首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Yokosuka M  Dube MG  Kalra PS  Kalra SP 《Peptides》2001,22(3):507-514
To identify the site(s) of NPY Y5 receptor (Y5R) mediation of NPY-induced feeding, we employed c-Fos immunostaining and a selective Y5R antagonist (Y5R-A), CGP71683A, in adult male rats. Intracerebroventricular (icv) administration of NPY stimulated feeding and c-Fos-like immunoreactivity (FLI) in the dorsomedial hypothalamus, supraoptic nucleus and the two subdivision of the hypothalamic paraventricular nucleus (pPVN), the parvocellular (pPVN), and magnocellular (mPVN). Y5R-A on its own, injected either intraperitoneally or icv, neither affected feeding nor FLI in hypothalamic sites. However, Y5R-A pretreatment suppressed NPY-induced food intake and FLI selectively in the mPVN. Taken together with our previous similar finding of Y1R involvement, these results suggest that NPY receptor sites concerned with feeding behavior reside selectively in the mPVN and Y1 and Y5 receptors are either coexpressed or expressed separately in those target neurons that promote appetitive drive.  相似文献   

2.
Siberian hamsters (Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20 degrees C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist (CGP71683) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.  相似文献   

3.
The present study was undertaken to determine whether neuropeptide Y (NPY) induces proliferation of rat aortic endothelial cells (RAECs). Since NPY increased the permeability of RAEC monolayers to large molecules via the NPY Y(3) receptor, RAEC proliferation has been evaluated in terms of NPY-receptor subtypes and also intracellular mechanisms. RAECs were incubated with gases containing 20, 15, or 10% O(2) and a certain amount of N(2), depending on the O(2) content in 5% CO(2) incubators. NPY (10(-9)-10(-6) M) increased the RAEC numbers under hypoxic conditions, such as 15 or 10% O(2). Peptide YY elicited no proliferative effect on RAEC, and NPY-(18-36) inhibited the NPY-induced increase in cell number, suggesting that NPY increases the RAEC count through the NPY Y(3) receptor. Pertussis toxin, U-73122, GF-109203X, myristorylated autocamtide-2-related inhibitory peptide, and wortmannin inhibited the NPY-induced proliferation of RAEC concentration dependently. DY9760e little affected the proliferation caused by NPY. ML-9 and imatinib actually enhanced the NPY-induced proliferation of cells. These results indicated that the NPY Y(3) receptor is coupled with G(i) protein, and that NPY-induced increases in RAEC proliferation are mediated by phospholipase C-protein kinase C and/or phosphatidylinositol 3-kinase pathways. In intracellular Ca(2+)-calmodulin-dependent pathways, calmodulin-dependent protein kinase II partly participates in the NPY-induced cell proliferation. Regarding the previously reported effect of NPY on the permeability of RAEC monolayers to large molecules, it is probable that protein kinase C and phosphatidylinositol 3-kinase pathways are activated for both permeability and cell proliferation induced by NPY under hypoxia, relevant to new insights into the roles of NPY in ischemia-hypoxia.  相似文献   

4.
Food intake regulation in rodents: Y5 or Y1 NPY receptors or both?   总被引:3,自引:0,他引:3  
Neuropeptide Y (NPY), one of the most abundant peptides in rat and human brains, appears to act in the hypothalamus to stimulate feeding. It was first suggested that the NPY Y1 receptor (Y1R) was involved in feeding stimulated by NPY. More recently a novel NPY receptor subtype (Y5R) was identified in rat and human as the NPY feeding receptor subtype. There is, however, no absolute consensus since selective Y1R antagonists also antagonize NPY-induced hyperphagia. Nevertheless, new anti-obesity drugs may emerge from further pharmacological characterization of the NPY receptors and their antagonists. A large panel of Y1R and Y5R antagonists (such as CGP71683A, BIBO3304, BIBP3226, 1229U91, and SYNAPTIC and BANYU derivatives but also patentable in-house-synthesized compounds) have been evaluated through in vitro and in vivo tests in an attempt to establish a predictive relationship between the binding selectivity for human receptors, the potency in isolated organs assays, and the inhibitory effect on food intake in both normal and obese hyperphagic rodents. Although these results do not allow one to conclude on the implication of a single receptor subtype at the molecular level, this approach is crucial for the design of novel NPY receptor antagonists with potential use as anti-obesity drugs and for evaluation of their possible adverse peripheral side effects, such as hypotension.  相似文献   

5.
It is well documented that neuropeptide Y (NPY) exerts a wide range of biological functions through at least five NPY Y receptor subtypes (Y1-Y5), but its immunological effects only recently came into focus. Using NPY family peptides and NPY-related receptor-specific peptides as well as Y1 and Y2 receptor antagonists, we have tested which NPY Y receptors are involved in NPY-induced modulation of rat peritoneal macrophage function in vitro. NPY and PYY increased oxidative burst in phorbol myristate acetate (PMA)-stimulated macrophages involving activation of protein kinase C (PKC), and decreased it in zymosan-stimulated cells resembling inhibition of signaling pathways subsequent to binding of zymosan particles for the iC3b fragment receptor on macrophages. The combined treatment with NPY and NPY Y receptor antagonists revealed that NPY-induced potentiation of oxidative burst in PMA-stimulated cells is mediated through Y1 and Y2 receptors, while NPY-induced suppression in zymosan-stimulated cells is mediated through Y2 receptors only. NPY-related peptides differently modulated macrophage function, confirming involvement of NPY Y2 receptor in both potentiation and suppression of oxidative burst in these cells. Additionally, it was shown that NPY Y5 receptor mediated suppression of oxidative burst in PMA- and zymosan-stimulated macrophages. Taken together, the present data reveal an NPY Y1 and Y2/Y5 receptor interaction in NPY-induced modulation of macrophage functions related to inflammation.  相似文献   

6.
Accumulating data implicate a pathological role for sympathetic neurotransmitters like neuropeptide Y (NPY) in breast cancer progression. Our group and others reported that NPY promotes proliferation and migration in breast cancer cells, however the angiogenic potential of NPY in breast cancer is unknown. Herein we sought to determine if NPY promotes angiogenesis in vitro by increasing vascular endothelial growth factor (VEGF) expression and release from 4T1 breast cancer cells. Western blot analysis revealed that NPY treatment caused a 52 ± 14% increase in VEGF expression in the 4T1 cells compared to non-treated controls. Using selective NPY Y-receptor agonists (Y1R, Y2R and Y5R) we observed an increase in VEGF expression only when cells were treated with Y5R agonist. Congruently, using selective Y1R, Y2R, or Y5R antagonists, NPY-induced increases in VEGF expression in 4T1 cells were attenuated only under Y5R antagonism. Endothelial tube formation assays were conducted using conditioned media (CM) from NPY treated 4T1 cells. Concentration-dependent increases in number of branch points and complete endothelial networks were observed in HUVEC exposed to NPY CM. CM from Y5R agonist treated 4T1 cells caused similar increases in number of branch points and complete endothelial networks. VEGF concentration was quantified in CM (ELISA) from agonist experiments; we observed a 2-fold and 2.5-fold increase in VEGF release from NPY and Y5R agonist treated 4T1 cells respectively. Overall these data highlight a novel mechanism by which NPY may promote breast cancer progression, and further implicate a pathological role of the NPY Y5R.  相似文献   

7.
8.
Previously, in vivo studies showed that neuropeptide Y (NPY) elevates vascular permeability in isolated lung perfusion preparations, possibly through binding to the NPY Y(3) receptor. The present study used monolayers in a double-chamber culture method under conditions of normoxia (5% CO(2)-20% O(2)-75% N(2)) or hypoxia (5% CO(2)-5% O(2)-90% N(2)) to test the hypothesis that NPY directly affects rat aortic endothelial cells (RAECs). RAECs were cultured on the base of the upper chamber, into which FITC-labeled albumin was introduced, and permeation into the lower chamber was measured. The RAEC monolayer was treated with 10(-8)-3 x 10(-7) M NPY for 2 h in normoxia or hypoxia. In hypoxia, NPY concentration dependently increased the permeability of the RAEC monolayer, whereas in normoxia no significant change was observed. Peptide YY, NPY Y(1), and NPY Y(2) receptor agonists and NPY Y(1) receptor antagonist exerted no significant effects under hypoxic conditions. NPY-(18-36), an NPY Y(3) receptor antagonist, elicited an inhibitory action on the NPY-induced increase in monolayer permeability. Furthermore, neither N-monomethyl-l-arginine, a nitric oxide synthase inhibitor, the bradykinin B(2) receptor antagonist FK-3657, nor the vascular endothelial growth factor receptor-coupled tyrosine kinase inhibitor tyrphostin SU-1498, injected into the medium of the upper chamber, affected the NPY-induced permeability changes under hypoxic conditions. The results suggest that the NPY-induced increase in permeability across the RAEC monolayer is closely related to low O(2) tension, possibly mediated by direct action on the NPY Y(3) receptor expressed on the endothelial cell membrane. Furthermore, this NPY-induced increase is not likely due to nitric oxide, bradykinin, or vascular endothelial growth factor.  相似文献   

9.
The present study evaluated the effect of the neuropeptide Y (NPY) Y1 receptor antagonists BIBO 3304 and SR 120562A and of the Y5 receptor antagonists JCF 104, JCF 109, and CGP 71683A on feeding induced either by NPY or food deprivation. In a preliminary experiment, NPY was injected into the third cerebroventricle (3V) at doses of 0.07, 0.15, 0.3, or 0.6 nmol/rat. The dose of 0.3 nmol/rat, which produced a cumulative 2-h food intake of 11.2 +/- 1.9 g/kg body weight, was chosen for the following experiments. The antagonists were injected in the 3V 1 min before NPY. The Y1 receptor antagonist BIBO 3304 significantly inhibited NPY-induced feeding at doses of 1 or 10 nmol/rat. The Y1 receptor antagonist SR 120562A, at the dose of 10 but not of 1 nmol/rat, significantly reduced the hyperphagic effect of NPY, 0.3 nmol/rat. The Y5 receptor antagonists JCF 104 and JCF 109 (1 or 10 nmol/rat) and CGP 71683A (10 or 100 nmol/rat) did not significantly modify the effect of NPY, 0.3 nmol/rat. However, JCF 104 (10 nmol/rat) and CGP 71683A (100 nmol/rat), but not JCF 109 (10 nmol/rat), significantly reduced food intake during the interval from 2 to 4 h after injection of a higher dose, 0.6 nmol/rat, of NPY. Feeding induced by 16 h of food deprivation was significantly reduced by the Y1 receptor antagonist BIBO 3304 (10 nmol/rat), but it was not significantly modified by the same dose of SR 120562A or JCF 104. These findings support the idea that the hyperphagic effect of NPY is mainly mediated by Y1 receptors. The results obtained with JCF 104 and CGP 71683A suggest that Y5 receptors may have a modulatory role in the maintenance of feeding induced by rather high doses of NPY after the main initial feeding response.  相似文献   

10.
We studied the effects of neuropeptide Y (NPY) and NPY-related receptor specific peptides on functions of carrageenan-elicited granulocytes in vitro and ability of NPY to modulate carrageenan-induced air pouch inflammation in rats in vivo. Anti-inflammatory effect of NPY comprises reduced granulocyte accumulation into the air pouch, to some extent attenuation of phagocytosis, attained via Y1 receptor, and considerable decrease in peroxide production, albeit mediated via Y2 and Y5 receptors activation. Conversely, NPY increases nitric oxide production and this potentiation is mediated via Y1 receptor. It is concluded that NPY Y1 and Y2/Y5 receptors’ interaction participates in NPY-induced modulation of granulocyte functions related to inflammation.  相似文献   

11.
Neuropeptide Y (NPY) inhibits TRH neurons in fed state, and hypothalamic NPY higher expression during fasting has been proposed to be involved in fasting-induced suppression of the hypothalamus-pituitary-thyroid (HPT) axis. We investigated the role of central Y5 receptors in the control of thyrotropin (TSH) and thyroid hormone (TH) secretion. Fed and fasting rats received twice daily central injections (3rd ventricle) of Y5 receptor antagonist (CGP71683; 15nmol/rat) for 72h. Fasted rats also received a single central injection of CGP71683 (15nmol/rat) at the end of 72h of fasting. In fed rats, Y5 receptor blockade reduced total food intake by 32% and body mass by almost 10% (p<0.01), corroborating the role of this receptor in food intake control. 72h-fasted rats exhibited a 4-fold increase in serum TSH (p<0.001), 1h after a single injection of Y5 antagonist. Also with multiple injections during 72h of fasting, Y5 blockade resulted in activation of thyroid axis, as demonstrated by a 3-times rise in serum T4 (p<0.001), accompanied by unchanged TSH and T3. In fed rats, the chronic central administration of CGP71683 resulted in reduced total serum T4 without changes in free T4 and TSH. Serum leptin and PYY were not altered by the NPY central blockade in both fed and fasted rats, suggesting no role of these hormones in the alterations observed. Therefore, the inhibition of central Y5 neurotransmission resulted in activation of thyroid axis during fasting suggesting that NPY-Y5 receptors contribute to fasting-induced TSH and TH suppression.  相似文献   

12.
Since NPY increases endothelial cell (EC) stickiness for leukocytes, we studied the effects of LPS, TNF-alpha and IFN-gamma on its expression and action in HUVEC. Cytokines raised NPY and pro-NPY intracellular content and dipeptidyl peptidase IV (DPP IV) activity. Y1 and Y2 receptors were expressed in basal conditions, and LPS, TNF-alpha and IFN-gamma induced Y5 receptor expression with a concomitant extinction of Y2 receptor expression. NPY induced an intracellular calcium increase mainly mediated by Y2 and Y5 receptors in basal conditions. After stimulation with LPS, TNF-alpha and IFN-gamma, calcium increase was mainly caused by Y5 receptor. The modulation of the NPY system by LPS, TNF-alpha and IFN-gamma, and the NPY-induced calcium signaling suggest a role for NPY during the inflammatory response.  相似文献   

13.
Central administration of neuropeptide Y (NPY) stimulates hyperphagia and hyperinsulinemia. Recent evidence has suggested that the Y1 and Y5 receptor subtypes may both mediate NPY-stimulated feeding. The present study attempts to further characterize the role of central NPY receptor subtypes involved in hyperinsulinemia. NPY and peptide analogs of NPY that selectively activated the NPY Y1 or Y5 receptor subtype induced feeding and hyperinsulinemia in satiated Long Evans rats, whereas NPY analogs that selectively activated the NPY Y2 or Y4 receptor subtype did not. To determine whether NPY-induced hyperinsulinemia is secondary to its hyperphagic effect, we compared the plasma insulin levels in the presence and absence of food after a 1-min central infusion of NPY and its analogs at 15, 60, and 120 min postinfusion. Our data suggest that selective activation of central NPY Y1 receptor subtype induced hyperinsulinemia independent of food ingestion, whereas the NPY Y5 receptor-induced hyperinsulinemia was dependent on food ingestion. Central administration of the selective Y1 receptor agonist D-Arg25 NPY eventually decreased plasma glucose levels 2 h postinfusion in Long Evans rats.  相似文献   

14.
The reduced metabolism derived from daily torpor enables numerous small mammals, including Siberian hamsters, to survive periods of energetic challenge. Little is known of the neural mechanisms underlying the initiation and expression of torpor. Hypothalamic neuropeptide Y (NPY) contributes to surviving energetic challenges by both increasing food ingestion and reducing metabolic expenditure. Intracerebroventricular injections of NPY in cold-acclimated Siberian hamsters induce torpor-like hypothermia comparable to natural torpor. Multiple NPY receptor subtypes have been identified, and the Y1 receptor and Y5 receptor both contribute to the orexigenic effect of NPY. The purpose of this research was to compare and contrast the effects of Y1 receptor activation by a specific Y1 agonist ([D-Arg25]-NPY) or Y5 receptor activation by a specific Y5 agonist ([D-Trp34]-NPY) on body temperature and subsequent food intake in cold-acclimated Siberian hamsters. Intracerebroventricular injections of Y1 agonist produced torporlike hypothermia closely resembling that induced by intracerebroventricular NPY. The intracerebroventricular Y5 agonist infrequently produced hypothermia reaching criterion for torpor and that failed to resemble either NPY-induced or natural torpor. Combined injections of Y1 and Y5 agonists resulted in hypothermia comparable to Y5 agonist treatments alone, negating the mimicry of NPY treatment seen with Y1 agonist alone. Prior treatment with Y1 agonist or Y5 agonist surprisingly had lingering effects on NPY-induced torpor expression, Y1 agonist enhanced and Y5 agonist inhibited the effect of NPY. The ability of NPY to induce torporlike hypothermia, especially its initiation, most likely involves activation of the NPY Y1 receptor subtype.  相似文献   

15.
Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self‐renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long‐term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder‐free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY‐mediated activation of AKT/protein kinase B and extracellular signal‐regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY‐induced activation of cAMP‐response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self‐renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno‐free culture condition for the large‐scale propagation of undifferentiated hESCs.  相似文献   

16.
NPY is the most potent orexigenic agent known to man, with NPY Y1 and NPY Y5 being the receptor subtypes that are most likely responsible for centrally-mediated NPY-induced feeding responses. Based on the aforementioned, novel hydrazide derivatives were prepared for the purpose of searching new NPY Y5 receptor antagonists. Many of the compounds exhibited nanomolar binding affinity for this receptor, affording trans-N-(4-[N'-(3,4-dichlorophenyl)hydrazinocarbonyl]cyclohexylmethyl)-4-fluorobenzenesulfonamide, which showed the best activity (IC(50)=0.43nM).  相似文献   

17.
While a dysregulation in neuropeptide Y (NPY) signaling has been described in rodent models of obesity, few studies have investigated the time-course of changes in NPY content and responsiveness during development of diet-induced obesity. Therefore we investigated the effect of differing lengths (2-17 weeks) of high-fat diet on hypothalamic NPY peptide content, release and NPY-induced hyperphagia. Male Sprague-Dawley rats (211 +/- 3 g) were fed either a high-fat diet (30% fat) or laboratory chow (5% fat). Animals were implanted with intracerebroventricular cannulae to investigate feeding responses to NPY (0.5 nmol, 1 nmol) after 4 or 12 weeks of diet. At the earlier stage of obesity, NPY-induced hyperphagia was not altered; however, animals maintained on the high-fat diet for the longer duration were hyper-responsive to NPY, compared to chow-fed control rats (p < 0.05). Overall, hypothalamic NPY peptide content tended to be decreased from 9 to 17 weeks of diet (p < 0.05). Total hypothalamic NPY content was negatively correlated with plasma leptin concentration (p < 0.05), suggesting the hypothalamic NPY system remains responsive to leptin's inhibitory signal. In addition, hypothalamic NPY overflow was significantly reduced in high-fat fed animals (p < 0.05). Together these results suggest a reduction in hypothalamic NPY activity in high-fat fed animals, perhaps in an attempt to restore energy balance.  相似文献   

18.
The neuropeptide Y (NPY) Y(5) receptor has been proposed to mediate several physiological effects of NPY, including the potent orexigenic activity of the peptide. However, the lack of selective NPY Y(5) receptor ligands limits the characterization of the physiological roles of this receptor. Screening of several analogs of NPY revealed that [D-Trp(34)]NPY is a potent and selective NPY Y(5) receptor agonist. Unlike the prototype selective NPY Y(5) receptor agonist [D-Trp(32)]NPY, [D-Trp(34)]NPY markedly increases food intake in rats, an effect that is blocked by the selective NPY Y(5) receptor antagonist CGP 71683A. These data demonstrate that [D-Trp(34)]NPY is a useful tool for studies aimed at determining the physiological roles of the NPY Y(5) receptor.  相似文献   

19.
Neuropeptide Y (NPY) is an established modulator of renal function. Although NPY reduces renal blood flow and does not alter glomerular filtration rate, it enhances diuresis and natriuresis. Although initial studies on natriuresis did not detect kaliuresis, we now report that a retrospective analysis of previous studies regarding natriuresis demonstrates NPY-induced kaliuresis under several experimental conditions. Kaliuresis was observed despite a marked reduction in urinary potassium concentrations, which may explain why it has not been noted in some initial studies. In a direct comparison of NPY-induced kaliuresis and natriuresis, both effects were slow in onset (requiring >45 min to develop fully) and blocked by the cyclooxygenase inhibitor indomethacin. While natriuresis occurred solely via a Y5 receptor, kaliuresis involved a Y1 receptor and an additional receptor subtype, possibly Y2. The L-type Ca2+ entry blocker nifedipine abolished natriuresis but did not inhibit kaliuresis. A combination of experiments with the bradykinin B2 receptor antagonist icatibant, the angiotensin II receptor antagonist losartan, and the converting enzyme inhibitor ramiprilat revealed that NPY-induced natriuresis involves bradykinin while kaliuresis involves angiotensin II. We conclude that NPY-induced kaliuresis is much less pronounced than natriuresis and is mediated by distinct mechanisms.  相似文献   

20.
Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y1, Y2, Y4 and Y5 receptors [Álvaro et al. , (2007) Neurochem. Int., 50, 757] were used. NPY (10–1000 nM) stimulated cell proliferation through the activation of NPY Y1, Y2 and Y5 receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU+/nestin+ cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by l -nitroarginine-methyl-esther ( l -NAME; 500 μM), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 μM), a soluble guanylyl cyclase inhibitor or U0126 (1 μM), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide–cyclic GMP and ERK 1/2 pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号