首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
(Piperazin-1-yl-phenyl)-arylsulfonamides were synthesized and identified to show high affinities for both 5-HT2C and 5-HT6 receptors. Among them, naphthalene-2-sulfonic acid isopropyl-[3-(4-methyl-piperazin-1-yl)-phenyl]-amide (6b) exhibits the highest affinity towards both 5-HT2C (IC50 = 4 nM) and 5-HT6 receptors (IC50 = 3 nM) with good selectivity over other serotonin (5-HT1A, 5-HT2A, and 5-HT7) and dopamine (D2–D4) receptor subtypes. In 5-HT2C and 5-HT6 receptor functional assays, this compound showed considerable antagonistic activity for both receptors.  相似文献   

2.
A novel series of 1H-indole-3-carboxylic acid pyridine-3-ylamides were synthesized and identified to show high affinity and selectivity for 5-HT2C receptor. Among them, 1H-indole-3-carboxylic acid[6-(2-chloro-pyridin-3-yloxy)-pyridin-3-yl]-amide (15k) exhibits the highest affinity (IC50 = 0.5 nM) with an excellent selectivity (>2000 times) over other serotonin (5-HT1A, 5-HT2A, and 5-HT6) and dopamine (D2–D4) receptors.  相似文献   

3.
A series of novel aporphine derivatives were synthesized for initial screening at the 5-HT2 receptor subtypes. Among them, Compounds 11a and 11b were identified as potent 5-HT2C hit ligands with high selectivity over other 5-HT2 receptor subtypes. Molecular docking study revealed that compounds 11a and 11b formed two key interactions with the binding site of 5-HT2C receptor, including a salt-bridge to D3.32 and a H-bond interaction with N6.55.  相似文献   

4.
We previously reported that the novel dual 5-HT2B and 5-HT7 receptor antagonist N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (4) exerted a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs. To develop a synthetic strategy, we performed docking studies of lead compound 4 bound to 5-HT2B and 5-HT7 receptors, and observed that the carbonyl guanidine group forms a tight interaction network with an active center Asp (D135:5-HT2B, D162:5-HT7), Tyr (Y370:5-HT2B, Y374:5-HT7) and aromatic residue (W131:5-HT2B, F158:5-HT7). Based on molecular modeling results, we optimized the substituents at the 5- to 8-position and 9-position of the fluorene ring and identified N-(diaminomethylene)-9-hydroxy-9-methyl-9H-fluorene-2-carboxamide (24a) exhibits potent affinity for 5-HT2B (Ki = 4.3 nM) and 5-HT7 receptor (Ki = 4.3 nM) with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 24a reversed the hypothermic effect of 5-carboxamidotryptamine (5-CT) in mice and also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered at 30 mg/kg. Compound 24a is therefore a promising candidate for a novel class of anti-migraine agent without any adverse effects.  相似文献   

5.
To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure–activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki = 1.8 nM and Ki = 17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.  相似文献   

6.
All clinically-used antipsychotics display similar affinity for both D2 (D2R) and D3 (D3R) receptors, and they likewise act as 5-HT2A receptor antagonists. They provide therapeutic benefit for positive symptoms, but no marked or consistent improvement in neurocognitive, social cognitive or negative symptoms. Since blockade of D3 and 5-HT6 (5-HT6R) receptors enhances neurocognition and social cognition, and potentially improves negative symptoms, a promising approach for improved treatment for schizophrenia would be to develop drugs that preferentially act at D3R versus D2R and likewise recognize 5-HT6R. Starting from the high affinity 5-HT6R ligands I and II, we identified compounds 11a and 14b that behave as 5-HT6R ligands with significant selectivity for D3R over D2R.  相似文献   

7.
Aporphine alkaloids containing a C10 nitrogen motif were synthesized and evaluated for affinity at 5-HT1AR, 5-HT2AR, 5-HT6R and 5-HT7AR. Three series of racemic aporphines were investigated: 1,2,10-trisubstituted, C10 N-monosubstituted and compounds containing a C10 benzofused aminothiazole moiety. The 1,2,10-trisubstituted series of compounds as a group displayed modest selectivity for 5-HT7AR and also had moderate 5-HT7AR affinity. Compounds from the C10 N-monosubstituted series generally lacked affinity for 5-HT2AR and 5-HT6R and showed strong affinity for 5-HT1A or 5-HT7AR. Compounds in this series that contained an N6-methyl group were up to 27-fold selective for 5-HT7AR over 5-HT1AR, whereas compounds with an N6-propyl substituent showed a reversal in this selectivity. The C10 benzofused aminothiazole analogues showed a similar binding profile as the C10 N-monosubstituted series i.e. strong affinity for 5-HT1AR or 5-HT7AR, with selectivity between the two receptors being similarly influenced by N6-methyl or N6-propyl substituents. Compounds 29 and 34a exhibit high 5-HT7AR affinity, excellent selectivity versus dopamine receptors and function as antagonists in 5-HT7AR cAMP-based assays. Compounds 29 and 34a have been identified as new lead molecules for further tool and pharmaceutical optimization.  相似文献   

8.
Aplysinopsins are tryptophan-derived natural products that have been isolated from a variety of marine organisms and have been shown to possess a range of biological activities. In vitro receptor binding assays showed that of the 12 serotonin receptor subtypes, analogues showed a high affinity for the 5-HT2B and 5-HT2C receptor subtypes, with selectivity for 5-HT2B over 5-HT2C. While no conclusions could be drawn about the number and position of N-methylations, bromination at C-4 and C-5 of the indole ring resulted in greater binding affinities, with Ki’s as low as 35 nM. This data, combined with previous knowledge of the CNS activity of aplysinopsin analogs, suggested that these compounds may have potential as leads for antidepressant drugs. Compounds 3c, 3u, and 3x were evaluated in the chick anxiety–depression model to assess their in vivo efficacy. Compound 3c showed a modest antidepressant effect at a dose of 30 nM/kg in the animal model.  相似文献   

9.
A novel series of 5-HT2A ligands that contain a (phenylpiperazinyl-propyl)arylsulfonamides skeleton was synthesized. Thirty-seven N-(cycloalkylmethyl)-4-methoxy-N-(3-(4-arylpiperazin-1-yl)propyl)-arylsulfonamide and N-(4-(4-arylpiperazin-1-yl)butan-2-yl)-arylsulfonamide compounds were obtained. The binding of these compounds to the 5-HT2A, 5-HT2C, and 5-HT7 receptors was evaluated. Most of the compounds showed IC50 values of less than 100 nM and exhibited high selectivity for the 5-HT2A receptor. Among the synthesized compounds, 16a and 16d showed good affinity at 5-HT2A (IC50 = 0.7 nM and 0.5 nM) and good selectivity over 5-HT2C (50–100 times) and 5-HT7 (1500–3000 times).  相似文献   

10.
Here we describe the design, synthesis, and pharmacological evaluation of a set of compounds structurally related to the high affinity serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (6, LP-211). Specific structural modifications were performed in order to maintain affinity for the target receptor and to improve the selectivity over 5-HT1A and adrenergic α1 receptors. The synthesized compounds have chemical features that could enable labeling with a positron emitter radioisotope (carbon-11 or fluorine-18) and lipophilicity within the range considered optimal for brain penetration and low non-specific binding. 4-[2-(4-Methoxyphenyl)phenyl]-N-(pyridin-4-ylmethyl)piperazinehexanamide (23a) and N-pyridin-4-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (26a) were radiolabeled on the methoxy group with carbon-11. Positron emission tomography (PET) analysis revealed that [11C]-23a and [11C]-26a were P-glycoprotein (P-gp) substrates and rapidly metabolized, resulting in poor brain uptake. These features were not predicted by in vitro tests.  相似文献   

11.
A series of fourteen novel, eight-membered lactam- and dilactam-based analogues of tricyclic drugs were obtained in a simple one-pot procedure. Crystal structures of two compounds were determined by single-crystal X-ray diffraction analysis and their selected structural features were discussed and compared with those of imipramine and dibenzepine. Affinity of developed molecules for histamine receptor H1, serotonin receptors 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, serotonin transporter (SERT) and dopamine receptor D2 was determined. The commercial drug dibenzepine was also checked on these molecular targets, as its mechanism of action is largely unknown. Two derivatives of 11,12-dihydrodibenzo[b,f]azocin-6(5H)-one (7,8) and two of dibenzo[b,f]azocin-6(5H)-one (9,10) were found to be active toward the H1 receptor in sub-micromolar concentrations.  相似文献   

12.
A series of 9-disubstituted N-(9H-fluorene-2-carbonyl)guanidine derivatives have been discovered as potent and orally active dual 5-HT2B and 5-HT7 receptor antagonists. Upon screening several compounds, N-(diaminomethylene)-4′,5′-dihydro-3′H-spiro[fluorene-9,2′-furan]-2-carboxamide (17) exhibited potent affinity for both 5-HT2B (Ki = 5.1 nM) and 5-HT7 (Ki = 1.7 nM) receptors with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Optical resolution of the intermediate carboxylic acid 16 via the formation of diastereomeric salts using chiral alkaloids gave the optically pure compounds (R)-17 and (S)-17. Both enantiomers suppressed 5-HT-induced dural protein extravasation in guinea pigs in a dose-dependent manner and the amount of leaked protein was suppressed to near normal levels when orally administrated at 10 mg/kg. (R)-17 and (S)-17 were therefore selected as candidates for human clinical trials.  相似文献   

13.
More than 300 million people are suffering from depression, one of the civilization diseases in the 21st century. Serotonin 5-HT1AR and dopamine D2R play an important role in the treatment and pathogenesis of depression. Moreover, in recent years, the efficacy of dual 5-HT1A/D2 receptors ligands has been demonstrated in the fight against depression. In this work the new bulky arylpiperazine derivatives (LCAP) were synthesized in microwave radiation field. The affinities for the selected serotonin (5-HT1A,5-HT2A,5-HT6,5-HT7) and dopamine (D2) receptors have been evaluated in vitro. Compounds 5.3a, 5.4, 5.1c, 5.3d, 5.2a are promising dual 5-HT1AR/D2R ligands. The SAR analysis were additionally supported with molecular docking studies.  相似文献   

14.
A number of N6-substituted adenosine-5′-N-methylcarboxamides were synthesised and their pharmacology, in terms of their receptor affinity, selectivity and cardioprotective effects, were explored. The first series of compounds, 4a4f and 5a5f, showed modest receptor affinity for the A3AR with Ki values in the low to mid μM range. However, the incorporation of a 4-(2-aminoethyl)-2,6-di-tert-butylphenol group in the N6-position (in compounds 4g and 5g) significantly improved the affinity with Ki values of 30 and 9 nM, respectively. Improvements in affinity, as well as selectivity were seen when a functionalised linker was introduced. The N6-phenyl series, compounds 7a7d, demonstrated low to mid nanomolar receptor affinities (Ki = 2.3–45.0 nM), with 7b displaying 109-fold selectivity for the A3AR (vs A1). The N6-benzyl series 9a9c also proved to be potent and selective A3AR agonists and the longer chain length linker 13 was tolerated at the A3AR without abrogation of affinity or selectivity. Cardioprotection was demonstrated by a simulated ischaemia cell culture assay, whereby 7b, 7c, 9a, 9b and 9c all showed cardioprotective effects at 100 nM comparable or better than the benchmark A3AR agonist IB-MECA, but which were indistinguishable by statistical analysis. For example, compound 9c reduced cell death by 68.0 ± 3.6%.  相似文献   

15.
A series of 1-aminoethyl-3-arylsulfonyl-1H-pyrrolo[2,3-b]pyridines 10az was prepared as novel 5-HT6 ligands. The best compounds were high affinity, full agonists at 5-HT6 receptors. Several agonists demonstrated good selectivity over other serotonergic and dopaminergic receptors. Acute administration of selective agonist 10e significantly increased extracellular GABA concentrations in rat frontal cortex. This compound also reduced adjunctive drinking behavior in the rat schedule-induced polydipsia assay, possibly predictive of efficacy in obsessive compulsive disorder and other anxiety related disorders.  相似文献   

16.
On the basis that meta-chlorophenylpiperazine (mCPP; 1) is a nonselective 5-HT2C agonist, that benz-fused tryptamines (e.g., 5) display enhanced 5-HT2 affinity, and that certain isotryptamines 3 reportedly bind with enhanced affinity and selectivity at 5-HT2C receptors, we prepared and examined a series of isotryptamine-related analogues as potentially selective 5-HT2C agonists. None of the compounds displayed selectivity for 5-HT2C versus 5-HT2A receptors. Detailed re-examination of a compound previously reported to display 100-fold 5-HT2C selectivity [i.e., S(+)-5,6-difluoro-α-methylisotryptamine] revealed that its selectivity versus 5-HT2A receptors was, at best, only 10-fold.  相似文献   

17.
In the pharmacotherapy of schizophrenia, there is a lack of effective drugs, and currently used agents cause a large number of side effects. The D2, 5-HT1A, 5-HT2A receptors are among the most important receptor targets in the treatment of schizophrenia, but antagonism at 5-HT6 and 5-HT7 receptors may bring about additional improvement of cognitive functions. However, doubt exists regarding the importance of 5-HT7R in the pharmacotherapy. In 2010, lurasidone (with high affinity for D2, D3, 5-HT1A, 5-HT2A, 5-HT7 receptors) was approved for the treatment of schizophrenia. Due to the efficacy of the mentioned drug and doubts related to the role of 5-HT7R, we decided to obtain compounds with an activity profile similar to that of lurasidone, but with the reduced affinity for 5-HT7R and increased affinity for 5-HT6R. For this purpose, we chose a flexible hexyl derivative of lurasidone (2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)hexahydro-1H-4,7-methanoisoindole-1,3(2H)-dione 1a) as a hit structure. After molecular modeling, we modified it, in the area of the arylpiperazine and imide group, using the moieties found in other known CNS drugs. We received the compounds in accordance with the previously developed method of ecological synthesis in the microwave radiation field. Among the obtained compounds, N-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)naphthalene-sulfonamides 1v and 1w were distinguished as multifunctional ligands showing increased affinity for 5-HT6R, and 2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one 1i – a multifunctional ligand showing moderate affinity for 5-HT6R and threefold lower for 5-HT7R. In the paper, we discuss some of the observed dependencies regarding 5-HT6/5-HT7R affinity using molecular docking methods.  相似文献   

18.
In order to identify a high-affinity, selective antagonist for the A2B subtype adenosine receptor, more than 40 1,8-disubstituted-3-(3-methoxypropyl) xanthines were prepared and evaluated for their binding affinity at recombinant human adenosine receptors, mainly of the A2A and A2B subtypes. Some of the 1-ethyl-3-(3-methoxypropyl)-8-aryl substituted derivatives 15(am) showed moderate-to-high affinity at human A2B receptors, with compound 15d showing A2B selectivity over the other A receptors assayed (A1, A2A, A3) of 34-fold or over.  相似文献   

19.
Piperazinyl derivatives of 1-(arylsulfonyl)-2,3-dihydro-1H-quinolin-4-ones have been identified with high binding affinities for 5-HT6 receptor. In particular, 2-methyl-5-(N-methyl-piperazin-1-yl)-1-(naphthalene-2-sulfonyl)-2,3-dihydro-1H-quinolin-4-one (8g) exhibits high binding affinity toward 5-HT6 (IC50 = 8 nM) receptor with good selectivity over other serotonin and dopamine receptors.  相似文献   

20.
Antagonists for the serotonin receptor 2B (5-HT2B) have clinical applications towards migraine, anxiety, irritable bowl syndrome, and MDMA abuse; however, few selective 5-HT2B antagonists have been identified. Previous studies from these labs identified a natural product, 5-hydroxy-2-(2-phenylethyl)chromone (5-HPEC, 2) as the first non-nitrogenous ligand for the 5-HT2B receptor. Studies on 5-HPEC optimization led to the identification of 5-hydroxy-2-(3-phenylpropyl)chromone (5-HPPC, 3), which showed a tenfold improvement in binding affinity over 2 at 5-HT2B. This study aimed to further improve receptor pharmacology of this unique scaffold. Guided by molecular modeling studies modifications at the C-3′ and C-4′ positions of 3 were made to probe their effects on ligand binding affinity and efficacy. Among the derivatives synthesized 5-hydroxy-2-(3-(3-cyanophenyl)propyl)chromone (5-HCPC, 3d) showed the most promise with a multifold improvement in binding affinity (pKi = 7.1 ± 0.07) over 3 with retained antagonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号