首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Novel 3-(arylsulfonyl)-1-(azacyclyl)-1H-indoles 6 were synthesized as potential 5-HT6 receptor ligands, based on constraining a basic side chain as either a piperidine or a pyrrolidine. Many of these compounds had good 5-HT6 binding affinity with Ki values <10 nM. Depending on substitution, both agonists (e.g., 6o: EC50 = 60 nM, Emax = 70%) and antagonists (6y: IC50 = 17 nM, Imax = 86%) were identified in a 5-HT6 adenylyl cyclase assay.  相似文献   

2.
A series of 3-arylnortrop-2-enes and 3α-arylmethoxy-3β-arylnortropanes were synthesized and evaluated for binding affinity at monoamine transporters. The 3-(3,4-dichlorophenyl)nortrop-2-ene (6e) exhibited high affinity for the SERT (Ki = 0.3 nM). The 3α-arylmethoxy-3β-arylnortropanes were generally SERT selective with the 3α-(3.4-dichlorophenylmethoxy)-3βphenylnortrop-2-ene (7c) possessing subnanomolar potency (Ki = 0.061 nM). However, 3α-(3,4-dichlorophenylmethoxy)-3β-phenylnortrop-2-ene (7b) exhibited high affinity at all three transporters [(DAT Ki = 22 nM), (SERT Ki = 6 nM) and (NET Ki = 101 nM)].  相似文献   

3.
Several tetrahydroimidazopyrimidines were prepared using silver assisted cyclization as the key step. The binding affinities of compounds thus prepared were evaluated in vitro toward hCRF1R. Initial lead compound 16 (Ki = 32 nM) demonstrated modest putative anxiolytic effects in the mouse canopy test. Further optimization using parallel synthesis provided compounds with Ki’s <50 nM.  相似文献   

4.
Lobelane analogs that incorporate a central piperidine or pyrrolidine moiety have previously been reported by our group as potent inhibitors of VMAT2 function. Further central ring size reduction of the piperidine moiety in lobelane to a four-membered heterocyclic ring has been carried out in the current study to afford novel cis-and trans-azetidine analogs. These azetidine analogs (15a15c and 22a22c) potently inhibited [3H]dopamine (DA) uptake into isolated synaptic vesicles (Ki ? 66 nM). The cis-4-methoxy analog 22b was the most potent inhibitor (Ki = 24 nM), and was twofold more potent that either lobelane (2a, Ki = 45 nM) or norlobelane (2b, Ki = 43 nM). The trans-methylenedioxy analog, 15c (Ki = 31 nM), was equipotent with the cis-analog, 22b, in this assay. Thus, cis- and trans-azetidine analogs 22b and 15c represent potential leads in the discovery of new clinical candidates for the treatment of methamphetamine abuse.  相似文献   

5.
Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol series of molecules. Compounds were subjected to [3H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (Ki) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (?)-10e (Ki; D2 = 47.5 nM, D3 = 0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (Ki; D2 = 113 nM, D3 = 3.73 nM). Additionally, compound (?)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPγS binding study, one of the lead molecules, (?)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential affinity at D3.  相似文献   

6.
Neurotensin (NT) is an endogenous tridecapeptide found in the central nervous system (CNS) and in peripheral tissues. Neurotensin exerts a wide range of physiological effects and it has been found to play a critical role in a number of human diseases, such as schizophrenia, Parkinson’s disease and drug addiction. The discovery of small-molecule non-peptide neurotensin receptor (NTSR) modulators would represent an important breakthrough as such compounds could be used as pharmacological tools, to further decipher the cellular functions of neurotensin, and potentially as therapeutic agents to treat human disease. Herein, we report the identification of non-peptide low-micromolar neurotensin receptor 1 (NTSR1) full agonists, discovered through structural optimization of the known NTSR1 partial agonist 1. In vitro cellular screenings, based on an intracellular Ca2+ mobilization assay, revealed our best hit molecule 8 (SR-12062) to have an EC50 of 2 μM at NTSR1 with full agonist behaviour (Emax = 100%), showing a higher efficacy and ∼90-fold potency improvement compared to parent compound 1 (EC50 = 178 μM; Emax = 17%).  相似文献   

7.
1-(2-Aminoethyl)-3-(arylsulfonyl)-1H-pyrrolopyridines were prepared. Binding assays indicated they are 5-HT6 receptor ligands, among which 6f and 6g showed high affinity for 5-HT6 receptors with Ki = 3.9 and 1.7 nM, respectively.  相似文献   

8.
The 5-HT1AR partial agonist PET radiotracer, [11C]CUMI-101, has advantages over an antagonist radiotracer as it binds preferentially to the high affinity state of the receptor and thereby provides more functionally meaningful information. The major drawback of C-11 tracers is the lack of cyclotron facility in many health care centers thereby limiting widespread clinical or research use. We identified the fluoroethyl derivative, 2-(4-(4-(2-(2-fluoroethoxy)phenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione (FECUMI-101) (Ki = 0.1 nM; Emax = 77%; EC50 = 0.65 nM) as a partial agonist 5-HT1AR ligand of the parent ligand CUMI-101. FECUMI-101 is radiolabeled with F-18 by O-fluoroethylation of the corresponding desmethyl analogue (1) with [18F]fluoroethyltosylate in DMSO in the presence of 1.6 equiv of K2CO3 in 45 ± 5% yield (EOS). PET shows [18F]FECUMI-101 binds specifically to 5-HT1AR enriched brain regions of baboon. The specificity of [18F]FECUMI-101 binding to 5-HT1AR was confirmed by challenge studies with the known 5-HT1AR ligand WAY100635. These findings indicate that [18F]FECUMI-101 can be a viable agonist ligand for the in vivo quantification of high affinity 5-HT1AR with PET.  相似文献   

9.
Central heterocyclic ring size reduction from piperidinyl to pyrrolidinyl in the vesicular monoamine transporter-2 (VMAT2) inhibitor GZ-793A and its analogs resulted in novel N-propane-1,2(R)-diol analogs 11a–i. These compounds were evaluated for their affinity for the dihydrotetrabenazine (DTBZ) binding site on VMAT2 and for their ability to inhibit vesicular dopamine (DA) uptake. The 4-difluoromethoxyphenethyl analog 11f was the most potent inhibitor of [3H]-DTBZ binding (Ki = 560 nM), with 15-fold greater affinity for this site than GZ-793A (Ki = 8.29 μM). Analog 11f also showed similar potency of inhibition of [3H]-DA uptake into vesicles (Ki = 45 nM) compared to that for GZ-793A (Ki = 29 nM). Thus, 11f represents a new water-soluble inhibitor of VMAT function.  相似文献   

10.
Three classes of novel inhibitors of inosine monophosphate dehydrogenase have been prepared and their anti-proliferative properties were evaluated against several cancer cell lines.(1) Mycophenolic adenine dinucleotide analogues (813) containing a substituent at the C2 of adenine ring were found to be potent inhibitors of IMPDH (Ki’s in range of 0.6–82 nM) and sub-μM inhibitors of leukemic K562 cell proliferation. (2) Mycophenolic adenosine (d and l) esters (20 and 21) showed a potent inhibition of IMPDH2 (Ki = 102 and Ki = 231 nM, respectively) and inhibition of K562 cell growth (IC50 = 0.5 and IC50 = 1.6 μM). These compounds serve both as inhibitors of the enzyme and as a depot form of mycophenolic acid. The corresponding amide analogue 22, also a potent inhibitor of IMPDH (Ki = 84 nM), did not inhibit cancer cell proliferation. (3) Mycophenolic-(l)- and (d)-valine adenine di-amide derivatives 25 (Ki = 9 nM) and 28 (Ki = 3 nM) were found to be very potent enzymatically, but did not inhibit proliferation of cancer cells.  相似文献   

11.
A series of benzoxazole/benzothiazole-2,3-dihydrobenzo[b][1,4]dioxine derivatives (5a5d and 8a8j) was synthesized. Compounds were evaluated for binding affinities at the 5-HT1A and 5-HT2A receptors. Antidepressant activities of the compounds were screened using the forced swimming test (FST) and the tail suspension test (TST). The results indicated that the compounds exhibited high affinities for the 5-HT1A and 5-HT2A receptors and showed a marked antidepressant-like activity. Compound 8g exhibited high affinities for the 5-HT1A (Ki = 17 nM) and 5-HT2A (Ki = 0.71 nM) receptors; it also produced a decrease of the immobility time and exhibited potent antidepressant-like effects in the FST and TST in mice.  相似文献   

12.
A series of 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles were synthesized regioselectively using click chemistry and evaluated at CB1 cannabinoid receptors. The n-propyl ester 11 (Ki = 4.6 nM) and phenyl ester 14 (Ki = 11 nM) exhibited the most potent affinity of the series.  相似文献   

13.
The synthesis and in vitro preclinical profile of a series of 5-heteroaryl substituted analogs of the antipsychotic drug sertindole are presented. Compounds 1-(4-fluorophenyl)-3-(1-methylpiperidin-4-yl)-5-(pyrimidin-5-yl)-1H-indole (Lu AA27122, 3i) and 1-(4-fluorophenyl)-5-(1-methyl-1H-1,2,4-triazol-3-yl)-3-(1-methylpiperidin-4-yl)-1H-indole (3l) were identified as high affinity α1A-adrenoceptor ligands with Ki values of 0.52 and 0.16 nM, respectively, and with a >100-fold selectivity versus dopamine D2 receptors. Compound 3i showed almost equal affinity for α1B- (Ki = 1.9 nM) and α1D-adrenoceptors (Ki = 2.5 nM) as for α1A, as well as moderate affinity for 5-HT1B (Ki = 13 nM) and 5-HT6 (Ki = 16 nM) receptors, whereas 3l showed >40-fold selectivity toward all other targets tested. Based on in vitro assays for assessment of permeability rates and extent, it is predicted that both compounds enter the brain of rats, non-human primates, as well as humans, and as such are good candidates to be carried forward for further evaluation as positron emission tomography (PET) ligands.  相似文献   

14.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

15.
Two novel series of spirocyclic piperidine analogs appended to a pyrazolo[1,5-a]pyridine core were designed, synthesized and evaluated for their anti-HCV activity. A series of piperidine ketals afforded dispiro 6p which showed excellent in vitro anti-HCV activities (EC50 of 1.5 nM and 1.2 nM against genotype 1a and 1b replicons, respectively). A series of piperidine oxazolidinones afforded 27c which showed EC50’s of 10.9 nM and 6.1 nM against 1a and 1b replicons, respectively. Both compounds 6p and 27c bound directly to non-structural NS4B protein in vitro (IC50’s = 10.2 and 30.4 nM, respectively) and exhibited reduced potency in replicons containing resistance mutations encoding changes in the NS4B protein.  相似文献   

16.
A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R = R2 = H, R1 = F) and 13 (R = COOCH3, R1 = R2 = H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.  相似文献   

17.
Tamiflu, the ethyl ester form of oseltamivir carboxylic acid (OC), is the first orally available anti-influenza drug for the front-line therapeutic option. In this study, the OC-hydroxamates, OC-sulfonamides and their guanidino congeners (GOC) were synthesized. Among them, an OC-hydroxamate 7d bearing an O-(2-indolyl)propyl substituent showed potent NA inhibition (IC50 = 6.4 nM) and good anti-influenza activity (EC50 = 60.1 nM) against the wild-type H1N1 virus. Two GOC-hydroxamates (9b and 9d) and one GOC-sulfonamide (12a) were active to the tamiflu-resistant H275Y virus (EC50 = 2.3–6.9 μM).  相似文献   

18.
Cyclic tetrapeptide c[Phe-pro-Phe-trp] 2, a diastereomer of CJ-15,208 (1), was identified as a potent dual κ/μ opioid receptor antagonist devoid of δ opioid receptor affinity against cloned human receptors: Ki (2) = 3.8 nM (κ), 30 nM (μ); IC50 ([35S]GTPγS binding) = 140 nM (κ), 21 nM (μ). The d-tryptophan residue rendered 2 ca. eightfold and fourfold more potent at κ and μ, respectively, than the corresponding l-configured tryptophan in the natural product 1. Phe analogs 3–10, designed to probe the effect of substituents on receptor affinity and selectivity, possessed Ki values ranging from 14 to 220 nM against the κ opioid receptor with μ/κ ratios of 0.45–3.0. An alanine scan of 2 yielded c[Ala-pro-Phe-trp] 12, an analog equipotent to 2. Agents 2 and 12 were pure antagonists in vitro devoid of agonist activity. Ac-pro-Phe-trp-Phe-NH2 16 and Ac-Phe-trp-Phe-pro-NH2 17 two of the eight possible acyclic peptides derived from 1 and 2, were selective, modestly potent μ ligands: Ki (16) = 340 nM (μ); Ki (17) = 360 nM (μ).  相似文献   

19.
A series of novel 3β-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki = 0.6 nM), 6c and 6i (Ki = 0.4 nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki = 62.7 nM and Ki = 30.5 nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability.  相似文献   

20.
Previous studies have shown that compound 1 displayed high affinity towards histamine H3 receptor (H3R), (human (h-H3R), Ki = 8.6 nM, rhesus monkey (rh-H3R), Ki = 1.2 nM, and rat (r-H3R), Ki = 16.5 nM), but exhibited high affinity for hERG channel. Herein, we report the discovery of a novel, potent, and highly selective H3R antagonist/inverse agonist 5a(SS) (SAR110068) with acceptable hERG channel selectivity and desirable pharmacological and pharmacokinetic properties through lead optimization sequence. The significant awakening effects of 5a(SS) on sleep–wake cycles studied by using EEG recording in rats during their light phase support its potential therapeutic utility in human sleep–wake disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号