首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Sitka spruce (Picea sitchensis Bong. Carr.) were planted as 2-year-old seedlings in an open-air fumigation facility at Liphook in southern England in March 1985. The soil was a humoferric podzol of pH 4. SO2 fumigation began in May 1987 and continued until December 1990. Long-term mean SO2 concentrations were 4,13 and 22 nmol mo?1. Three plots, one at each SO2 level, were also exposed to O3 at an average of 1–3.times the ambient level. O3 fumigation ran from March to December 1988, May to December 1989 and February to December 1990. Each species reacted differently to treatment. Scots pine showed no growth response to either pollutant, although other work on the site demonstrated a number of deleterious effects of SO2 on this species, including increased leaf loss and foliar injury. Stem basal diameter growth of Norway spruce was depressed in SO2-treated plots. In contrast, extension growth of shoots of Sitka spruce increased in SO2-treated plots, in apparent response to codeposition of NH3-N. However, diameter growth of Sitka spruce main stems did not increase. No effects of O3 on growth were recorded for any species.  相似文献   

2.
Foliar elements were analysed in Scots pine, Sitka spruce and Norway spruce over a 6 year period before and during continuous exposure to SO2 and O3 in an open-air fumigation experiment. Sulphur dioxide treatment elevated foliar sulphur concentration in all species, and there were increases in foliar nitrogen in the two spruce species but not in pine. The concentrations of cations were frequently increased by SO2 treatment, but there was no correlation between the sulphur concentration of needles and their total cation charge. SO2-related elevations of foliar magnesium were correlated with the concentration of this element in soil solution, but the mechanism by which other cations were enhanced remains unclear. The only consistent effects on nutrient ratios were for SO2 treatments to increase sulphur/cation ratios.  相似文献   

3.
The carbohydrate metabolism of the needles of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) has been examined in trees that were exposed to SO2, and O3, in an open-air fumigation experiment located in the Liphook forest in southern England. Two-year-old seedlings were planted in 1985 in seven experimental plots. Five plots received fumigation treatments of SO2, O3 or a combination of these gases to give a 2 × 3 factorial design with one additional ambient plot Fumigation with SO2, occurred from May 1987 to December 1990 and O3, fumigation occurred from March to December 1988, May to December 1989 and February to December 1990. Five samples of needles for investigation of carbohydrate metabolism were taken between February and July 1989. The concentrations of soluble carbohydrates (including sucrose and hexoses) were greatly reduced in the needles taken from Scots pine growing in the treated plots, and were also reduced, but to a lesser extent, in the needles taken from Norway spruce. Little variation in the concentration of starch in the needles of either species was detected. The activities of the two final enzymes of sucrose synthesis, sucrose phosphate synthase and sucrose 6-phos-phate phosphatase, were greatly reduced in the needles of Scots pine and were also reduced, but to a lesser extent, in the needles of Norway spruce in the fumigated plots. These reductions could be correlated with decreases in rates of photosynthetic CO2 assimilation determined by independent groups of researchers working on the Liphook site.  相似文献   

4.
The Liphook Forest Fumigation Project: an overview   总被引:2,自引:1,他引:1  
The aim of the Liphook Project was to assess the effects of SO2 and O3, singly and in combination, on coniferous forest ecosystems. More than 4000 trees of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and Sitka spruce (P. sitchensis) were fumigated for nearly 4 years using an open-air fumigation technique especially developed for the purpose. The technique eliminated artifacts due to chambers and enabled a variety of effects of the pollutant gases on forest ecosystems to be studied. Most symptoms of forest decline did not occur, but each species reacted in a different way to SO2 stress, providing no evidence for universal forest decline symptoms. However, some of the mechanisms hypothesized to underlie forest declines were observed as an effect of SO2 treatment, though others were not, notably any major effect of O3. The results are assessed against proposed regulatory standards (critical loads and levels) for the protection of forest ecosystems against pollution.  相似文献   

5.
The goal of the present study was to examine the effects of slow and rapid changes of ozone (O3) concentrations on the physiological behaviour of current-year needles of Norway spruce (Picea abies (L.) Karst.). For this purpose five-year-old spruce seedlings were exposed in growth chambers for 49 days to either charcoal-filtered air, slowly increasing O3 concentrations from zero up to 100 nl I?1 in weekly steps of 25 nl I?1, or immediately to 100 nl I?1 of O3. During the investigation period gas exchange, carbohydrate and antioxidant contents of the current flush were measured. In needles which experienced slowly increasing O3 concentrations, cumulative O3 uptake was approximately 30 % lower than in needles continuously fumigated with 100 nl I?1 of O3. The higher 03 uptake in the permanent 100 nl I?1 O3 treatment caused a pronounced decline in net photosynthesis, in the efficiency of CO2 uptake and in the starch content of the seedlings. Initially the ascorbate pool increased, but after 5 weeks of exposure ascorbate concentrations declined and were comparable to values obtained in charcoal-filtered controls, while the thiol contents were enhanced during fumigation with permanent 100 nl I-?1 O3. On the contrary, slowly increasing O3 caused a significant increase in total needle ascorbate throughout the fumigation period, which probably prevented an O3-induced decline in the photosynthetic machinery as photosynthesis was not affected although the thiol contents were not enhanced. Furthermore, starch content was slightly higher than in O3-free controls. These results suggest that seedlings of Norway spruce have the possibility to acclimate to O3 stress, as slowly increasing O3 concentrations seemed to increase resistance and the seedlings were able to compensate.  相似文献   

6.
The ambient pollution climate at the Liphook forest fumigation site, where coniferous trees were fumigated with SO2 and O3, for 4 years under field conditions, was characteristic of the fringes of the areas where pollutant effects are a problem. Experimental treatments increased SO2 concentrations to levels more characteristic of Eastern Europe, and summer O3 concentrations by 30%. Deposition of SO2 to the soil between the trees (inferred from shallow lysimeters) was significant, the deposition velocity being 2–1 mms?1. Deposition to Scots pine and Sitka spruce canopies was greater, deposition velocities being 8.5 and 9.4 mm s?1, respectively. These high values may perhaps be explained by co-deposition with NH3. Calculations assume that dry deposition was the sole source of SO42? gain in throughfall, and that there was no significant retention by the trees. There was a trend for O3 to enhance SO2 deposition to both soil and trees. Fumigation with SO2 led to a significant increase in leaching of cations from foliage. Each species neutralized about 63% of the dry-deposited SO2, predominantly by ion exchange for Ca and K. Equations are provided which allow calculation of foliar leaching given SO2 concentrations or SO42? deposition. Fumigation increased the rate of nutrient cycling considerably, without affecting foliar concentrations or damaging the trees. Ozone treatments did not enhance foliar leaching, calling into question some suggested mechanisms for the causes of forest decline.  相似文献   

7.
Ion contents in needles from Norway spruce trees [Picea abies (L.) Karst.] growing in Würzburg and in the SO2-polluted Erzgebirge mountains were analysed to quantify cations which accumulate together with sulphate. In Würzburg there was a positive correlation of potassium (0.680 ± 0.300 Eq Eq?1 SO4?2), magnesium (0.415 ± 0.111 Eq Eq?1 SO4?2) and zinc (0.059 ± 0.006 Eq Eq?1 SO42?). In the Erzgebirge, potassium was also the stoichiometrically most important cation (0–887 ± 0–180 Eq K+ Eq?1 SO42?). All other correlations examined were weak or statistically non-significant. At both sites the calcium content of spruce needles did not depend on the sulphate content. The lack of a role for Ca2+ in neutralizing sulphate is a consequence of the presence of free oxalic acid in needles. Soluble oxalic acid precipitates Ca2+, which thereby becomes unavailable as a counterion for SO42?. The activity coefficients of Ca2+ and oxalate2?, and the solubility product of Ca-oxalate, were determined from in vivo data. It is concluded that the chronic accumulation of atmospheric sulphate in spruce needle vacuoles depletes available potassium and thereby strongly interferes with spruce growth and canopy turnover. This leads to impaired spruce vitality, even at sites where acute SO2 disease symptoms are absent.  相似文献   

8.
The emission of reduced volatile sulfur compounds from twigs of Norway spruce (Picea abies (L.) Karst.) was measured in the field by cryosampling and gaschromatographic analysis. Trees were growing in the Erzgebirge (E-Germany) at Oberbärenburg and at the Kahleberg and at a third stand in NW-Bavaria (S-Germany). Emission rates were also measured for Scotch pine (Pinus sylvestris L.) and Blue spruce (Picea pungens Engelm.) at the Kahleberg. Twigs still attached to the trees were enclosed in a flow-through gas exchange cuvette. H2S was detected as the predominant reduced sulfur compound emitted from the twigs. The mean H2S emission rate from twigs of Norway spruce varied between 0.04 pmol kg-1 dw s-1 at Würzburg and 6.21 pmol kg-1 dw s-1 at the Kahleberg. Comparing different species at the Kahleberg, the mean H2S emission rate was almost the same from twigs of Norway spruce (6.2 pmol kg-1 dw s-1) and Blue Spruce trees (5.9 pmol kg-1 dw s-1) but it was approximately 18 times higher for Scotch pine (110 pmol kg-1 dw s-1). The percentage of SO2-exclusion via H2S-emission of the tree species investigated at the Kahleberg is calculated on the basis of data on SO2 fluxes. It is very small for Norway spruce and Blue spruce. However, for Scotch pine, H2S emission contributes about 10% to the detoxification of SO2.  相似文献   

9.
 Effects of SO2, aqueous fluoride (NaF) and a solution of nitrogen compounds (NH4NO3) on the visible symptoms, pollutant accumulation and ultrastructure of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.] seedlings were studied in an open-air experiment lasting for 3 consecutive years. Visible injury symptoms were most pronounced in combination exposures and whenever F was applied. Visible symptoms correlated well with needle pollutant concentrations. Exposure to NaF increased needle F contents particularly when F was applied with SO2 or NH4NO3. This suggests that a reduction in N or SO2 emissions, in F polluted areas, could improve the condition of conifers via decreased accumulation of phytotoxic F in the needles. Norway spruce needles accumulated 2 – 10 times as much S and F as those of Scots pine. Microscopic observations showed various changes in the needle mesophyll cell ultrastructure. In both species, exposure to SO2 increased significantly the amount of cytoplasmic vacuoles, suggesting detoxification of excess sulphate or low pH. F treatments resulted in a significant enlargement of plastoglobuli in Scots pine and a darkening of plastoglobuli in Norway spruce. All exposures enhanced the accumulation of lipid bodies. An increased portion of translucent plastoglobuli was most pronounced in N treatments. Many of the ultrastructural changes and visible symptoms appeared only as number of years exposed increased, indicating that long-term experiments are needed. Both visible symptoms and ultrastructural changes pointed to the more pronounced sensitivity of Norway spruce compared to Scots pine. Ultrastructural results mostly supported earlier qualitative observations of F, N and SO2 effects on needle mesophyll cell ultrastructure. However, no reduction of thylakoids in SO2 containing exposure or curling of thylakoids in F exposure could be detected in the present study. Received: 5 December 1994 / Accepted: 28 April 1995  相似文献   

10.
Photosynthetic performance, mineral content and chloroplast pigments were investigated in August-September 1988 and 1989 in Norway spruce trees (Picea abies (L.) Karst.) exposed to SO2, and O3 in an open-air fumigation facility at Liphook, England. The data do not suggest a treatment effect on the mineral content of the needles in terms of nutrient leaching from the foliage. In addition, there were no direct SO2 and/or O3 effects on the content and/or composition of the chloroplast pigments. However, the long-term application of SO2 resulted in a depression of net photosynthesis under light saturation and ambient CO2 (A 340) which was probably caused by a treatment-related depression of the carboxylation efficiency (CE). In 1989, the supposed treatment effects were apparently masked by an insufficient N-supply and probably also by low water availability during summer. However, fumigation appeared to accelerate an N-deficiency-related decrease of CE, stomatal closure and the age-dependent development of the chlorophyll content of the needles. In 1989, an observed depression of the photosynthetic capacity (A2500) was in part accompanied by a decrease in light use efficiency (α), suggesting an enhanced photosensitivity resulting from the impact of several possible interacting stresses (drought, N deficiency and fumigation). The results support the general conclusion that long-term low-level SO2 dosage adversely affects the photosynthetic performance of the needle, whether directly or indirectly, and may also interact with other environmental stresses. The findings of our investigations are discussed with regard to the hypothesis of forest decline in the mountain regions of the Fichtelgebirge (north-eastern Bavaria, Germany).  相似文献   

11.
Field data on the sulphur and cation budget of growing Norway spruce canopies (Picea abies [L.] Karst.) are summarized. They are used to test a spruce decline model capable of quantifying effects of chronic SO2 pollution on spruce forests. At ambient SO2 concentrations, acute SO2 damage is rare, but exposure to polluted air produces reversible thinning of the canopy structure with a half-time of a few years. Canopy thinning in the spruce decline model is highest (i) at elevated SO2 pollution, (ii) in the mountains, (iii) at unfertilized sites with poor K+, Mg2+ or Zn2+ supply, (iv) at low spruce litter decomposition rates, and (v) acidic, shallow soils at high annual precipitation rates in the field and vice versa. Model application using field data from Würzburg (moderate SO2 pollution, alkaline soils, no spruce decline) and from the Erzgebirge (extreme SO2 pollution, acidic soils in the mountains, massive spruce decline) predicts canopy thinning by 2–11% in Würzburg and by 45–70% in the Erzgebirge. The model also predicts different SO2-tolerance limits for Norway spruce depending on the site elevation and on the nutritional status of the needles. If needle loss of more than 25% (damage class 2) is taken to indicate ‘real damage’ exceeding natural variances, then for optimum soil conditions SO2 tolerance limits range from (27.3 ± 7.4) μg m?3 to (62.6 ± 16.5) μg m?3. For shallow and acidic soils, SO2 tolerance limits range from (22.0 ± 5.5) μg m?3 to (37.4 ± 7.5) μ m?3. These tolerance limits, which are calculated on an ecophysiological data basis for Norway spruce are close to epidemiological SO2-toIerance limits as recommended by the IUFRO, UN-ECE and WHO. The observed statistical regression slope of the plot (damaged spruce trees vs. SO2-pollution) in west Germany is confirmed by modelling (6% error). Model application to other forest trees allows deduction of the observed sequence of SO2-sensitivity: Abies > Picea > Pinus > Fagus > Quercus. Thus, acute phytotoxicity of SO2 seems not to be involved in ‘forest decline’. Chronic SO2-pollution induces massive canopy thinning of Abies alba and Picea abies only at unfavourable sites, where natural stress factors and secondary effects of SO2pollution act together to produce tree decline.  相似文献   

12.
Samples of current-year and 1-year-old foliage were taken from Norway spruce (Picea abies (L.) Karst.) trees in April 1991, 4 months after a 3–4 year controlled fumigation with O3 and SO2 in the open at Liphook, south-east England. Trees were grown in seven plots, and treated in a factorial design with three levels of SO2 and two levels of O3 (ambient and c. 1.3 × ambient), with an extra ambient air plot. All statistical analyses were made on plot means. Leaf wettability, as measured by the contact angle of water droplets, was significantly affected by needle age and by SO2 treatment (P≤0–05. in older needles, decreasing with increasing SO2 concentration. There was no effect of O3 on wettability, and no effect of any treatment on amounts of surface wax extracted by immersion of needles in chloroform. Electrolyte leakage rates from detached current-year needles were not affected by prior exposure to O3, but decreased significantly (P= 0.034) with increasing exposure to SO2. There was no detectable effect of fumigation on the rate of water loss from detached needles. Similarly, there was no effect of fumigation on the dry weight/fresh weight ratio of needles. The total sulphur content of needles increased significantly (P≤0.0001) with exposure to SO2 and with needle age. Amounts of water-extractable sulphate, however, varied greatly among plots, but with no pattern with respect to fumigation treatment. It is concluded that leaf wettability and electrolyte leakage rates may be good indicators of the persistent effects of SO2 on Norway spruce growing in the open air, and that the observed changes in leaf surface properties in response to SO2 fumigation have implications for the processes, both biotic and abiotic, that occur on leaf surfaces.  相似文献   

13.
Elevated levels of both ozone and UV-B radiation are typical for high-altitude sites. Few studies have investigated their possible interaction on plants. This study reports interactive effects of O3 and UV-B radiation in four-year-old Norway spruce and Scots pine trees. The trees were cultivated in controlled environmental facilities under simulated climatic conditions recorded on Mt Wank, an Alpine mountain in Bavaria, and were exposed for one growing season to simulated ambient or twice-ambient ozone regimes at either near ambient or near zero UV-B radiation levels. Chlorotic mottling and yellowing of current year needles became obvious under twice-ambient O3 in both species at the onset of a high ozone episode in July. Development of chlorotic mottling in relation to accumulated ozone concentrations over a threshold of 40 nL L–1 was more pronounced with near zero rather than ambient UV-B radiation levels. In Norway spruce, photosynthetic parameters at ambient CO2 concentration, measured at the end of the experiment, were reduced in trees cultivated under twice-ambient O3, irrespective of the UV-B treatment. Effects on photosynthetic capacity and carboxylation efficiency were restricted to trees exposed to near zero levels of UV-B radiation, and twice-ambient O3. The data indicate that UV-B radiation, applied together with O3, ameliorates the detrimental effects of O3. The data also demonstrate that foliar symptoms develop more rapidly in Scots pine than in Norway spruce at higher accumulated ozone concentrations. Symbols and abbreviations: LSD, least significant difference; PAS300, UV-B irradiance weighted according to the plant action spectrum of Green et al. (1974) normalized at 300 (nm); AOT40, (AOT = accumulated over threshold) reflects the sum of hourly ozone concentrations above 40 nL L–1 during daylight hours (> 50 Wm–2) ( Kärenlampi & Skärby 1996 ); A350, net photosynthesis at ambient CO2; G350, stomatal conductance for water vapour at ambient CO2; A2500, net photosynthesis at saturating CO2 (maximal potential photosynthetic activity); CE, carboxylation efficiency; ROS, reactive oxygen species; RuBP, ribulose 1,5-bisphosphate; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase; GLM, general linear model.  相似文献   

14.
1 Green spruce aphid (Elatobium abietinum) is a serious pest of spruce (Picea spp.) in north‐west Europe, causing defoliation of one‐year‐old and older needles. 2 Relationships between population development of E. abietinum, needle loss and tree growth were compared for five pure genotypes of Sitka spruce and mixed‐genotype material of Sitka and Norway spruce, grown under high and low nutrient conditions. 3 Despite wide differences in flushing date between spruce genotypes, E. abietinum populations peaked on the same date on each genotype and on the mixed‐genotype material, irrespective of nutrient supply. 4 Larger aphid populations developed on trees grown under high nutrient conditions than under low nutrients. However, more needles were lost per aphid in the low nutrient treatment and overall defoliation rates in the two nutrient treatments were similar. 5 Total aphid numbers differed significantly between Sitka spruce genotypes within nutrient treatments, but not in relation to bud‐burst or needle terpene content. Reductions in height growth caused by infestation were greater (15–44%), and related to mean aphid densities and defoliation, in the low nutrient treatment, but were smaller (11–27%) and not related to aphid density and defoliation in the high nutrient treatment. 6 Development of E. abietinum populations was similar on Norway and Sitka spruce, but Norway spruce lost fewer needles. However, the effects of infestation on tree growth were more closely related to aphid density and were similar for Norway and Sitka spruce. 7 Infestation caused a decrease in total root dry weight of Norway and Sitka spruce in proportion to the reductions observed in above‐ground growth.  相似文献   

15.
Summary The effect of ozone, needle age, and season on the pH of homogenate and acid contents of Scots pine and Norway spruce needles is presented. In addition enzyme activities of cytochrome C-oxidase (cyt. C-ox), phosphoenolpyruvate-carboxylase (PEPC), shikimic acid-dehydrogenase (SHDH) and malate-dehydrogenase (MDH) were measured in Scots pine needles. In freshly sprouted spruce needles the level of quinic acid is high and the pH of the needle homogenate is low. Shikimic acid starts at low levels, increases with increasing needle age and becomes dominant, whereas the quinic acid content decreases. Malic acid has a marked seasonal trend; no trend was found in citric acid. Ozone (200 g/m3) decreased shikimic acid and quinic acid, whereas pH, malic acid and citric acid increased. Ozone (100 g/m3) had a similar effect, except in the current-year spruce needles. In Scots pine needles ozone led to increased enzymatic activities of cyt. C-ox, PEPC and SHDH, and a decrease in the activity of MDH. This effect was more pronounced in summer than in autumn, but the visible damage was greater in autumn. These effects can be found with other stresses and are not specific for ozone.  相似文献   

16.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies Karst.) seedlings were exposed to realistically elevated O3 levels in open‐air experiments over three growing seasons. The total O3 exposure doses were 1.2 × (1991), 1.5 × (1992) and 1.7 × (1993) ambient levels. During the 1992 and 1993 growing seasons pine and spruce seedlings received two different levels of nitrogen supply. Effects on growth, mycorrhiza formation, needle ultrastructure, primary and secondary compounds were studied. Ozone exposure had only slight effects on biomass production, growth height and nutrient content of studied conifers. Higher nitrogen availability improved growth of the seedlings and resulted in higher concentration of nitrogen in needles. In Scots pine O3 exposure did not have effects on quantity of total mycorrhizas and short roots, while higher nitrogen availability decreased quantity of mycorrhizas and short roots. In both tree species O3 exposure induced O3‐related ultrastructural symptoms, e.g. granulation and dark staining of the chloroplast stroma in the needle mesophyll cells, at both nitrogen availability levels. Ozone exposure and nitrogen availability did not have significant effects on starch concentrations in either tree species. Concentrations of some individual terpenes were higher in O3‐exposed needles, while concentrations of individual and total resin acids, total phenolics and catechins were not affected by O3 exposure. Nitrogen availability did not have substantial effects on concentrations of monoterpenes. By contrast, concentrations of some individual and total resin acids were lower in pine needles and higher in spruce needles with higher nitrogen availability, while phenolic concentration in spruce needles decreased at higher nitrogen availability. The results suggest that realistically elevated levels of O3 in the field can have some negative effects on the mesophyll ultrastructure of conifer needles, but carbon allocation to root and shoot growth and secondary metabolites are not affected substantially.  相似文献   

17.
Summary Dew droplets collected with pipettes from coniferous needles were analysed for their ionic composition. Almost all samples of dew taken from Scots pine trees (Pinus sylvestris) showed significantly higher ion concentrations than those taken from Norway spruce trees (Picea abies). This can be explained by the micromorphology of the needle surface. The higher microscale roughness of the wax layer of a pine needle causes a more efficient flux of atmospheric aerosol particles compared to the spruce needle surface. Dew on coniferous needles is shown to be capable of maintaining pH values below 3 for several hours.  相似文献   

18.
Total, organic and extractable P were measured in the humus and underlying soil to 10 cm depth beneath Sitka spruce (SS) and mixed Sitka spruce and Scots pine (SS+SP) stands planted on upland heath. The humus beneath SS+SP contained significantly (p<0.01) greater amounts of total and organic-P than that in SS and the mixed stands had more effectively retained approximately 87 per cent of previously applied fertilizer-P, totalling 100 kg P ha–1, compared with 70 per cent in SS. Despite the larger amounts of total-P in the mixed plots 0.01 M CaCl2 extractable molybdate reactive phosphorus (MRP) was significantly (p<0.05) greater in SS+SP humus only during March and April. Greater concentrations of MRP were released from the humus and soil during July and August at a mean rate of 58 g P ha–1 day–1. This coincided with drying of the soil during the summer and the rate of release, attributed to death of fine roots and microorganisms, was 4 to 30 times greater than reported values for rates of net mineralization of P from forest soils.  相似文献   

19.
Summary The effects of aluminium concentrations between 0.2 and 30 mM at pH 3.8 ±0.2 on small plants of Norway spruce [(Picea abies (L.) Karst], Scots pine (Pinus sylvestris L.), and Scots pine infected with the ectomycorrhizal fungus Suillus bovinus (L. ex Fr.) O. Kuntze were investigated. The plants were grown at maximum relative growth rate (RG % day–1) with free access but very low external concentrations of nutrients. Steady-state conditions with respect to relative growth rate (RG) and internal nutrient concentrations were achieved before addition of aluminium, which was added as AlCl3 and/or Al(NO3)3. There were reductions in rg at aluminium concentrations of 0.3 mM in spruce, 6 mM in pine and 10 mM in ectomycorrhizal pine, i. e. at aluminium concentrations considerably higher than those normally occurring in the top layer of the mineral soil where most fine roots are found. Nutrient uptake rate per unit root growth rate was calculated for different nutrient elements. The uptake rate of calcium and magnesium was reduced at aluminium concentrations of 0.2 mM (spruce), 1 mM (pine) and 3 mM (ectomycorrhizal pine), without influencing Rg. The results question the validity of the hypothesis of aluminium toxicity to forest tree species at low external concentrations.  相似文献   

20.
Monthly uptake rates and the annual deposition of gaseous SO2 via the stomata of six Norway spruce canopies (Picea abies (L.) Karst.) in Germany (Königstein im Taunus, Witzenhausen, Grebenau, Frankenberg, Spessart, Fürth im Odenwald) were calculated (i) from statistical response functions of stomatal aperture depending on meteorological data, and (ii) from the synchronously measured SO2 immission at these stands. The stomatal response functions had been derived on the basis of thorough stomatal water conductance measurements in the field. Calculations of the SO2 conductance of spruce twigs and SO2 uptake rates via stomata need continuously measured complete data sets of the (i) light intensity, (ii) air temperature, (iii) air humidity and (iv) SO2 concentration in spruce forests from all the year. These data were recorded half hourly in different German spruce forests. The apparent needle water vapour pressure difference and transpiration rates were calculated from meteorological data. Additional use of canopy through flow data in dry years allowed the estimation of the mean stomatal conductance for H2O and SO2 of whole spruce canopies. The annual SO2 uptake of a mean unit needle surface in spruce forests was 32% of the SO2 uptake rate of exposed needles at the top of spruce crowns. There is significant SO2 uptake all the year. The mean SO2 dose at all sites and years received through the stomata was (0.25±0.07) mol SO2 m-2 (total needle surface) (nPa Pa-1)-1 (annual mean of SO2 immission; 1 nPa (SO2) Pa-1 (air) = 1 ppb) day-1 (vegetation period per year). Comparison of calculated SO2 uptake rates into needles with measured SO4 2- accumulation rates in needles from the mentioned sites and additionally from Würzburg, Schneeberg (Fichtelgebirge) and from three sites in the eastern Erzgebirge (Höckendorf, Kahleberg, Oberbärenburg) revealed that oxidative SO2 detoxification (SO4 2- formation) dominates only at sites with high SO2 immission and short vegetation periods. Under these conditions 70 to 90% of the annual stomatal SO2 uptake is detoxified via SO4 2- accumulation in needles. Cations are needed for neutralization of accumulating SO4 2- which are inavailable to support growth. Thus, SO2 induces a dominant and competitive additional nutrient cation demand, cation deficiency symptoms and enhanced needle loss (spruce decline symptoms) mainly at sites, where the ratio R=(SO2 immission): (length of the vegetation period) is higher than R=0.07 nPa Pa-1 day-1. Correlation analysis of the relative needle loss versus the SO2-dependent SO4 2- formation rate revealed a significant increase of needle loss at the 98% level (Student). At sites with small SO2 immission and long vegetation periods (R<0.07 nPa Pa-1 day-1) reductive SO2 detoxification via growth (and/or phloem export of SO4 2-) is not kinetically overburdened. Under these conditions only 30% of the annual SO2 uptake is detoxified via SO4 2- formation and spruce decline is small or absent. On the basis of the critical value R0.07 nPa Pa-1 day-1 recommended SO2 immission limits can be deduced on a mere ecophysiological basis. These deduced values are close to the proposed SO2 immission limits of the IUFRO, WHO and the UNECE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号