首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sitka spruce planted on nutrient-poor soils in mixture with pine or larch, unlike pure spruce, does not become N deficient and does not require N fertilizer. To test the hypothesis that N availability in the soil is enhanced beneath mixed species, the seasonal changes in different N forms were compared in humus (L+F+H) and soil beneath 15-year-old Sitka spruce (SS) and mixed Sitka spruce-Scots pine (SS and SP) planted on a gleyed heathland soil. Amounts of mineral and organic N extracted from humus in spring were significantly (p < 0.05) higher in SS and SP than in SS. Larger amounts were measured in the underlying soil, which favoured the deeper-rooting spruce and pine in SS and SP plots. Annual net N mineralization, measured by in-situ incubation, was 32 and 47 kg N ha-1 in the surface 10 cm beneath SS and (SS and SP), respectively. In spring, readily mineralized organic N (waterlogged incubation at 30°C) was higher in humus and soil from (SS and SP) than from SS by 15 kg N ha-1. The larger N pools beneath (SS and SP) were consistent with the higher total N content of the humus beneath (SS and SP), 446 compared with 255 kg N ha-1 beneath SS. This indicated that beneath (SS and SP) N had been transferred from the underlying soil.  相似文献   

2.
Nutrient uptake by forest trees is dependent on ectomycorrhizal (EM) mycelia that grow out into the soil from the mycorrhizal root tips. We estimated the production of EM mycelia in root free samples of pure spruce and mixed spruce-oak stands in southern Sweden as mycelia grown into sand-filled mesh bags placed at three different soil depths (0–10, 10–20 and 20–30 cm). The mesh bags were collected after 12 months and we found that 590±70 kg ha–1 year–1 of pure mycelia was produced in spruce stands and 420±160 kg ha–1 year–1 in mixed stands. The production of EM mycelia in the mesh bags decreased with soil depth in both stand types but tended to be more concentrated in the top soil in the mixed stands compared to the spruce stands. The fungal biomass was also determined in soil samples taken from different depths by using phospholipid fatty acids as markers for fungal biomass. Subsamples were incubated at 20°C for 5 months and the amount of fungal biomass that degraded during the incubation period was used as an estimate of EM fungal biomass. The EM biomass in the soil profile decreased with soil depth and did not differ significantly between the two stand types. The total EM biomass in the pure spruce stands was estimated to be 4.8±0.9×103 kg ha–1 and in the mixed stands 5.8±1.1×103 kg ha–1 down to 70 cm depth. The biomass and production estimates of EM mycelia suggest a very long turnover time or that necromass has been included in the biomass estimates. The amount of N present in EM mycelia was estimated to be 121 kg N ha–1 in spruce stands and 187 kg N ha–1 in mixed stands. The 13C value for mycelia in mesh bags was not influenced by soil depth, indicating that the fungi obtained all their carbon from the tree roots. The 13C values in mycelia collected from mixed stands were intermediate to values from pure spruce and pure oak stands suggesting that the EM mycelia received carbon from both spruce and oak trees in the mixed stands. The 15N value for the EM mycelia and the surrounding soil increased with soil depth suggesting that they obtained their entire N from the surrounding soil.  相似文献   

3.
Studies on biogeochemical cycling of elements are performed in even aged forest ecosystems of Norway spruce, Sitka spruce and beech at several locations in Denmark. Episodes with high sea salt deposition and unusual low water surplus percolation caused extreme salt concentrations in the soil solutions. The changes were smallest beneath beech stands and most pronounced at the most salt-affected Sitka spruce stands. Contemporary, the pH drops and the Al3+ concentration increased above 20 mg L-1 owing to cation exchange with Na+. The Cl- and Al3+ concentrations reached levels reported as toxic for Norway spruce, but not for Sitka spruce and beech. The changes in the soil water chemistry must be considered as important factors for the reduced vitality in Norway spruce ecosystems in Denmark.  相似文献   

4.
Nitrogen transformations in the soil, and the resulting changes in carbon and nitrogen compounds in soil percolate water, were studied in two stands of Norway spruce (Picea abies L.). Over the last 30 years the stands were repeatedly limed (total 6000 kg ha–1), fertilized with nitrogen (total about 900 kg ha–1), or both treatments together. Both aerobic incubations of soil samples in the laboratory, and intact soil core incubations in the field showed that in control plots ammonification widely predominated over nitrification. In both experiments nitrogen addition increased the formation of mineral-N. In one experiment separate lime and nitrogen treatments increased nitrification, in the other, only lime and nitrogen addition together had this effect. In one experiment immobilization of nitrogen to soil microbial biomass was lower in soil only treated with nitrogen. Soil percolate water was collected by means of lysimeters placed under the humus layer and 10 cm below in the mineral soil. Total N, NH4-N and NO3-N were measured, and dissolved organic nitrogen was fractioned according to molecular weight. NO3-N concentrations in percolate water, collected under the humus layer, were higher in plots treated with N-fertilizer, especially when lime was also added. The treatments had no effect on the N concentrations in mineral soil. A considerable proportion of nitrogen was leached in organic form.  相似文献   

5.
N mineralisation was investigated in the mor humus layer of a podzol at a forested catchment area of Saarejärve Lake in Eastern Estonia. The investigated areas were pine (Rhodococcumunderstorey) and spruce (Vaccinium understorey) stands, which are permanent sample plots of an integrated monitoring network. The seasonal pattern of net N mineralisation was studied by incubating undisturbed cores of mor humus (0–8 cm) in buried polyethylene bags in situ. Samples were collected and incubated between July 1996 and April 1998. The period of incubation was approximately 1 month, except for wintertime when incubation lasted till thawing of ground (5 months). The amounts of mineral nitrogen formed during monthly incubations in vegetation period vary considerably (0.4–8.7 kg ha–1). About 70% of the variation of net ammonification could be explained by environmental factors - temperature, initial moisture and pH. Ammonium was the dominant form of mineral nitrogen, which is typical for mor humus. The rate of nitrification was very low, and most of the annual net nitrification occurred during just one or two months (May–June, October) depending on site and year. Measured annual net N mineralisation was 29.2 kg ha–1 for the spruce stand and 23.6 kg ha–1 for the pine stand. These measures were found to be in good accordance with other N-fluxes in the ecosystem.  相似文献   

6.
Ritter  Eva  Vesterdal  Lars  Gundersen  Per 《Plant and Soil》2003,249(2):319-330
In many European countries, surplus agricultural production and ecological problems due to intensive soil cultivation have increased the interest in afforestation of arable soils. Many environmental consequences which might rise from this alternative land-use are only known from forest establishment on less intensively managed or marginal soils. The present study deals with changes in soil properties following afforestation of nutrient-rich arable soils. A chronosequence study was carried out comprising seven Norway spruce (Picea abies (Karst.) L.) and seven oak (Quercus robur L.) stands established from 1969 to 1997 on former horticultural and agricultural soils in the vicinity of Copenhagen, Denmark. For comparison, a permanent pasture and a ca. 200-year-old mixed deciduous forest were included. This paper reports on changes in pH values, base saturation (BSeff), exchangeable calcium, soil N pools (Nmin contents), and C/N ratios in the Ap-horizon (0–25 cm) and the accumulated forest floor. The results suggest that afforestation slowly modifies soil properties of former arable soils. Land-use history seems to influence soil properties more than the selected tree species. An effect of tree species was only found in the forest floor parameters. Soil acidification was the most apparent change along the chronosequence in terms of a pH decrease from 6 to 4 in the upper 5 cm soil. Forest floor pH varied only slightly around 5. Nitrogen storage in the Ap-horizon remained almost constant at 5.5 Mg N ha–1. This was less than in the mineral soil of the ca. 200-year-old forest. In the permanent pasture, N storage was somewhat higher in 0–15 cm depth than in afforested stands of comparable age. Nitrogen storage in the forest floor of the 0–30-year-old stands increased in connection with the build-up of forest floor mass. The increase was approximately five times greater under spruce than oak. Mineral soil C/N ratios ranged from 10 to 15 in all stands and tended to increase in older stands only in 0–5 cm depth. Forest floor C/N ratios were higher in spruce stands (26.4) as compared to oak stands (22.7). All stands except the youngest within a single tree species had comparable C/N ratios.  相似文献   

7.
Rodenkirchen  H. 《Plant and Soil》1995,168(1):383-390
The effects of fertilization and amelioration treatments on some nutrient pools and fluxes of ground vegetation in mature pine and spruce stands on acid soils in South Germany are described. In N-limited pine forests with moderate canopy density and with Deschampsia flexuosa an additional N-accumulation in biomass of 20–40 kg ha-1 occurred 3 years after pure N-fertilization. The N, P, K-cycling through ground vegetation was stimulated more than 10 years by a combined N + CaCO3 + P treatment leading toa shift in dominance from cryptogams and Ericaceae towards Deschampsia flexuosa and ruderal species like Epilobium angustifolium. The effect of a lupine treatment (combined with initial soil preparation, liming and P supply) was far stronger than the effect of the other experimental procedures. But the fertilizer and amelioration effects on the herb layer of pine forests tended to decline after two decades for different reasons.The shade-tolerant ground vegetation in a nitrogen-saturated spruce forest was not able to prevent heavy additional nitrate losses from upper mineral soil after dolomitic liming. But the Ca, Mg and K fluxes through ground vegetation were strongly elevated in the third year after treatment.  相似文献   

8.
Effects of liming and boron fertilization on boron uptake of Picea abies   总被引:1,自引:0,他引:1  
The effects of liming on concentrations of boron and other elements in Norway spruce [Picea abies (L) Karst.] needles and in the mor humus layer were studied in long-term field experiments with and without B fertilizer on podzolic soils in Finland. Liming (2000+4000 kg ha-1 last applied 12 years before sampling) decreased needle B concentrations in the four youngest needle age classes from 6–10 mg kg-1 to 5 mg kg-1. In boron fertilized plots the corresponding concentrations were 23–35 mg kg-1 in control plots and 21–29 mg kg-1 in limed plots. Both liming and B fertilizer decreased the Mn concentrations of needles. In the humus layer, total B concentration was increased by both lime and B fertilizer, and Ca and Mg concentrations and pH were still considerably higher in the limed plots than controls. Liming decreased the organic matter concentration in humus layer, whilst B fertilizer increased it.The results about B uptake were confirmed in a pot experiment, in which additionally the roles of increased soil pH and increased soil Ca concentration were separated by means of comparing the effects of CaCO3 and CaSO4. Two-year-old bare-rooted Norway spruce seedlings were grown in mor humus during the extension growth of the new shoot. The two doses of lime increased the pH of soil from 4.1 to 5.6 to 6.1, and correspondingly decreased the B concentrations in new needles from 22 to 12 to 9 mg kg-1. However, CaSO4 did not affect the pH of the soil or needle B concentrations. Hence the liming effect on boron availability in these soils appeared to be caused by the increased pH rather than increased calcium concentration.  相似文献   

9.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

10.
A study was conducted in 1998 and 1999 on a long-term fallow management trial, established in 1989 at the International Institute of Tropical Agriculture (IITA), Ibadan, in the derived savanna of southwestern Nigeria, to quantify P fractions under natural fallow (NF) and a Pueraria cover crop fallow. Plots with previous 1:1, 1:2, and 1:3 crop/fallow ratios before reverting to fallow in either 1998 or 1999 were considered. Biomass accumulation under the two fallow types was comparable and increased linearly with fallow age, reaching slightly above 7 t dry matter ha–1 after 8 months of fallow. Phosphorus accumulation in the fallow vegetation ranged from 2.1 – 9.1 kg ha–1 for natural fallow (NF) and from 1.5 – 6.6 kg ha–1 for Pueraria. Magnesium was also higher under NF (9.1 – 21 kg ha–1) than under Pueraria (4.4 – 13 kg ha–1), whereas N, Ca, and K contents were higher in Pueraria biomass than under NF at 1 year after fallow. Pueraria fallow tended to lower soil pH compared with NF. However, plots with less frequent cropping (1:3 crop/fallow ratio) did not have significantly different pH irrespective of the fallow vegetation type. Olsen extractable soil P increased as fallow length increased irrespective of the fallow system and previous crop/fallow ratio. For example, under NF (0–5 cm depth, 1:1 crop/fallow ratio in1998) Olsen P increased from 12 mg kg–1 to 17 mg kg–1 after 1 year of fallow and under Pueraria, it increased from 8 mg kg–1 to 15 mg kg–1. Fallow type and previous crop/fallow ratio had no significant and consistent effects on soil P fractions. However, NaOH- and concentrated HCl- extractable organic P fractions increased with fallow length. In 1998, under NF, NaOH- extractable organic P increased from 12 to 21 mg kg–1 (1:1 crop/fallow ratio) and from 10 to 19 mg kg–1 for both 1:2 and 1:3 crop/fallow ratio. HCl- extractable organic P increased from 11 to 30 mg kg–1 (1:1 crop/fallow ratio), from 13 to 27 mg kg–1 (1:2 crop/fallow ratio) and from 18 to 35 mg kg–1 (1:3 crop/fallow ratio). Similar trend was observed under Pueraria fallow. These results suggest that P was reallocated to non-readily available organic P fractions irrespective of fallow type and previous land use. These organic P fractions, which are usually more stable, reflect the overall change in soil organic P levels when the soil was stressed by cultivation and then reverted to fallow. These pools may thus represent an active reservoir (source and sink) of P in shifting cultivation under tropical conditions without inorganic fertilizer application.  相似文献   

11.
N deposition, N transformation and N leaching in acid forest soils   总被引:9,自引:3,他引:6  
Nitrogen deposition, mineralisation, uptake and leaching were measured on a monthly basis in the field during 2 years in six forested stands on acidic soils under mountainous climate. Studies were conducted in three Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] plantations (D20: 20 year; D40: 40 yr; D60: 60 yr) on abandoned croplands in the Beaujolais Mounts; and two spruce (Picea abies Karst.) plantations (S45: 45 yr; S90: 90 yr) and an old beech (Fagus sylvatica L.) stand (B150: 150 yr) on ancient forest soils in a small catchment in the Vosges Mountains. N deposition in throughfall varied between 7–8 kg ha–1 year–1 (D20, B150, S45) and 15–21 kg ha–1 yr–1 (S90, D40, D60). N in annual litterfall varied between 20–29 kg ha–1 (D40, D60, S90), and 36–43 kg ha–1 (D20, S45, B150). N leaching below root depth varied among stands within a much larger range, between 1–9 kg ha–1 yr–1 (B150, S45, D60) and 28–66 kg ha–1 yr–1 (D40, S90, D20), with no simple relationship with N deposition, or N deposition minus N storage in stand biomass. N mineralisation was between 57–121 kg ha–1 yr–1 (S45, D40, S90) and between 176–209 kg ha–1 yr–1 in (B150, D60 and D20). The amounts of nitrogen annually mineralised and nitrified were positively related. Neither general soil parameters, such as pH, soil type, base saturation and C:N ratio, nor deposition in throughfall or litterfall were simply related to the intensity of mineralisation and/or nitrification. When root uptake was not allowed, nitrate leaching increased by 11 kg ha–1 yr–1 at S45, 36 kg ha–1 yr–1 at S90 and between 69 and 91 kg ha–1 yr–1 at D20, D40, B150 and D60, in relation to the nitrification rates of each plot. From this data set and recent data from the literature, we suggest that: high nitrification and nitrate leaching in Douglas-fir soils was likely related to the former agricultural land use. High nitrification rate but very low nitrate leaching in the old beech soil was related to intense recycling of mineralised N by beech roots. Medium nitrification and nitrate leaching in the old spruce stand was related to the average level of N deposition and to the deposition and declining health of the stand. Very low nitrification and N leaching in the young spruce stand were considered representative of fast growing spruce plantations receiving low N deposition on acidic soils of ancient coniferous forests. Consequently, we suggest that past land use and fine root cycling (which is dependent on to tree species and health) should be taken into account to explain the variability in the relation between N deposition and leaching in forests.  相似文献   

12.
On a heavily karstified site in the Northern Limestone Alps (Austria), nutrient budgets and leaching in Norway spruce stands were investigated along a chronosequence (clearcut, 10-year-old plantation (25% cover of planted and naturally regenerated spruce and larch, 75% weed cover) and mature stand). The soils were Lithic Leptosols on very pure limestone. Nutrient fluxes were studied during three growth periods (4–5 months each). Despite of inorganic nitrogen inputs from precipitation between 5 and 10 kg ha–1, inorganic nitrogen output with seepage water from the mature stand and the regeneration plot was only 0.5–1.2 kg ha–1 during these periods. In the first and second growth periods after clearcut, inorganic N fluxes with seepage increased to 20 and 30 kg ha–1, respectively, declining in the third growth period to 8 kg ha–1. DON output during the growth period was between 3 and 6 kg ha–1 in the mature stand and 7 and 11 kg ha–1 in the clearcut as well as in the regeneration plot. K output rates achieved 30 kg ha–1 in the first, 20 kg ha–1 in the second and 9 kg ha–1 in the third growth period after clear-cutting while output rates during the growth periods were less than 2 kg ha–1 in the mature stand and in the regeneration plot. K pools in the humus layer were only 150–210 kg ha–1, total K pools including above and below ground biomass in the mature stand were 360 kg ha–1. Thus, post-harvest hydrological losses comprise a substantial depletion of K for this specific ecosystem. Since precipitation is high in this area (1400 mm a–1), forest growth is limited by nutrient rather than by water supply. Needle analyses already indicate a deficient potassium supply. Harvesting and post-harvesting losses of K in combination with elevated nitrogen deposition may have negative influences on the stability of forest stands on the studied sites.  相似文献   

13.
Huber  C.  Oberhauser  A.  Kreutzer  K. 《Plant and Soil》2002,240(1):3-11
Laboratory and field measurements of the flux of ammonia to forest floor canopies of spruce and beech stands at the Höglwald site in southern Bavaria are reported. Measurements were performed with an open chamber method. A linearity between ammonia concentration and ammonia flux from the atmosphere to the ground floor canopy was detected. Deposition of ammonia showed no saturation even at air concentrations up to 50 g NH3 m–3 air. Temperature, water content and the moss layer of the ground floor canopy had a minor influence on the deposition velocity in laboratory experiments. Deposition velocity of ammonia was higher to the spruce (1.3 cm s–1), and limed spruce ground floor canopy (1.17 cm s–1) compared to the beech stand (0.79 cm s–1). In field studies, a diurnal course of the deposition velocity was detected with highest velocities in midday and minor during night times, but not in the climatic chamber. The flux of ammonia to the ground floor canopy was estimated of app. 10 kg N ha–1 yr–1 for the soil under spruce, 9 kg N ha–1 yr–1 for the limed spruce and 6 kg N ha–1yr–1 for the soil under beech. The fluxes are interpreted as fluxes from the atmosphere to the ground canopies of the stands.  相似文献   

14.
Forest N fertilization is a common practice in areas of Sweden that are not affected by high levels of N deposition. The environmental consequences of high N input to closed forests are fairly well known, but the long-term effects following clear-felling are a lot less well known. Thus, residual effects on soil and planted seedlings of previous N additions at an experimental N gradient 11 years after clear-felling were studied at a naturally nutrient-poor forest site in central Sweden. The experimental N gradient had been established by three repeated applications (in 1967, 1974 and 1981) of six dosages of NH4NO3 with increments of 120 kg N ha–1. Thus, in total, the applied N dose ranged between 0 and 1800 kg N ha–1. The study examined extractable base cations and P, soil pH, total-N, total-C, net N-mineralization and potential nitrification in four soil horizons (the humus layer, and 0–5, 5–10 and 10–20 cm in the mineral soil). We also measured the survival and growth of planted Pinus sylvestris L. seedlings. The applied N had no effect on the amounts of extractable-P or base cations in the soil. The soil pH decreased with increasing N dose in the deeper soil horizons, while in the humus the pH showed a weak but statistically significant increase due to the N application. Both total-C and total-N increased as a result of the N application, while the C/N ratio decreased. In the humus layer and the uppermost mineral soil layer NH4 + was the major inorganic N source, in contrast to the lowest mineral soil horizon where NO3 dominated. For most of the studied horizons, there was a positive linear relationship between applied N dose and amount of inorganic N. Both net N-mineralization and potential nitrification showed increases with increasing N dose. As for the plants, no difference in survival or growth was found between the different N treatments. For doses generally applied in forest fertilization no significant differences in any of the studied properties were found.  相似文献   

15.
Arvidsson  Helen  Lundkvist  Heléne 《Plant and Soil》2002,238(1):159-174
Nutrient concentrations in current and 1-year-old needles were analyzed annually for 5 years after application of hardened wood ash in 1–4-year-old Norway spruce (Picea abies (L.) Karst.) stands within a range of climate and fertility gradients. At each site, 3000 kg ha–1 hardened wood ash of two types, Nymölla and Perstorp, was applied in a randomized block design. Wood ash Nymölla contained 12 kg ha–1 P, 30 kg ha–1 K, 891 kg ha–1 Ca, 72 kg ha–1 Mg and wood ash Perstorp contained 12 kg ha–1 P, 60 kg ha–1 K, 486 kg ha–1 Ca, and 60 kg ha–1 Mg. The ash was intended to compensate for nutrients removed at the preceding harvest when logging residues were collected and removed from the site (whole-tree harvesting). The climate gradient included four climate zones throughout Sweden and each of these included a fertility gradient of three sites classified according to their ground vegetation type. There were no effects on nutrient concentrations in the needles 1 year after the application of wood ash. Five years after ash application, the concentrations of P, K and Ca in current and 1-year-old needles were higher than in the control plots. The results were consistent over all stands, irrespective of climate zone and fertility status. P and K concentrations were higher in spruce needles from plots treated with Perstorp wood ash, whereas Ca concentrations were higher in those of Nymölla treated plots. Analyses across all study sites revealed a treatment effect in terms of increased ratios of P:N, K:N and Ca:N in 1-year-old needles. The ratio P:N tended to increase with time in the Perstorp wood ash treatment compared with the control. The needle concentrations of Mg and S were not affected by the ash applications. The increase in needle nutrient concentrations after application of hardened wood ash suggests that wood ash recycling could be used in order to replace nutrients removed at whole-tree harvesting.  相似文献   

16.
Reductions in snow cover undera warmer climate may cause soil freezing eventsto become more common in northern temperateecosystems. In this experiment, snow cover wasmanipulated to simulate the late development ofsnowpack and to induce soil freezing. Thismanipulation was used to examine the effects ofsoil freezing disturbance on soil solutionnitrogen (N), phosphorus (P), and carbon (C)chemistry in four experimental stands (twosugar maple and two yellow birch) at theHubbard Brook Experimental Forest (HBEF) in theWhite Mountains of New Hampshire. Soilfreezing enhanced soil solution Nconcentrations and transport from the forestfloor. Nitrate (NO3 ) was thedominant N species mobilized in the forestfloor of sugar maple stands after soilfreezing, while ammonium (NH4 +) anddissolved organic nitrogen (DON) were thedominant forms of N leaching from the forestfloor of treated yellow birch stands. Rates ofN leaching at stands subjected to soil freezingranged from 490 to 4,600 mol ha–1yr–1, significant in comparison to wet Ndeposition (530 mol ha–1 yr–1) andstream NO3 export (25 mol ha–1yr–1) in this northern forest ecosystem. Soil solution fluxes of Pi from the forestfloor of sugar maple stands after soil freezingranged from 15 to 32 mol ha–1 yr–1;this elevated mobilization of Pi coincidedwith heightened NO3 leaching. Elevated leaching of Pi from the forestfloor was coupled with enhanced retention ofPi in the mineral soil Bs horizon. Thequantities of Pi mobilized from the forestfloor were significant relative to theavailable P pool (22 mol ha–1) as well asnet P mineralization rates in the forest floor(180 mol ha–1 yr–1). Increased fineroot mortality was likely an important sourceof mobile N and Pi from the forest floor,but other factors (decreased N and P uptake byroots and increased physical disruption of soilaggregates) may also have contributed to theenhanced leaching of nutrients. Microbialmortality did not contribute to the acceleratedN and P leaching after soil freezing. Resultssuggest that soil freezing events may increaserates of N and P loss, with potential effectson soil N and P availability, ecosystemproductivity, as well as surface wateracidification and eutrophication.  相似文献   

17.
Advances in the positional cloning of nodulation genes in soybean   总被引:2,自引:0,他引:2  
The effect of liming on the decomposition of Norway spruce needle litter was studied in 40–60-year-old Norway spruce stands. Finely-ground limestone had been spread about 30 years ago at a dose of 2 t ha–1 and reliming was carried out about 20 yr later at a dose of 4 t ha–1. Needle litter was collected from both control and limed plots, and it was placed in litter bags in the middle of the humus layer of the plot from which they originated, and similarly to the other plot in May. Litter bags were sampled after 4, 12 and 16 months. The site of origin of the needle litter, whether from control plot or from limed plot, affected mainly the early stages of decomposition. Initially the effect of liming was seen as decreased concentration of water soluble material and then, during decomposition, as decreased mass loss and decreased degradation of lignin, and increased C/N ratio. The incubation site, whether the control or the limed plot, did not affect decomposition significantly.Decomposition of Scots pine needles in a young Scots pine plantation was also studied. The treatments were: 2 t ha–1 of finely-ground limestone and 2.5 t ha–1 of bark ash spread 8 months before this study. The treatments did not affect decomposition much, but some stimulation of the treatments on decomposition was observed. Compared to spruce needles, the C/N ratio of pine seedles was lower, they contained less lignin and more water soluble material, and decomposed faster in the first summer.  相似文献   

18.
The effect of long-term (1983–1988) applications of crop residues (millet straw, 2–4 t ha-1 yr–1) and/or mineral fertilizer (30 kg N, 13 kg P and 25 kg K ha-1 yr-1) on uptake of phosphorus (P) and other nutrients, root growth and mycorrhizal colonization of pearl millet (Pennisetum glaucum L.) was examined for two seasons (1987 and 1988) on an acid sandy soil in Niger. Treatments of the long-term field experiment were: control (–CR–F), mineral fertilizer only (–CR+F), crop residues only (+CR–F), and crop residues plus mineral fertilizer (+CR+F).In both years, total P uptake was similar for +CR–F and –CR+F treatments (1.6–3.5 kg P ha-1), although available soil P concentration (Bray I P) was considerably lower in +CR–F (3.2 mg P kg-1 soil) than in –CR+F (7.4) soil. In the treatments with mineral fertilizers (–CR+F; +CR+F), crop residues increased available soil P concentrations (Bray I P) from 7.4 to 8.9 mg kg-1 soil, while total P uptake increased from 3.6 to 10.6 kg P ha-1. In 1987 (with 450 mm of rainfall), leaf P concentrations of 30-day-old millet plants were in the deficiency range, but highest in the +CR+F treatment. In 1988 (699 mm), leaf P concentrations were distinctly higher, and again highest in the +CR+F treatment. In the treatments without crop residues (–CR–F; –CR+F), potassium (K) concentrations in the leaves indicated K deficiency, while application of crop residues (+CR–F; +CR+F) substantially raised leaf K concentrations and total K uptake. Leaf concentrations of calcium (Ca) and magnesium (Mg) were hardly affected by the different treatments.In the topsoil (0–30 cm), root length density of millet plants was greater for +CR+F (6.5 cm cm-3) than for +CR–F (4.5 cm cm-3) and –CR+F (4.2 cm cm-3) treatments. Below 30 cm soil depth, root length density of all treatments declined rapidly from about 0.6 cm cm-3 (30–60 cm soil depth) to 0.2 cm cm-3 (120–180 cm soil depth). During the period of high uptake rates of P (42–80 DAP), root colonization with vesicular-arbuscular mycorrhizal (VAM) fungi was low in 1987 (15–20%), but distinctly higher in 1988 (55–60%). Higher P uptake of +CR+F plants was related to a greater total root length in 0–30 cm and also to a higher P uptake rate per unit root length (P influx). Beneficial effects of crop residues on P uptake were primarily attributed to higher P mobility in the soil due to decreased concentrations of exchangeable Al, and enhancement of root growth. In contrast, the beneficial effect of crop residues on K uptake was caused by direct K supply with the millet straw.  相似文献   

19.
To study the impact of high atmospheric nitrogen deposition on the leaching of NO3 and NH4+ beneath forest and heathland vegetation, investigations were carried out in adjacent forest and heathland ecosystems in Northwest Germany. The study area is subjected to high deposition of nitrogen ranging from 15.9 kg ha–1 yr–1 in bulk precipitation to 65.3 kg ha–1 yr–1 beneath a stand of Pinus sylvestris L. with NH4–N accounting for 70–80% of the nitrogen deposited. Considerable leaching of nitrogen compounds from the upper horizons of the soil, mostly as nitrate, occurred at most of the forest sites and below a mixed stand of Calluna vulgaris (L.) Hull. and Erica tetralix, but was low in a Betula pubescens Ehrh. swamp forest as well as beneath Erica tetralix L. wet heath and heath dominated by Molinia caerulea(L.) Moench. Ground water concentrations of both NO3–N and NH4–N did not exceed 1 mg L–1 at most of the sites investigated.  相似文献   

20.
Changes in the carbon stocks of stem biomass, organic layers and the upper 50 cm of the mineral soil during succession and afforestation of spruce (Picea abies) on former grassland were examined along six chronosequences in Thuringia and the Alps. Three chronosequences were established on calcareous and three on acidic bedrocks. Stand elevation and mean annual precipitation of the chronosequences were different. Maximum stand age was 93 years on acid and 112 years on calcareous bedrocks. Stem biomass increased with stand age and reached values of 250–400 t C ha?1 in the oldest successional stands. On acidic bedrocks, the organic layers accumulated linearly during forest succession at a rate of 0.34 t C ha?1 yr?1. On calcareous bedrocks, a maximum carbon stock in the humus layers was reached at an age of 60 years. Total carbon stocks in stem biomass, organic layers and the mineral soil increased during forest development from 75 t C ha?1 in the meadows to 350 t C ha?1 in the oldest successional forest stands (2.75 t C ha?1 yr?1). Carbon sequestration occurred in stem biomass and in the organic layers (0.34 t C ha?1 yr?1on acid bedrock), while mineral soil carbon stocks declined. Mineral soil carbon stocks were larger in areas with higher precipitation. During forest succession, mineral soil carbon stocks of the upper 50 cm decreased until they reached approximately 80% of the meadow level and increased slightly thereafter. Carbon dynamics in soil layers were examined by a process model. Results showed that sustained input of meadow fine roots is the factor, which most likely reduces carbon losses in the upper 10 cm. Carbon losses in 10–20 cm depth were lower on acidic than on calcareous bedrocks. In this depth, continuous dissolved organic carbon inputs and low soil respiration rates could promote carbon sequestration following initial carbon loss. At least 80 years are necessary to regain former stock levels in the mineral soil. Despite the comparatively larger amount of carbon stored in the regrowing vegetation, afforestation projects under the Kyoto protocol should also aim at the preservation or increase of carbon in the mineral soil regarding its greater stability of compared with stocks in biomass and humus layers. If grassland afforestation is planned, suitable management options and a sufficient rotation length should be chosen to achieve these objectives. Maintenance of grass cover reduces the initial loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号