首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Two constitutive forms of cytochrome P-450 isozyme were isolated from microsomes prepared from a single bovine liver. The two highly purified isozymes were electrophoretically homogeneous on SDS-polyacrylamide gel and their apparent minimum molecular weights were estimated to be 50 000 and 55 000. The isozyme of smaller molecular weight, designated cytochrome P-450A, and the one of large molecular weight, designated cytochrome P-450B, were distinct proteins by the criteria, SDS-polyacrylamide gel electrophoresis, peptide maps, amino acid contents. To reveal the immunochemical relation between these two isozymes, antibodies to each isozyme was raised in rabbit. Antibodies to cytochrome P-450A gave a single precipitin line against its antigen in Ouchterlony double-diffusion plates, but did not cross-react against cytochrome P-450B. On the other hand, antibodies to cytochrome P-450B formed a single precipitin line with its antigen and did not show any cross-reactivity against cytochrome P-450B. These results indicate that two isozymes are immunochemically distinct. This conclusion was supported by the results from immunochemical staining of the SDS-polyacrylamide gel electrophoretogram of the purified isozymes and detergent-solubilized bovine liver microsomes transferred to the nitrocellulose sheet. Both cytochromes P-450 showed high catalytic activities toward (+)-benzphetamine and aminopyrine in reconstituted systems, indicating that both enzymes have a high turnover number for N-demethylation.  相似文献   

2.
In the microsomal fraction of Candida tropicalis cells, two distinct monooxygenases were detected, depending on the growth conditions. The distinction of the two monooxygenases was evident from: (i) the absorption maxima in the reduced CO difference spectra of the terminal oxidases (cytochromes P-450 and P-448); (ii) the contents of the monooxygenase components (cytochromes P-450/P-448, NADPH-cytochrome c (P-450) reductase, and cytochrome b5) and (iii) the catalytic activity of the complete system (aliphatic hydroxylation and N-demethylation activity). The occurrence of the respective monooxygenases could be related to the carbon source (n-alkanes or glucose). Oxygen limitation led to a significant increase of cytochrome P-450/P-448 content, independent of the carbon source utilized by the cells. An improved method for the isolation of microsomes enabled us to demonstrate the presence of cytochrome P-448 in glucose-grown cells.  相似文献   

3.
1. Cytochrome P-450LgM2 was purified from sheep lung microsomes in the presence of detergents, Emulgen 913 and cholate. 2. The purification procedure involved the chromatography of the detergent solubilized microsomes on DEAE-cellulose and hydroxylapatite. 3. Cytochrome P-450LgM2 was further purified on second DEAE-cellulose and hydroxylapatite columns. 4. The specific content of the highly purified P-450LgM2 was 16-18 nmol P-450/mg protein and purified 164-fold. 5. The yield was 16% of the initial content in microsomes. 6. The SDS-polyacrylamide slab gel electrophoresis (PAGE) of the purified lung cytochrome P-450LgM2 showed one protein band having the monomer molecular weight of 49,500. 7. The absolute CO-difference spectrum of dithionate-reduced P-450LgM2 gave a peak at 451 nm. 8. When sheep lung cytochrome P-450LgM2 and P-450LM2 purified from liver of phenobarbital (PB)-induced rabbit were subjected to Western Blotting and visualized immunochemically with anti-P-450LM2, they showed identical mobilities. 9. P-450LgM2 was found to be very active in N-demethylation of benzphetamine in a reconstituted system containing purified sheep lung reductase and synthetic lipid. 10. Turnover numbers (min-1) for benzphetamine, aniline, ethylmorphine and p-nitrophenol were determined to be 273, 1.2, 15.5 and 1.05, respectively, in a reconstituted microsomal lung monooxygenase system. 11. Spectral, electrophoretic, biocatalytic and immunochemical properties of sheep lung P-450LgM2 were found to be similar to those of P-450 isozyme 2, purified from PB-treated rabbit liver and of rabbit lung microsomes.  相似文献   

4.
Two forms of rabbit pulmonary cytochrome P-450 have been characterized spectrally and their activities in reconstituted monooxygenase systems investigated. The presence of both microsomal phospholipids and sodium cholate was required to obtain optimum activity. Only one of the cytochromes (I) was active in the N-demethylation of benzphetamine and the O-deethylation of 7-ethoxycoumarin. However, cytochrome II was 20% more active than cytochrome I in the metabolism of benzo[a]pyrene. The profile of the metabolites formed from benzo[a]pyrene indicated that metabolism at the 9 and 10 positions was insignificant in the case of cytochrome I but represented about 40% of the metabolites produced by cytochrome II. The two forms of the cytochrome are present in pulmonary microsomes in approximately equal amounts.  相似文献   

5.
The polychlorinated biphenyls mixture, Aroclor 1254, generally considered a powerful inducer of rat hepatic and pulmonary microsomal monooxygenases, caused a 70% decrease in ethylmorphine N-demethylase activity, a 31% decrease in benzo(a)pyrene hydroxylase activity, and a 42% decrease in cytochrome P-450 content in rabbit lung microsomes. When pulmonary cytochrome P-450 was solubilized and subjected to column chromatography, the elution profiles of the two forms of the hemeprotein showed a marked decrease in cytochrome P-450I in treated rabbits, with no significant alteration in cytochrome P-450II content. These data were confirmed by subjecting the two cytochromes to gel electrophoresis and staining the electrophoretic bands for protein and heme-associated peroxidase activity. Cytochromes P-450I and P-450II isolated from Aroclor 1254-treated rabbits showed differences in spectral properties as well as in their stabilities. The CO difference spectral determinations showed absorbance maxima at 452 and 450 nm for cytochromes P-450I and P-450II, respectively. At room temperature, cytochrome P-450II was much more stable than P-450I. The present studies provide evidence not only for species differences in the biological actions of the polychlorinated biphenyls but also demonstrate differential effects of the environmental pollutant on the two major forms of cytochrome P-450 and associated enzymic activities in rabbit lungs.  相似文献   

6.
Cytochrome P-450 induction in hepatic microsomes after injections of rats with a fluorocarbon emulsion containing perfluorodecalin was studied in comparison with phenobarbital and methylcholanthrene type inductions. It was shown that perfluorodecalin injection as well as the phenobarbital one cause an increase in the cytochrome P-450 content, NADPH-cytochrome c reductase activity, the rates of benzphetamine N-demethylation and aldrin epoxidation in the microsomes. Using the Ouchterlony double immunodiffusion test with antibodies against cytochrome P-450b, an immunological identity of cytochrome P-450 isoforms during perfluorodecalin and phenobarbital inductions was shown. Upon "rocket" immunoelectrophoresis the recovery of cytochrome P-450 which is immunologically indistinguishable from cytochrome P-450b was approximately 72% in perfluorodecalin-induced microsomes. The activity of benzphetamine demethylase and aldrin epoxidase was inhibited by antibodies against cytochrome P-450b. These results suggest that in rat hepatic microsomes perfluorodecalin induces the cytochrome P-450 isoform whose immunological properties and substrate specificity correspond to those of phenobarbital-type cytochrome P-450.  相似文献   

7.
Inhibitory antibodies against NADPH-cytochrome P-450 reductase, detergent solubilization to dissociate functional interaction between the reductase and cytochrome P-450, and selective trypsin degradation have been used to characterize flavin-containing monooxygenase activity in microsomes from different tissues and species. A comparison of assay methods is reported. The native microsome-bound flavin-containing monooxygenase of mouse, rabbit, and rat liver, lung, and kidney can metabolize compounds containing thiol, sulfide, thioamide, secondary and tertiary amine, hydrazine, and phosphine substituents. Therefore, this enzyme from these common experimental animals has catalytic capabilities similar to those of the well-characterized porcine liver enzyme. True allosteric activation by n-octylamine does not appear to be a property of either the mouse, rabbit, or rat liver enzymes, but is a property of the pig liver and mouse lung enzymes. The microsomal pulmonary flavin-containing monooxygenase of the rabbit has some unique substrate preferences which differ from the mouse lung enzyme. Both the rabbit and mouse pulmonary enzymes have recently been shown to be distinct enzyme forms. However, the rat pulmonary flavin-containing monooxygenase appears to be catalytically identical to the rat liver enzyme, and does not have any of the unusual catalytic properties of either the rabbit or mouse lung enzymes. Enzyme activity of mouse, rabbit, and rat kidney microsomes is qualitatively similar to the hepatic activities. Substrates which saturate the microsome-bound flavin-containing monooxygenase at 1.0 mM, including thiourea, thioacetamide, methimazole, cysteamine, and thiobenzamide, are metabolized at common maximal velocities. This suggests that the kinetic mechanism of the native enzyme is similar to that established for the isolated porcine liver enzyme in that the rate-limiting step of catalysis occurs after substrate binding, and that all substrates capable of saturating the microsomal enzyme should be metabolized at a common maximal velocity.  相似文献   

8.
Hydroxylation of dimethylaniline in rabbit liver microsomes is accompanied by inactivation of cytochrome P-450 and the formation of products inhibiting the catalytic activity of non-inactivated cytochrome P-450. Other enzymes and electron carriers of microsomal membrane (cytochrome b5, NADH-ferricyanide reductase, NADPH-cytochrome c and NADPH-cytochrome P-450 reductases) as well as glucose-6-phosphatase were not inactivated in the course of the monooxygenase reactions. Phospholipids and microsomal membrane proteins were also unaffected thereby. Consequently, the changes in the microsomal membrane during cytochrome P-450 dependent monooxygenase system functioning are confined to the inactivation of cytochrome P-450.  相似文献   

9.
9-Hydroxyellipticine (9-OHE), a potent inhibitor of rat liver monooxygenase activities, binds to the various forms of partially purified lung cytochromes P-450 from untreated and 3-methylcholanthrene (3-MC)-treated rabbits. The spectral data (lambda max: 428 nm (ox.), 447 nm (red.), Ks: 10 microM and 5 muM for cytochrome I and cytochrome II from 3-MC-treated rabbits respectively) resemble those obtained with cytochrome P-450 purified from liver of Aroclor 1254-pretreated rats (lambda max: 428 nm (ox.), 445 nm (red.), Ks: 8 microM). 9-OHE has been shown to inhibit the benzo[a]pyrene hydroxylase activity of rat and rabbit lung microsomes. The inhibitory effect was higher towards the 3-MC-induced lung microsomes than with the control microsomes. However, the lung microsomes, as well as the liver microsomes of rabbits were less sensitive to inhibition by 9-OHE than the corresponding microsomes from rats. These results suggest that rabbit and rat cytochromes P-450 have subtle structural differences.  相似文献   

10.
1. Components of the hepatic monooxygenase systems (cytochrome P-450, cytochrome b5, NADPH cytochrome P-450- or c-reductase) of the brown trout (Salmo trutta), leopard frog (Rana pipiens) and garter snake (Thamnophis) were considerably lower than those found in the rat. 2. Reactivity of snake NADPH-cytochrome P-450-reductase with cytochrome P-450 was about twice that of the rat reductase; reactivities of trout and frog reductases were similar, but lower than that of the rat. The optimal temperature for the rat, frog and snake reductase activity was 37 degrees C, but 26 C for the trout reductase, regardless of whether cytochrome P-450 or cytochrome c was the electron acceptor for the reaction. 3. A type I substrate (benzphetamine) and a type II substrate (aniline) were less reactive with P-450 cytochrome from the trout, frog and snake than with P-450 cytochrome from the rat. 4. Qualitative differences were seen in the ethylisocyanide spectrum of microsomes from the rat, trout, frog and snake; these differences reflect qualitative differences in the populations of P-450 cytochromes among each of the four species.  相似文献   

11.
X X Ding  M J Coon 《Biochemistry》1988,27(22):8330-8337
Two forms of cytochrome P-450, designated P-450NMa and P-450NMb, were purified to electrophoretic homogeneity from rabbit nasal microsomes. The purified cytochromes, which contained 14-16 nmol of P-450/mg of protein, exhibited apparent monomeric molecular weights of 49,500 and 51,000, respectively. As indicated by several criteria, including the amino acid composition, absorption spectra, and peptide maps, the two nasal forms of P-450 are distinct from each other. Furthermore, as judged by the NH2-terminal amino acid sequences, they are distinct from all other P-450 cytochromes described to date. In the ferric form, P-450NMa is in the low-spin state, whereas P-450NMb is predominantly in the high-spin state. When reconstituted with NADPH-cytochrome P-450 reductase and phospholipid, P-450NMa is very active in the oxidation of ethanol as well as several nasal procarcinogens, including the N-deethylation of N-nitrosodiethylamine, the O-deethylation of phenacetin, and the N-demethylation of hexamethyl-phosphoramide. P-450NMb also metabolizes these substrates, but at lower rates. Both nasal forms are also active with testosterone, with P-450NMa oxidizing the substrate in the 17-position to give androstenedione and P-450NMb catalyzing hydroxylation in the 15 alpha-, 16 alpha-, and 19-positions. The two cytochromes represent the major portion of the total P-450 in nasal microsomes, but the corresponding forms could not be detected in hepatic microsomes.  相似文献   

12.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

13.
Approximately 90% of the NADPH- and NADH-dependent O-demethylation of p-nitroanisole (PNA) in the hepatic microsomal fraction from phenobarbital (PB)-treated rabbits and in the pulmonary microsomal fraction from untreated rabbits is catalyzed by the same isozyme of cytochrome P-450. This isozyme of cytochrome P-450 catalyzes less than 60% of this reaction in the hepatic microsomal fraction from untreated rabbits. Antibodies to NADPH-cytochrome P-450 reductase inhibit NADPH-dependent metabolism of p-nitroanisole by about 90% but have no effect on NADH-dependent metabolism. Hepatic NADPH-dependent metabolism of pNA and reduction of cytochrome c are inhibited to the same extent with varying amounts of antibodies to NADPH cytochrome P-450 reductase. The same relationship between inhibition of monooxygenase and reductase activities is observed for the hepatic and pulmonary metabolism of benzphetamine and 7-ethoxycoumarin. In contrast, the relationship between inhibition of the pulmonary NADPH-dependent metabolism of pNA and reductase activity is biphasic; at 75% inhibition of reductase activity, metabolism of pNA is inhibited by less than 25%. For NADH-dependent metabolism of pNA, our results indicate that both electrons are transferred to cytochrome P-450 from cytochrome b5.  相似文献   

14.
Two hepatic microsomal cytochromes P-450, P-450F-1 and P-450F-2 were purified to electrophoretic homogeneity from untreated adult female rats by high-performance liquid chromatography (HPLC) with anion-exchange, cation-exchange, and hydroxyapatite columns. Cytochromes P-450F-1 and P-450F-2 were not adsorbed with the anion-exchange column, but were retained on a cation-exchange column and were separated poorly. These forms separated on hydroxyapatite HPLC. The molecular weights of cytochromes P-450F-1 and P-450F-2 were 50,000 and 49,000, respectively. The absolute spectrum of the oxidized forms indicated that they had the low-spin state of heme, and the CO-reduced spectral maxima of cytochromes P-450F-1 and P-450F-2 were at 450 and 448 nm, respectively. Both forms catalyzed the N-demethylation of benzphetamine and had low catalytic activity for 7-ethoxycoumarin. Cytochrome P-450F-1 had low 2 alpha-hydroxylation activity toward testosterone. Cytochrome P-450F-2 had low 15 alpha-hydroxylation activity. On the basis of these results and those of NH2-terminal sequence analysis, cytochrome P-450F-2 seemed to be the typical female-specific cytochrome P-450. The NH2-terminal sequence of cytochrome P-450F-1 was identical to that of cytochrome P-450PB-2 purified from hepatic microsomes of male rats treated with phenobarbital. Cytochromes P-450F-1 and P-450PB-2 had identical chromatographic properties, minimum molecular weight, spectral properties, and peptide maps. Furthermore, the antibody to phenobarbital-inducible cytochrome P-450PB-2 gave a single immunoprecipitin band with cytochrome P-450F-1 by Ouchterlony double-diffusion analysis.  相似文献   

15.
Components of little skate (an elasmobranch) and rabbit hepatic microsomal cytochrome P-450 dependent monooxygenase systems were examined for differences which might explain the decreasing xenobiotic-metabolizing activity of little skate microsomes assayed at temperatures above 30 degrees C. The proportion of saturated fatty acids in microsomal lipids and the habitat temperature are both lower in skate as compared to rabbit, which is consistent with the known adaptive pattern. The more thermolabile enzyme of the skate system in microsomal preparations is NADPH-cytochrome P-450 reductase. The optimal assay temperature for purified skate reductase (30 degrees C) is 10 degrees C lower than that for the purified rabbit reductase. The purified skate reductase differs from rabbit reductase in monomeric molecular weight, in peptides produced by partial proteolysis, in immunochemical properties, but not in flavin content.  相似文献   

16.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

17.
Housefly microsomes contain two spectrally different forms of cytochrome P-450 which we have termed P-450 and P-450I. Methods have been developed for the fractionation and chromatographic purification of these two hemoprotein forms. Microsomes are solubilized first with Triton X-100 in the presence of glycerol, dithiothreitol, ethylenediaminetetra-acetic acid, and phenobarbital. Cytochrome P-450 is recovered in a floating pellet after the addition of 25% ammonium sulfate followed by centrifugation, whereas cytochrome P-450I remains in the 25% ammonium sulfate supernatant fluid. Cytochrome P-450 is purified further by Sephadez G-200 and DEAE-Sephadex A-50 column chromatography, which also allows the isolation of cytochrome b5 and NADPH-dependent cytochrome P-450 reductase in good yields and with little cross-contamination. Cytochrome P-450 apparently is free of cytochromes b5 and P-420 as well as of reductase and is obtained in a final yield of approximately 16% with a 6.9-fold purification. Its maximum absorbance is at 45 mn in the CO-difference spectrum and its average extinction coefficient is 103 cm-1 nm-1. Cytochrome P-450I is purified by Sephadex G-25 column chromatography but still contains some cytochromes b5 and P-420 as well as reductase. Its maximum absorbance is at 448.5 nm in the CO-difference spectrum and its extinction coefficient is 83 to 86 cm-1 mM-1. Both cytochromes hydroxylate type I substrates such as aminopyrine. Sufficient amounts of reductase are present in the cytochrome P-450I preparation to sustain activity, but the reductase has to be added to cytochrome P-450 in a reconstituted system for activity. Cytochrome P-450 is fairly stable, whereas cytochrome P-450I can be isolated only when protected by a substrate (phenobarbital). Detergent-solubilized housefly cytochromes P-450 and P-450I seem to correspond to either aggregates or oligomeric proteins. Cytochrome P-450 appears to correspond to a tetramer, each subunit having a molecular weight of 45,000, whereas cytochrome P-450I may correspond to an aggregate of at least 10 subunits. The cytochrome P-450 aggregate is dissociated by 6 M urea, but cytochrome P-450I remains as such.  相似文献   

18.
The zona glomerulosa, zona fasciculata, zona reticularis, and medulla were separated from bovine adrenal glands and cytochromes P-450 and related enzymes in each zone were investigated immunochemically by Western blotting using antisera from chickens or rabbits against cytochromes P-450scc, P-450(11)beta, P-450s21, and b5, NADH-cytochrome b5 reductase, NADPH-cytochrome P-450 reductase, NADPH-adrenodoxin reductase, and adrenodoxin. Concentrations of cytochrome P-450(11)beta, NADPH-cytochrome P-450 reductase, and cytochrome b5 per milligram of protein of homogenate were higher in the zona glomerulosa than in the other zones; the levels of the other components were higher in the zona fasciculata. The total enzyme content of all components was the highest in the zona fasciculata. The amount of adrenodoxin was about 10 times that of NADPH-adrenodoxin reductase in each zone.  相似文献   

19.
We have purified two distinct isoforms of mitochondrial cytochrome P-450 from beta-naphthoflavone (beta-NF)-induced rat liver to greater than 85% homogeneity and characterized their molecular and catalytic properties. One of these isoforms showing an apparent molecular mass of 52 kDa is termed P-450mt1 and the second isoform with 54-kDa molecular mass is termed P-450mt2. Cytochrome P-450mt2 comigrates with similarly induced microsomal P-450c (the major beta-NF-inducible form) on sodium dodecyl sulfate-polyacrylamide gels and cross-reacts with polyclonal antibody monospecific for cytochrome P-450c. Cytochrome P-450mt2, however, represents a distinct molecular species since it failed to react with a monoclonal antibody to P-450c and produced V8 protease fingerprints different from P-450c. Cytochrome P-450mt1, on the other hand, did not show any immunochemical homology with P-450c or P-450mt2 as well as partially purified P-450 from control mitochondria. Electrophoretic comparisons and Western blot analysis show that both P-450mt1 and P-450mt2 are induced forms not present in detectable levels in control liver mitochondria. A distinctive property of mitochondrial P-450mt1 and P-450mt2 was that their catalytic activities could be reconstituted with both NADPH-cytochrome P-450 reductase as well as mitochondrial specific ferredoxin and ferredoxin reductase electron transfer systems, while P-450c showed exclusive requirement for NADPH-cytochrome P-450 reductase. Cytochromes P-450mt1 and P-450mt2 were able to metabolize xenobiotics like benzo(a)pyrene and dimethyl benzanthracene at rates only one-tenth with cytochrome P-450c. Furthermore, P-450mt1, P-450mt2, as well as partially purified P-450 from control liver, but not P-450c, showed varying activities for 25- and 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3. These results provide evidence for the presence of at least two distinct forms of beta-NF-inducible cytochrome P-450 in rat hepatic mitochondria.  相似文献   

20.
Purified hepatic NADPH-cytochrome P-450 reductase, which was reconstituted with dilauroylphosphatidylcholine, catalyzed a one-electron reductive denitrosation of 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)-1-nitrosourea ([14C]CCNU) to give 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)urea at the expense of NADPH. Ambient oxygen or anoxic conditions did not alter the rates of [14C]CCNU denitrosation catalyzed by NADPH-cytochrome P-450 reductase with NADPH. Electron equivalents for reduction could be supplied by NADPH or sodium dithionite. However, the turnover number with NADPH was slightly greater than with sodium dithionite. Enzymatic denitrosation with sodium dithionite or NADPH was observed in anaerobic incubation mixtures which contained NADPH-cytochrome P-450 reductase with or without cytochrome P-450 purified from livers of phenobarbital (PB)-treated rats; PB cytochrome P-450 alone did not support catalysis. PB cytochrome P-450 stimulated reductase activity at molar concentrations approximately equal to or less than NADPH-cytochrome P-450 reductase concentration, but PB cytochrome P-450 concentrations greater than NADPH-cytochrome P-450 reductase inhibited catalytic denitrosation. Cytochrome c, FMN, and riboflavin demonstrated different degrees of stimulation of NADPH-cytochrome P-450 reductase-dependent denitrosation. Of the flavins tested, FMN demonstrated greater stimulation than riboflavin and FAD had no observable effect. A 3-fold stimulation by FMN was not observed in the absence of NADPH-cytochrome P-450 reductase. These studies provided evidence which establish NADPH-cytochrome P-450 reductase rather than PB cytochrome P-450 as the enzyme in the hepatic endoplasmic reticulum responsible for CCNU reductive metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号