrophage elastase enzyme (MMP-12) expressed mainly in alveolar macrophages has been identified in the mouse lung as the main destructive agent associated with cigarette smoking, which gives rise to emphysema, both directly via elastin degradation and indirectly by disturbing the proteinase/antiproteinase balance via inactivation of the alpha1-proteinase inhibitor (alpha1-PI), the antagonist of the leukocyte elastase. The catalytic domain of human recombinant MMP-12 has been crystallized in complex with the broad-specificity inhibitor batimastat (BB-94). The crystal structure analysis of this complex, determined using X-ray data to 1.1 A and refined to an R-value of 0.165, reveals an overall fold similar to that of other MMPs. However, the S-shaped double loop connecting strands III and IV is fixed closer to the beta-sheet and projects its His172 side-chain further into the rather hydrophobic active-site cleft, defining the S3 and the S1-pockets and separating them from each other to a larger extent than is observed in other MMPs. The S2-site is planar, while the characteristic S1'-subsite is a continuous tube rather than a pocket, in which the MMP-12-specific Thr215 replaces a Val residue otherwise highly conserved in almost all other MMPs. This alteration might allow MMP-12 to accept P1' Arg residues, making it unique among MMPs. The active-site cleft of MMP-12 is well equipped to bind and efficiently cleave the AlaMetPhe-LeuGluAla sequence in the reactive-site loop of alpha1-PI, as occurs experimentally. Similarities in contouring and particularly a common surface hydrophobicity both inside and distant from the active-site cleft explain why MMP-12 shares many substrates with matrilysin (MMP-7). The MMP-12 structure is an excellent template for the structure-based design of specific inhibitors for emphysema therapy and for the construction of mutants to clarify the role of this MMP.  相似文献   

2.
A/B-type metallocarboxypeptidases (MCPs) are among the most thoroughly studied proteolytic enzymes, and their catalytic mechanisms have been considered as prototypes even for several unrelated metalloprote(in)ase families. It has long been postulated that the nature of the side chains of at least five substrate residues, i.e., P4-P1', influence Km and kcat and that once the peptide or protein substrate is cleaved, both products remain in the first instance bound to the active-site cleft of the enzyme in a double-product complex. Structural details of binding of substrate to the nonprimed side of the cleft have largely relied on complexes with protein inhibitors and peptidomimetic small-molecule inhibitors that do not span the entire groove. In the former, the presence of N-terminal globular protein domains participating in large-scale interactions with the surface of the cognate catalytic domain outside the active-site cleft mostly conditions the way their C-terminal tails bind to the cleft. Accordingly, they may not be accurate models for a product complex. We hereby provide the structural details of a true cleaved double-product complex with a hexapeptide of an MCP engaged in prostate cancer, human carboxypeptidase A4, employing diffraction data to 1.6 A resolution (Rcryst and Rfree = 0.159 and 0.176, respectively). These studies provide detailed information about subsites S5-S1' and contribute to our knowledge of the cleavage mechanism, which is revisited in light of these new structural insights.  相似文献   

3.
Unlike other synthetic or physiological inhibitors for matrix metalloproteinases (MMPs), the β-amyloid precursor protein-derived inhibitory peptide (APP-IP) having an ISYGNDALMP sequence has a high selectivity toward MMP-2. Our previous study identified amino acid residues of MMP-2 essential for its selective inhibition by APP-IP and demonstrated that the N to C direction of the decapeptide inhibitor relative to the substrate-binding cleft of MMP-2 is opposite that of substrate. However, detailed interactions between the two molecules remained to be clarified. Here, we determined the crystal structure of the catalytic domain of MMP-2 in complex with APP-IP. We found that APP-IP in the complex is indeed embedded into the substrate-binding cleft of the catalytic domain in the N to C direction opposite that of substrate. With the crystal structure, it was first clarified that the aromatic side chain of Tyr(3) of the inhibitor is accommodated into the S1' pocket of the protease, and the carboxylate group of Asp(6) of APP-IP coordinates bidentately to the catalytic zinc of the enzyme. The Ala(7) to Pro(10) and Tyr(3) to Ile(1) strands of the inhibitor extend into the nonprime and the prime sides of the cleft, respectively. Therefore, the decapeptide inhibitor has long range contact with the substrate-binding cleft of the protease. This mode of interaction is probably essential for the high MMP-2 selectivity of the inhibitor because MMPs share a common architecture in the vicinity of the catalytic center, but whole structures of their substrate-binding clefts have sufficient variety for the inhibitor to distinguish MMP-2 from other MMPs.  相似文献   

4.
Crystal structures of human endothelial nitric oxide synthase (eNOS) and human inducible NOS (iNOS) catalytic domains were solved in complex with the arginine substrate and an inhibitor S-ethylisothiourea (SEITU), respectively. The small molecules bind in a narrow cleft within the larger active-site cavity containing heme and tetrahydrobiopterin. Both are hydrogen-bonded to a conserved glutamate (eNOS E361, iNOS E377). The active-site residues of iNOS and eNOS are nearly identical. Nevertheless, structural comparisons provide a basis for design of isozyme-selective inhibitors. The high-resolution, refined structures of eNOS (2.4 A resolution) and iNOS (2.25 A resolution) reveal an unexpected structural zinc situated at the intermolecular interface and coordinated by four cysteines, two from each monomer.  相似文献   

5.
The structure of mouse class II alcohol dehydrogenase (ADH2) has been determined in a binary complex with the coenzyme NADH and in a ternary complex with both NADH and the inhibitor N-cyclohexylformamide to 2.2 A and 2.1 A resolution, respectively. The ADH2 dimer is asymmetric in the crystal with different orientations of the catalytic domains relative to the coenzyme-binding domains in the two subunits, resulting in a slightly different closure of the active-site cleft. Both conformations are about half way between the open apo structure and the closed holo structure of horse ADH1, thus resembling that of ADH3. The semi-open conformation and structural differences around the active-site cleft contribute to a substantially different substrate-binding pocket architecture as compared to other classes of alcohol dehydrogenase, and provide the structural basis for recognition and selectivity of alcohols and quinones. The active-site cleft is more voluminous than that of ADH1 but not as open and funnel-shaped as that of ADH3. The loop with residues 296-301 from the coenzyme-binding domain is short, thus opening up the pocket towards the coenzyme. On the opposite side, the loop with residues 114-121 stretches out over the inter-domain cleft. A cavity is formed below this loop and adds an appendix to the substrate-binding pocket. Asp301 is positioned at the entrance of the pocket and may control the binding of omega-hydroxy fatty acids, which act as inhibitors rather than substrates. Mouse ADH2 is known as an inefficient ADH with a slow hydrogen-transfer step. By replacing Pro47 with His, the alcohol dehydrogenase activity is restored. Here, the structure of this P47H mutant was determined in complex with NADH to 2.5 A resolution. His47 is suitably positioned to act as a catalytic base in the deprotonation of the substrate. Moreover, in the more closed subunit, the coenzyme is allowed a position closer to the catalytic zinc. This is consistent with hydrogen transfer from an alcoholate intermediate where the Pro/His replacement focuses on the function of the enzyme.  相似文献   

6.
X-ray studies of aspartic proteinase-statine inhibitor complexes   总被引:3,自引:0,他引:3  
The conformation of a statine-containing renin inhibitor complexed with the aspartic proteinase from the fungus Endothia parasitica (EC 3.4.23.6) has been determined by X-ray diffraction at 2.2-A resolution (R = 0.17). We describe the structure of the complex at high resolution and compare this with a 3.0-A resolution analysis of a bound inhibitor, L-364,099, containing a cyclohexylalanine analogue of statine. The inhibitors bind in extended conformations in the long active-site cleft, and the hydroxyl of the transition-state analogue, statine, interacts strongly with the catalytic aspartates via hydrogen bonds to the essential carboxyl groups. This work provides a detailed structural analysis of the role of statine in peptide inhibitors. It shows conclusively that statine should be considered a dipeptide analogue (occupying P1 to P1') despite lacking the equivalent of a P1' side chain, although other inhibitor residues (especially P2) may compensate by interacting at the unoccupied S1' specificity subsite.  相似文献   

7.
Matrix metalloproteinases are believed to play an important role in pathological conditions such as osteoarthritis, rheumatoid arthritis and tumor invasion. Stromelysin is a zinc-dependent proteinase and a member of the matrix metalloproteinase family. We have solved the crystal structure of an active uninhibited form of truncated stromelysin and a complex with a hydroxamate-based inhibitor. The catalytic domain of the enzyme of residues 83-255 is an active fragment. Two crystallographically independent molecules, A and B, associate as a dimer in the crystals. There are three alpha-helices and one twisted, five-strand beta-sheet in each molecule, as well as one catalytic Zn, one structural Zn and three structural Ca ions. The active site of stromelysin is located in a large, hydrophobic cleft. In particular, the S1' specificity site is a deep and highly hydrophobic cavity. The structure of a hydroxamate-phosphinamide-type inhibitor-bound stromelysin complex, formed by diffusion soaking, has been solved as part of our structure-based design strategy. The most important feature we observed is an inhibitor-induced conformational change in the S1' cavity which is triggered by Tyr223. In the uninhibited enzyme structure, Tyr223 completely covers the S1' cavity, while in the complex, the P1' group of the inhibitor displaces the Tyr223 in order to fit into the S1' cavity. Furthermore, the displacement of Tyr223 induces a major conformational change of the entire loop from residue 222 to residue 231. This finding provides direct evidence that Tyr223 plays the role of gatekeeper of the S1' cavity. Another important intermolecular interaction occurs at the active sit of molecule A, in which the C-terminal tail (residues 251-255) from molecule B inserts. The C-terminal tail interacts extensively with the active site of molecule A, and the last residue (Thr255) coordinated to the catalytic zinc as the fourth ligand, much like a product inhibitor would. The inhibitor-induced conformational change and the intermolecular C-terminal-zinc coordination are significant in understanding the structure-activity relationships of the enzyme.  相似文献   

8.
Human matrix metalloproteinase 9 (MMP-9), also called gelatinase B, is particularly involved in inflammatory processes, bone remodelling and wound healing, but is also implicated in pathological processes such as rheumatoid arthritis, atherosclerosis, tumour growth, and metastasis. We have prepared the inactive E402Q mutant of the truncated catalytic domain of human MMP-9 and co-crystallized it with active site-directed synthetic inhibitors of different binding types. Here, we present the X-ray structures of five MMP-9 complexes with gelatinase-specific, tight binding inhibitors: a phosphinic acid (AM-409), a pyrimidine-2,4,6-trione (RO-206-0222), two carboxylate (An-1 and MJ-24), and a trifluoromethyl hydroxamic acid inhibitor (MS-560). These compounds bind by making a compromise between optimal coordination of the catalytic zinc, favourable hydrogen bond formation in the active-site cleft, and accommodation of their large hydrophobic P1' groups in the slightly flexible S1' cavity, which exhibits distinct rotational conformations of the Pro421 carbonyl group in each complex. In all these structures, the side-chain of Arg424 located at the bottom of the S1' cavity is not defined in the electron density beyond C(gamma), indicating its mobility. However, we suggest that the mobile Arg424 side-chain partially blocks the S1' cavity, which might explain the weaker binding of most inhibitors with a long P1' side-chain for MMP-9 compared with the closely related MMP-2 (gelatinase A), which exhibits a short threonine side-chain at the equivalent position. These novel structural details should facilitate the design of more selective MMP-9 inhibitors.  相似文献   

9.
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type II) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and MMP-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 A crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of approximately 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP.  相似文献   

10.
Metallocarboxpeptidases cleave C-terminal residues from peptide substrates and participate in a wide range of physiological processes, but they also contribute to human pathology. On the basis of structural information, we can distinguish between two groups of such metallopeptidases: cowrins and funnelins. Cowrins comprise protozoan, prokaryotic, and mammalian enzymes related to both neurolysin and angiotensin-converting enzyme and their catalytic domains contain 500-700 residues. They are ellipsoidal and traversed horizontally by a long, deep, narrow active-site cleft, in which the C-terminal residues are cut from oligopeptides and unstructured protein tails. The consensus cowrin structure contains a common core of 17 helices and a three-stranded beta-sheet, which participates in substrate binding. This protease family is characterized by a set of spatially conserved amino acids involved in catalysis, HEXXH+EXXS/G+H+Y/R+Y. Funnelins comprise structural relatives of the archetypal bovine carboxypeptidase A1 and feature mammalian, insect and bacterial proteins with strict carboxypeptidase activity. Their approximately 300-residue catalytic domains evince a consensus central eight-stranded beta-sheet flanked on either side by a total of eight helices. They also contain a characteristic set of conserved residues, HXXE+R+NR+H+Y+E, and their active-site clefts are rather shallow and lie at the bottom of a funnel-like cavity. Therefore, these enzymes act on a large variety of well-folded proteins. In both cowrins and funnelins, substrate hydrolysis follows a common general base/acid mechanism. A metal-bound solvent molecule ultimately performs the attack on the scissile peptide bond with the assistance of a strictly conserved glutamate residue.  相似文献   

11.
Maltosyltransferase (MTase) from the hyperthermophile Thermotoga maritima represents a novel maltodextrin glycosyltransferase acting on starch and malto-oligosaccharides. It catalyzes the transfer of maltosyl units from alpha-1,4-linked glucans or malto-oligosaccharides to other alpha-1,4-linked glucans, malto-oligosaccharides or glucose. It belongs to the glycoside hydrolase family 13, which represents a large group of (beta/alpha)(8) barrel proteins sharing a similar active site structure. The crystal structures of MTase and its complex with maltose have been determined at 2.4 A and 2.1 A resolution, respectively. MTase is a homodimer, each subunit of which consists of four domains, two of which are structurally homologous to those of other family 13 enzymes. The catalytic core domain has the (beta/alpha)(8) barrel fold with the active-site cleft formed at the C-terminal end of the barrel. Substrate binding experiments have led to the location of two distinct maltose-binding sites; one lies in the active-site cleft, covering subsites -2 and -1; the other is located in a pocket adjacent to the active-site cleft. The structure of MTase, together with the conservation of active-site residues among family 13 glycoside hydrolases, are consistent with a common double-displacement catalytic mechanism for this enzyme. Analysis of maltose binding in the active site reveals that the transfer of dextrinyl residues longer than a maltosyl unit is prevented by termination of the active-site cleft after the -2 subsite by the side-chain of Lys151 and the stretch of residues 314-317, providing an explanation for the strict transfer specificity of MTase.  相似文献   

12.
Matrix metalloproteinases (MMPs) and their inhibitors are important in connective tissue re-modelling in diseases of the cardiovascular system, such as atherosclerosis. Various members of the MMP family have been shown to be expressed in atherosclerotic lesions, but MMP9 is consistently seen in inflammatory atherosclerotic lesions. MMP9 over-expression is implicated in the vascular re-modelling events preceding plaque rupture (the most common cause of acute myocardial infarction). Reduced MMP9 activity, either by genetic manipulation or through pharmacological intervention, has an impact on ventricular re-modelling following infarction. MMP9 activity may therefore represent a key mechanism in the pathogenesis of heart failure. We have determined the crystal structure, at 2.3 A resolution, of the catalytic domain of human MMP9 bound to a peptidic reverse hydroxamate inhibitor as well as the complex of the same inhibitor bound to an active-site mutant (E402Q) at 2.1 A resolution. MMP9 adopts the typical MMP fold. The catalytic centre is composed of the active-site zinc ion, co-ordinated by three histidine residues (401, 405 and 411) and the essential glutamic acid residue (402). The main differences between the catalytic domains of various MMPs occur in the S1' subsite or selectivity pocket. The S1' specificity site in MMP9 is perhaps best described as a tunnel leading toward solvent, as in MMP2 and MMP13, as opposed to the smaller pocket found in fibroblast collagenase and matrilysin. The present structure enables us to aid the design of potent and specific inhibitors for this important cardiovascular disease target.  相似文献   

13.
BaP1 is a 22.7-kD P-I-type zinc-dependent metalloproteinase isolated from the venom of the snake Bothrops asper, a medically relevant species in Central America. This enzyme exerts multiple tissue-damaging activities, including hemorrhage, myonecrosis, dermonecrosis, blistering, and edema. BaP1 is a single chain of 202 amino acids that shows highest sequence identity with metalloproteinases isolated from the venoms of snakes of the subfamily Crotalinae. It has six Cys residues involved in three disulfide bridges (Cys 117-Cys 197, Cys 159-Cys 181, Cys 157-Cys 164). It has the consensus sequence H(142)E(143)XXH(146)XXGXXH(152), as well as the sequence C(164)I(165)M(166), which characterize the "metzincin" superfamily of metalloproteinases. The active-site cleft separates a major subdomain (residues 1-152), comprising four alpha-helices and a five-stranded beta-sheet, from the minor subdomain, which is formed by a single alpha-helix and several loops. The catalytic zinc ion is coordinated by the N(epsilon 2) nitrogen atoms of His 142, His 146, and His 152, in addition to a solvent water molecule, which in turn is bound to Glu 143. Several conserved residues contribute to the formation of the hydrophobic pocket, and Met 166 serves as a hydrophobic base for the active-site groups. Sequence and structural comparisons of hemorrhagic and nonhemorrhagic P-I metalloproteinases from snake venoms revealed differences in several regions. In particular, the loop comprising residues 153 to 176 has marked structural differences between metalloproteinases with very different hemorrhagic activities. Because this region lies in close proximity to the active-site microenvironment, it may influence the interaction of these enzymes with physiologically relevant substrates in the extracellular matrix.  相似文献   

14.
The full three-dimensional structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent, sulfonamide hydroxamic acid inhibitor (CGS 27023) has been determined by NMR spectroscopy. The results reveal a core domain for the protein consisting of three alpha-helices and five beta-sheet strands with an overall tertiary fold similar to the catalytic domains of other matrix metalloproteinase family members. The S1' pocket, which is the major site of hydrophobic binding interaction, was found to be a wide cleft spanning the length of the protein and presenting facile opportunity for inhibitor extension deep into the pocket. Comparison with the reported X-ray structure of collagenase-3 showed evidence of flexibility for the loop region flanking the S1' pocket in both NMR and X-ray data. This flexibility was corroborated by NMR dynamics studies. Inhibitor binding placed the methoxy phenyl ring in the S1' pocket with the remainder of the molecule primarily solvent-exposed. The binding mode for this inhibitor was found to be similar with respect to stromelysin-1 and collagenase-1; however, subtle comparative differences in the interactions between inhibitor and enzyme were observed for the three MMPs that were consistent with their respective binding potencies.  相似文献   

15.
Human carboxypeptidase N (CPN), a member of the CPN/E subfamily of "regulatory" metallo-carboxypeptidases, is an extracellular glycoprotein synthesized in the liver and secreted into the blood, where it controls the activity of vasoactive peptide hormones, growth factors and cytokines by specifically removing C-terminal basic residues. Normally, CPN circulates in blood plasma as a hetero-tetramer consisting of two 83 kDa (CPN2) domains each flanked by a 48 to 55 kDa catalytic (CPN1) domain. We have prepared and crystallized the recombinant C-terminally truncated catalytic domain of human CPN1, and have determined and refined its 2.1 A crystal structure. The structural analysis reveals that CPN1 has a pear-like shape, consisting of a 319 residue N-terminal catalytic domain and an abutting, cylindrically shaped 79 residue C-terminal beta-sandwich transthyretin (TT) domain, more resembling CPD-2 than CPM. Like these other CPN/E members, two surface loops surrounding the active-site groove restrict access to the catalytic center, offering an explanation for why some larger protein carboxypeptidase inhibitors do not inhibit CPN. Modeling of the Pro-Phe-Arg C-terminal end of the natural substrate bradykinin into the active site shows that the S1' pocket of CPN1 might better accommodate P1'-Lys than Arg residues, in agreement with CPN's preference for cleaving off C-terminal Lys residues. Three Thr residues at the distal TT edge of CPN1 are O-linked to N-acetyl glucosamine sugars; equivalent sites in the membrane-anchored CPM are occupied by basic residues probably involved in membrane interaction. In tetrameric CPN, each CPN1 subunit might interact with the central leucine-rich repeat tandem of the cognate CPN2 subunit via a unique hydrophobic surface patch wrapping around the catalytic domain-TT interface, exposing the two active centers.  相似文献   

16.
Human pappalysin-1 is a multi-domain metalloprotease engaged in the homeostasis of insulin-like growth factors and the founding member of the pappalysin family within the metzincin clan of metalloproteases. We have recently identified an archaeal relative, ulilysin, encompassing only the protease domain. It is a 262-residue active protease with a novel 3D structure with two subdomains separated by an active-site cleft. Despite negligible overall sequence similarity, noticeable similarity is found with other metzincin prototypes, adamalysins/ADAMs and matrix metalloproteinases. Ulilysin has been crystallised in a product complex with an arginine-valine dipeptide occupying the active-site S(1') and S(2') positions and in a complex with the broad-spectrum hydroxamic acid-based metalloprotease inhibitor, batimastat. This molecule inhibits mature ulilysin with an IC(50) value of 61 microM under the conditions assayed. The binding of batimastat to ulilysin evokes binding to vertebrate matrix metalloproteases but is much weaker. These data give insight into substrate specificity and mechanism of action and inhibition of the novel pappalysin family.  相似文献   

17.
Rhodniin is a highly specific inhibitor of thrombin isolated from the assassin bug Rhodnius prolixus. The 2.6 Angstrum crystal structure of the non-covalent complex between recombinant rhodniin and bovine alpha-thrombin reveals that the two Kazal-type domains of rhodniin bind to different sites of thrombin. The amino-terminal domain binds in a substrate-like manner to the narrow active-site cleft of thrombin; the imidazole group of the P1 His residue extends into the S1 pocket to form favourable hydrogen/ionic bonds with Asp189 at its bottom, and additionally with Glu192 at its entrance. The carboxy-terminal domain, whose distorted reactive-site loop cannot adopt the canonical conformation, docks to the fibrinogen recognition exosite via extensive electrostatic interactions. The rather acidic polypeptide linking the two domains is displaced from the thrombin surface, with none of its residues involved in direct salt bridges with thrombin. The tight (Ki = 2 x 10(-13) M) binding of rhodniin to thrombin is the result of the sum of steric and charge complementarity of the amino-terminal domain towards the active-site cleft, and of the electrostatic interactions between the carboxy-terminal domain and the exosite.  相似文献   

18.
Thrombomodulin (TM) is as essential cofactor in protein C activation by thrombin. To investigate the cofactor effect of TM on the P3-P3' binding specificity of thrombin, we prepared a Gla-domainless protein C (GDPC) and an antithrombin (AT) mutant in which the P3-P3' residues of both molecules were replaced with the corresponding residues of the factor Xa cleavage site in prethrombin-2. TM is known to interact with GDPC, but not AT in the complex. Thrombin did not react with either mutant in the absence of a cofactor. While the thrombin-TM complex also did not react with the AT mutant, it activated the GDPC mutant with a normal k(cat), but an approximately 4-fold impaired K(m) value. Further studies revealed that the active-site directed inhibitor p-aminobenzamidine acts as a competitive inhibitor of both wild-type and GDPC mutant in reaction with the thrombin-TM complex. These results suggest that the interaction of the P3-P3' residues of GDPC with the active-site pocket of the thrombin-TM complex makes a dominant contribution to the binding specificity of the reaction. Moreover, the observation that the GDPC mutant, but not the AT mutant, functions as an effective substrate for the thrombin-TM complex suggests that GDPC interaction with the thrombin-TM complex may be associated with the alteration of the conformation of the P3-P3' residues of the substrate.  相似文献   

19.
Botulinum neurotoxin serotype A is the most lethal of all known toxins. Here, we report the crystal structure, along with SAR data, of the zinc metalloprotease domain of BoNT/A bound to a potent peptidomimetic inhibitor (K(i)=41 nM) that resembles the local sequence of the SNAP-25 substrate. Surprisingly, the inhibitor adopts a helical conformation around the cleavage site, in contrast to the extended conformation of the native substrate. The backbone of the inhibitor's P1 residue displaces the putative catalytic water molecule and concomitantly interacts with the "proton shuttle" E224. This mechanism of inhibition is aided by residue contacts in the conserved S1' pocket of the substrate binding cleft and by the induction of new hydrophobic pockets, which are not present in the apo form, especially for the P2' residue of the inhibitor. Our inhibitor is specific for BoNT/A as it does not inhibit other BoNT serotypes or thermolysin.  相似文献   

20.
The site-specific DNA recombinase, gammadelta resolvase, from Escherichia coli catalyzes recombination of res site-containing plasmid DNA to two catenated circular DNA products. The catalytic domain (residues 1-105), lacking a C-terminal dimerization interface, has been constructed and the NMR solution structure of the monomer determined. The RMSD of the NMR conformers for residues 2-92 excluding residues 37-45 and 64-73 is 0.41 A for backbone atoms and 0.88 A for all heavy atoms. The NMR solution structure of the monomeric catalytic domain (residues 1-105) was found to be formed by a four-stranded parallel beta-sheet surrounded by three helices. The catalytic domain (residues 1-105), deficient in the C-terminal dimerization domain, was monomeric at high salt concentration, but displayed unexpected dimerization at lower ionic strength. The unique solution dimerization interface at low ionic strength was mapped by NMR. With respect to previous crystal structures of the dimeric catalytic domain (residues 1-140), differences in the average conformation of active-site residues were found at loop 1 containing the catalytic S10 nucleophile, the beta1 strand containing R8, and at loop 3 containing D67, R68 and R71, which are required for catalysis. The active-site loops display high-frequency and conformational backbone dynamics and are less well defined than the secondary structures. In the solution structure, the D67 side-chain is proximal to the S10 side-chain making the D67 carboxylate group a candidate for activation of S10 through general base catalysis. Four conserved Arg residues can function in the activation of the phosphodiester for nucleophilic attack by the S10 hydroxyl group. A mechanism for covalent catalysis by this class of recombinases is proposed that may be related to dimer interface dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号