首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contact of Jurkat T-lymphocytes with the extracellular matrix (ECM) protein laminin resulted in long-lasting α6β1-integrin-mediated Ca2+ signalling. Both Ca2+ release from thapsigargin-sensitive Ca2+ stores and capacitative Ca2+ entry via Ca2+ channels sensitive to SKF 96365 constitute important parts of this process. Inhibition of α6β1-integrin-mediated Ca2+ signalling by (1) the src kinase inhibitor PP2, (2) the PLC inhibitor U73122, and (3) the cyclic adenosine diphosphoribose (cADPR) antagonist 7-deaza-8-Br-cADPR indicate the involvement of src tyrosine kinases and the Ca2+-releasing second messengers d-myo-inositol 1,4,5-trisphosphate (InsP3) and cADPR.  相似文献   

2.
Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP3/Ca2+ pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H+-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H+-ATPase, which is enriched in this membrane domain, is a target protein for PKA. This work was supported by grants Wa463/9–5 and GRK837 from the Deutsche Forschungsgemeinschaft.  相似文献   

3.
The inositol 1,4,5-trisphosphate (InsP3) receptor was purified from bovine cerebellum and reconstituted in liposomes composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (1:1) successfully. No effect of Ca2+ concentration on [3H]-InsP3 binding to unreconstituted InsP3 receptor could be observed either at 4°C or at 25°C, whereas the effect of [Ca2+] on reconstituted InsP3 receptor depended on the temperature. The Ca2+ concentration outside the proteolipsome ([Ca2+]o) had no detectable effect on InsP3 binding to InsP3 receptor at 4°C. In contrast, with increase of [Ca2+]o from 0 to 100 nmol/L at 25°C, the InsP3 binding activity increased gradually. Then the InsP3 binding activity was decreased drastically at higher [Ca2+]o and inhibited entirely at 50 μmol/L [Ca2+]o. Conformational studies on intrinsic fluorescence of the reconstituted InsP3 receptor and its quenching by KI and HB indicated that the global conformation of reconstituted InsP3 receptor could not be affected by [Ca2+]o at 4°C. While at 25°C, the effects of 10 μmol/L [Ca2+]o on global, membrane and cytoplasmic conformation of the reconstituted InsP3 receptor were different significantly from that of 100 nmol/L [Ca2+]o.  相似文献   

4.

Background

Serotonin induces fluid secretion from Calliphora salivary glands by the parallel activation of the InsP3/Ca2+ and cAMP signaling pathways. We investigated whether cAMP affects 5-HT-induced Ca2+ signaling and InsP3-induced Ca2+ release from the endoplasmic reticulum (ER).

Results

Increasing intracellular cAMP level by bath application of forskolin, IBMX or cAMP in the continuous presence of threshold 5-HT concentrations converted oscillatory [Ca2+]i changes into a sustained increase. Intraluminal Ca2+ measurements in the ER of β-escin-permeabilized glands with mag-fura-2 revealed that cAMP augmented InsP3-induced Ca2+ release in a concentration-dependent manner. This indicated that cAMP sensitized the InsP3 receptor Ca2+ channel for InsP3. By using cAMP analogs that activated either protein kinase A (PKA) or Epac and the application of PKA-inhibitors, we found that cAMP-induced augmentation of InsP3-induced Ca2+ release was mediated by PKA not by Epac. Recordings of the transepithelial potential of the glands suggested that cAMP sensitized the InsP3/Ca2+ signaling pathway for 5-HT, because IBMX potentiated Ca2+-dependent Cl- transport activated by a threshold 5-HT concentration.

Conclusion

This report shows, for the first time for an insect system, that cAMP can potentiate InsP3-induced Ca2+ release from the ER in a PKA-dependent manner, and that this crosstalk between cAMP and InsP3/Ca2+ signaling pathways enhances transepithelial electrolyte transport.  相似文献   

5.
Staurosporine (Stp) is an inhibitor of protein kinase C (PKC) that has been used to address the role of this enzyme in a variety of cells. However, Stp can also inhibit protein tyrosine kinases (PTK). We have investigated the effects of Stp on the InsP3- (using mAb C305 directed against the β chain of the T cell receptor (TcR)/CD3 complex) and the thapsigargin (Tg)-dependent release and influx of Ca2+ in human (Jurkat) T cells. The addition of Stp (200 nM) during the sustained phase of the TcR-dependent Ca2+ response resulted in a rapid inhibition of the influx of Ca2+ that was not seen when Ca2+ mobilization was triggered by Tg (1 μM). When the cells were preincubated with Stp (200 nM), there was an inhibition of the mAb C305- but not the Tg-dependent Ca2+ response. The effect of Stp was not the result of the inhibition of PKC as shown by down-regulation of PKC and with the use of the specific PKC inhibitor bis-indolyl maleimide GF 109203X. The effect of Stp on the entry of Ca2+ in activated (mAb C305) Jurkat lymphocytes was dose-related and was not the result of a direct inhibition of plasma membrane Ca2+ channels based on an absence of effect on the Tg-dependent entry of Ca2+ and the use of Ca2+ channel blockers (econazole and Ni2+). These blockers terminated the influx of Ca2+ but the Tg-sensitive Ca2+ reserves were not refilled in marked contrast to the effect of Stp. Quantification of InsP3 revealed that the addition of Stp resulted in an approximate 40% reduction in mAb C305-activated Jurkat cells. The effects of Stp can be explained as follows. Stp decreases the mAb C305-induced production of InsP3 by inhibiting the TcR/CD3-dependent activation of PTK associated with the stimulation of phospholipase C-γ1. A decrease in [InsP3] without a return to baseline is sufficient to close the InsP3 Ca2+ channel, endoplasmic Ca2+ ATPases use the incoming Ca2+ to refill the Ca2+ pools and that terminates the capacitative entry of Ca2+. A simple kinetic model reproduced the experimental data.  相似文献   

6.
Interstitial cells of Cajal (ICC) serve as electrical pacemakers in the rabbit urethra. Pacemaking activity in ICC results from spontaneous intracellular Ca2+ waves that rely on Ca2+ release from endoplasmic reticulum (ER) stores. The purpose of this study was to investigate if the action of protein kinase A (PKA) affected the generation of Ca2+ waves in ICC. Intracellular [Ca2+] was measured in fluo-4 loaded ICC, freshly isolated from the rabbit urethra using a Nipkow spinning disc confocal microscope. Application of the PKA inhibitor H-89 (10 μM) significantly inhibited the generation of spontaneous Ca2+ waves in ICC and this was associated with a significant decrease in the ER Ca2+ load, measured with 10 mM caffeine responses. Ca2+ waves could be rescued in the presence of H-89 by stimulating ryanodine receptors (RyRs) with 1 mM caffeine but not by activation of inositol 1,4,5 tri-phosphate receptors (IP3Rs) with 10 μM phenylephrine. Increasing intracellular PKA with the cAMP agonists forskolin and 8-bromo-cAMP failed to yield an increase in Ca2+ wave activity. We conclude that PKA may be maximally active under basal conditions in ICC and that inhibition of PKA with H-89 leads to a decreased ER Ca2+ load sufficient to inactivate IP3Rs but not RyRs.  相似文献   

7.
In hepatocytes, as in other cell types, Ca2+ signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP3R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca2+ signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP3 receptors (InsP3R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP3R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP3-induced Ca2+ release in hepatocytes. This can be explained by the rather low expression level expression of InsP3R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca2+ signaling via an inhibitory effect on InsP3 synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP3 synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.  相似文献   

8.
The present study shows that the calmodulin antagonist calmidazolium inhibited influx of Ca2+ through voltage-gated Ca2+-channels in clonal insulin producing RINm5F-cells. The mechanism of inhibition may involve both Ca2+-calmodulin-dependent protein kinases and direct binding of calmidazolium to the Ca2+-channel. Calmidazolium did not affect uptake of Ca2+ into intracellular Ca2+-pools, inositol 1,4,5-trisphosphate (InsP3) formation or action on intracellular Ca2+-pools. The calmodulin inhibitor also did not affect glucose utilization or oxidation in RINm5F-cells, speaking against an unspecific toxic effect of the compound. KCl-and ATP-stimulated insulin release from RINm5F-cells was attenuated by calmidazolium, whereas basal hormone secretion was unaffected.  相似文献   

9.
Relevant Ca2+ pools and fluxes in H9c2 cells have been studied using fluorescent indicators and Ca2+-mobilizing agents. Vasopressin produced a cytoplasmic Ca2+ peak with half-maximal effective concentration of 6 nM, whereas thapsigargin-induced Ca2+ increase showed half-maximal effect at 3 nM. Depolarization of the mitochondrial inner membrane by protonophore was also associated with an increase in cytoplasmic Ca2+. Ionomycin induced a small and sustained depolarization, while thapsigargin had a small but transient effect. The thapsigargin-sensitive Ca2+ pool was also sensitive to ionomycin, whereas the protonophore-sensitive Ca2+ pool was not. The vasopressin-induced cytoplasmic Ca2+ signal, which caused a reversible discharge of the sarco-endoplasmic reticulum Ca2+ pool, was sensed as a mitochondrial Ca2+ peak but was unaffected by the permeability transition pore inhibitor cyclosporin A. The mitochondrial Ca2+ peak was affected by cyclosporin A when the Ca2+ signal was induced by irreversible discharge of the intracellular Ca2+ pool, i.e., adding thapsigargin. These observations indicate that the mitochondria interpret the cytoplasmic Ca2+ signals generated in the reticular store.  相似文献   

10.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

11.
L-type Ca2+ channel activity was assayed in L6 cells as the rate of nifedipine-sensitive Ba2+ influx in a depolarizing medium. In the absence of extracellular Ca2+, activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or thymeleatoxin (TMX) inhibited Ba2+ influx by 38%. Thapsigargin (Tg), a selective inhibitor of the Ca2+-ATPase in the sarcoplasmic reticulum, evoked a rise in the cytosolic Ca2+ concentration ([Ca2+]i) in a Ca2+-free medium from 30 to 80 nM. This [Ca2+]i increase declined slowly, giving rise to a modest elevation of [Ca2+]i that persisted for >5 min. The inhibitory effects of PMA and TMX on channel activity were abolished when tested in Tg-treated cells in a Ca2+-free medium. However, when the Ca2+ ionophore, ionomycin, was applied with Tg, PMA and TMX retained their inhibitory effect on L-type Ca2+ channel activity, suggesting that a lower amplitude and prolonged release of Ca2+ stores is necessary for abrogating PKC-mediated inhibition of LCC. Cyclosporin A (5 μM) and ascomycin (5 μM), inhibitors of the Ca2+/calmodulin-dependent protein phosphatase, calcineurin, fully restored the inhibitory effect of PMA and TMX on channel activity. Addition of 1 mM CaCl2 to the Tg-treated cells increased [Ca2+]i to 165 nM and also restored the inhibitory effects of PMA and TMX. These results indicate that a small, relatively prolonged [Ca2+]i increase elicited by passive depletion of internal Ca2+ stores led to activation of calcineurin, giving rise to an increase in protein phosphatase activity that counteracted the inhibitory effects of PKC on channel activity. A larger increase in [Ca2+]i via store-dependent Ca2+ entry enhanced the activity of PKC sufficiently to overcome the protein phosphatase activity of calcineurin. This study is the first to demonstrate that the regulation of L-type Ca2+ channels in a myocyte model involves a balance between the differential Ca2+ sensitivities and opposing actions of PKC and calcineurin.  相似文献   

12.
The effect of taurine on the ATP-dependent mitochondrial swelling that characterizes the activity of mitochondrial ATP-dependent K+ channel and the formation of Ca2+-dependent pores, different in sensitivity to cyclosporin A, has been studied in rat liver mitochondria. It has been shown that taurine in micromolar concentrations (0.5–125 μM) stimulates the energy-dependent swelling of mitochondria. Taurine in physiological concentrations (0.5–20 mM) has no effect on the ATP-dependent swelling and the formation of cyclosporin A-insensitive Pal/Ca2+-activated pore in mitochondria. Taurine in these concentrations increased the rate of cyclosporin A-sensitive swelling of mitochondria induced by Ca2+ and Pi and reduced the Ca2+ capacity of mitochondria. The different effects of physiological taurine concentrations on the ATP-dependent transport of K+ and Ca2+ ions in mitochondrial membranes as compared with cell membranes are discussed.  相似文献   

13.
Evidence for a primary role for intracellular Ca2+ in the stimulation of pancreatic enzyme secretion is reviewed. Measurements of cytoplasmic free Ca2+ concentration have allowed direct demonstration of its importance in triggering enzyme secretion and defined the concentration range over which membrane Ca2+ pumps must work to regulate intracellular Ca2+. Current evidence suggests a key role for the Ca2+ Mg-ATPase of rough endoplasmic reticulum in regulating intracellular Ca2+ and accumulating a Ca2+ store which is released by the action of inositol-l,4,5 trisphosphate following stimulation of secretion.Abbreviations Used EGTA (ethylene dioxy) diethylene-dinitrilotetraacetic acid - BAPTA 1,2-bis (2-aminophenoxy) ethane NNN,N-tetracetic acid - InsP3 inositol trisphosphate - Ins-1,4,5P3 and Ins-1,3,4P3 isomers of inositol trisphosphate with the position of phosphate groups assigned - Ins-1,3,4,5P4 inositol tetrakisphosphate  相似文献   

14.
Verkhratsky  A.  Solovyova  N. 《Neurophysiology》2002,34(2-3):112-117
For many years, the endoplasmic reticulum (ER) was considered to be involved in rapid signalling events due to its ability to serve as a dynamic calcium store capable of accumulating large amounts of Ca2+ ions and of releasing them in response to physiological stimulation. Recent data significantly increased the importance of the ER as a signalling organelle, by demonstrating that the ER is associated with specific pathways regulating long-lasting adaptive processes and controlling cell survival. The ER lumen is enriched by enzymatic systems involved in protein synthesis and correcting post-translational folding of these proteins. The processes of post-translational protein processing are controlled by a class of specific enzymes known as chaperones, which in turn are regulated by the free Ca2+ concentration within the ER lumen ([Ca2+]L). At the same time, a high [Ca2+]L determines the ability of the ER to generate cytosolic Ca2+ signals. Thus, the ER is able to produce signals interacting within different temporal domains. Fast ER signals result from Ca2+ release via specific Ca2+-release channels and from rapid movements of Ca2+ ions within the ER lumen (calcium tunneling). Long-lasting signals involve Ca2+-dependent regulation of chaperones with subsequent changes in protein processing and synthesis. Any malfunctions in the ER Ca2+ homeostasis result in accumulation of unfolded proteins, which in turn activates several signalling systems aimed at appropriate compensatory responses or (in the case of severe ER dysregulation) in cellular pathology and death (ER stress responses). Thus, the Ca2+ ion emerges as a messenger molecule, which integrates various signals within the ER: fluctuations of the [Ca2+]L induced by signals originating at the level of the plasmalemma (i.e., Ca2+ entry or activation of the metabotropic receptors) regulate in turn protein synthesis and processing via generating secondary signalling events between the ER and the nucleus.  相似文献   

15.
In the resting state, the Ca2+ concentration in agonist-sensitive intracellular stores reflects the balance between active uptake of Ca2+, which is mediated by Ca2+-ATPase (SERCA), and passive leakage of Ca2+. The mechanisms underlying such a leakage in cells of the submaxillary salivary gland were not studied. In our experiments, we examined possible pathways of passive leakage of Ca2+ from the endoplasmic reticulum (ER) of acinar cells obtained from the rat submaxillary salivary gland; direct measurements of the concentration of Ca2+ in the ER ([Ca2+]ER) using a low-affinity calcium-sensitive dye, mag-fura 2/AM, were performed. The cellular membrane was permeabilized with the help of β-escin (40 μg/ml); the Ca2+ concentration in the cytoplasm ([Ca2+] i ) was clamped at its level typical of the resting state (∼100 nM) using an EGTA/Ca2+ buffer. Incubation of permeabilized acinar cells in a calcium-free intracellular milieu, as well as application of thapsigargin, resulted in complete inhibition of the uptake of Ca2+ with the involvement of SERCA. This effect was observed 1 min after the beginning of superfusion of the cells with the corresponding solutions and was accompanied by the leakage of Ca2+ from the ER; this is confirmed by a gradual drop in the [Ca2+]ER. Such a leakage of Ca2+ remained unchanged in the presence of thapsigargin, heparin, and ruthenium red; therefore, it is not mediated by SERCA, inositol 1,4,5-trisphosphate-sensitive receptors (InsP3R), or ryanodine receptors (RyRs). At the same time, an antibiotic, puromycin (0.1 to 1.0 mM), which disconnects polypeptides from the ER-ribosome translocon complex, caused intensification of passive leakage of Ca2+ from the ER. This effect did not depend on the functioning of SERCA, InsP3R, or RyR. Therefore, passive leakage of Ca2+ from the ER in acinar cells of the submaxillary salivary gland is realized through pores of the translocon complex of the ER membrane. Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 339–346, July–August, 2005.  相似文献   

16.
To investigate Ca2+ uptake by Ca2+-depleted bovine chromaffin cells we depleted these cells of Ca2+ by incubating them in Ca2+-free buffer, then measured changes in cytoplasmic Ca2+ concentration ([Ca2+ 1)45Ca2+ uptake, and Mn2+ uptake in response to added Ca2+ or MN2+. In depleted cells, the increase in [Ca2+]i after Ca2+ addition, and the Mn2+ and45Ca2+ uptakes were higher than in control cells, and were inhibited by verapamil. The size of the intracellular Ca2+ pools in depleted cells increased after Ca2+ addition. The times for [Ca2+]i rise and Mn2+ entry to reach plateau levels were much shorter than the time for refilling of intracellular Ca2+ stores. In Ca2+-depleted cells and cells which had been loaded with BAPTA,45Ca2+ uptake was much higher than in control cells. These results suggest that extracellular Ca2+ enters the cytoplasm first before refilling the intracellular stores. The rate of Mn2+ influx depended on the level of filling of the Ca2+ stores, suggesting that some signalling takes place between the intracellular stores and Ca2+ entry pathways through the plasma membrane.Abbreviations used BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid - BAPTA/AM acetoxymethyl ester of BAPTA - [Ca2+]i cytosolic Ca2+ concentration - IP3 inositol 1,4,5-trisphosphate - tBHQ 2,5-di-(t-butyl)-1,4-benzohydroquinone This work was included in a thesis submitted by A.-L. Sui to the Department of Biochemistry, National Yang-Ming Medical College, in partial fulfillment of the requirements for the degree of Doctor of Philosophy  相似文献   

17.
Earlier we found that in isolated rat liver mitochondria the reversible opening of the mitochondrial cyclosporin A-insensitive pore induced by low concentrations of palmitic acid (Pal) plus Ca2+ results in the brief loss of Δψ [Mironova et al., J Bioenerg Biomembr (2004), 36:171–178]. Now we report that Pal and Ca2+, increased to 30 and 70 nmol/mg protein respectively, induce a stable and prolonged (10 min) partial depolarization of the mitochondrial membrane, the release of Ca2+ and the swelling of mitochondria. Inhibitors of the Ca2+ uniporter, ruthenium red and La3+, as well as EGTA added in 10 min after the Pal/Ca2+-activated pore opening, prevent the release of Ca2+ and repolarize the membrane to initial level. Similar effects can be observed in the absence of exogeneous Pal, upon mitochondria accumulating high [Sr2+], which leads to the activation of phospholipase A2 and appearance of endogenous fatty acids. The paper proposes a new model of the mitochondrial Ca2+ cycle, in which Ca2+ uptake is mediated by the Ca2+ uniporter and Ca2+ efflux occurs via a short-living Pal/Ca2+-activated pore.  相似文献   

18.
Abstract

Protriptyline, a tricyclic anti-depressant, is used primarily to treat the combination of symptoms of anxiety and depression. However, the effect of protriptyline on prostate caner is unknown. This study examined whether the anti-depressant protriptyline altered Ca2+ movement and cell viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Protriptyline evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Protriptyline-evoked Ca2+ entry was inhibited by store-operated channel inhibitors (nifedipine, econazole and SKF96365), protein kinase C activator (phorbol 12-myristate 13 acetate, PMA) and protein kinase C inhibitor (GF109203X). Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydr-oquinone (BHQ) in Ca2+-free medium inhibited 60% of protriptyline-evoked [Ca2+]i rises. Conversely, treatment with protriptyline abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C with U73122 suppressed 50% of protriptyline-evoked [Ca2+]i rises. At concentrations of 50–70?µM, protriptyline decreased cell viability in a concentration-dependent manner; which were not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in PC3 cells, protriptyline evoked [Ca2+]i rises by inducing phospholipase C-associated Ca2+ release from the endoplasmic reticulum and other stores, and Ca2+ influx via protein kinase C-sensitive store-operated Ca2+ channels. Protriptyline caused cell death that was independent of [Ca2+]i rises.  相似文献   

19.
The effect of regucalcin, a Ca2+-binding protein, on Ca2+ transport system in rat renal cortex microsomes was investigated. The presence of regucalcin (10-8 to 10-6 M) in the reaction mixture caused a significant increase in Ca2+-ATPase activity and ATP-dependent45 Ca2+ uptake in the microsomes. Regucalcin (10-7 M) increased Ca2+-ATPase activity independently of increasing concentrations of CaCl_2. The microsomal Ca2+-ATPase activity and45 Ca2+ uptake were markedly decreased by the presence of vanadate (0.1 mM) or N-ethylmaleimide (NEM; 5 mM) in the absence or presence of regucalcin. Dithiothreitol (DTT; 5 mM) markedly elevated Ca2+-ATPase activity and 45Ca2+ uptake in the microsomes. The DTT effects were not further enhanced by regucalcin (10-7 M). Meanwhile, the microsomal Ca2+-ATPase activity and 45Ca2+ uptake were significantly decreased by the presence of dibutyryl cyclic AMP (DcAMP; 10-5 and 10-3 M) or inositol 1,4, 5-trisphosphate (IP3; 10-7 and 10-5 M). The effect of regucalcin (10-7 M) on Ca2+ ATPase activity and 45Ca2+ uptake was weakened in the presence of DcAMP or IP3. The present results demonstrate that regucalcin has a stimulatory effect on ATP-dependent Ca2+ uptake in the microsomes of rat renal cortex due to acting on the thiol groups of Ca2+-ATPase.  相似文献   

20.
Inositol lipid signaling relies on an InsP3-induced Ca2+ release from intracellular stores and on extracellular Ca2+ entry, which takes place when the Ca2+ stores become depleted of Ca2+. This interplay between Ca2+ release and Ca2+ entry has been termed capacitative Ca2+ entry and the inward current calcium release activated current (CRAC) to indicate gating of Ca2+ entry by Ca2+-store depletion. The signaling pathway and the gating mechanism of capacitative Ca2+ entry, however, are largely unknown and the molecular participants in this process have not been identified. In this article we review genetic, molecular, and functional studies of wild-type and mutantDrosophila photoreceptors, suggesting that thetransient receptor potential mutant (trp) is the first putative capacitative Ca2+ entry mutant. Furthermore, several lines of evidence suggest that thetrp gene product TRP is a candidate subunit of the plasma membrane channel that is activated by Ca2+ store depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号