首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aminochloroquinoline–kojic acid hybrids were synthesized and evaluated for β-haematin inhibition and antiplasmodial activity against drug resistant (K1) and sensitive (3D7) strains of Plasmodium falciparum. Compound 7j was the most potent compound in both strains (IC503D7 = 0.004 μM; IC50K1 = 0.03 μM) and had the best β-haematin inhibition activity (0.07 IC50 equiv vs 1.91 IC50 equiv for chloroquine). One compound 8c was found to be equipotent in both strains (IC50 = 0.04 μM).  相似文献   

2.
Three series of novel heterocyclic azoles derivatives containing pyrazine (5a5k, 8a8k and 11a11k) have been designed, synthesized, structurally determined, and their biological activities were evaluated as potential telomerase inhibitors. Among the oxadiazole derivatives, compound 5c showed the most potent biological activity against SW1116 cancer cell line (IC50 = 2.46 μM against SW1116 and IC50 = 3.55 μM for telomerase). Compound 8h performed the best in the thiadiazole derivatives (IC50 = 0.78 μM against HEPG2 and IC50 = 1.24 μM for telomerase), which was comparable to the positive control. While compound 11f showed the most potent biological activity (IC50 = 4.12 μM against SW1116 and IC50 = 15.03 μM for telomerase) among the triazole derivatives. Docking simulation by positioning compounds 5c, 8h and 11f into the telomerase structure active site was performed to explore the possible binding model. The results of apoptosis demonstrated that compound 8h possessed good antitumor activity against HEPG2 cancer cell line. Therefore, compound 8h with potent inhibitory activity in tumor growth inhibition may be a potential antitumor agent against HEPG2 cancer cell. Therefore, the introduction of oxadiazole, thiadiazole and triazole structures reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity.  相似文献   

3.
Three novel series of diaryl heterocyclic derivatives bearing the 2-oxo-5H-furan, 2-oxo-3H-1,3-oxazole, and 1H-pyrazole moieties as the central heterocyclic ring were synthesized and their in vitro inhibitory activities on COX-1 and COX-2 isoforms were evaluated using a purified enzyme assay. The 2-oxo-5H-furan derivative 6b was identified as potent COX inhibitor with selectivity toward COX-1 (COX-1 IC50 = 0.061 μM and COX-2 IC50 = 0.325 μM; selectivity index (SI) = 0.19). Among the 1H-pyrazole derivatives, 11b was found to be a potent COX-2 inhibitor, about 38 times more potent than Rofecoxib (COX-2 IC50 = 0.011 μM and 0.398 μM, respectively), but showed no selectivity for COX-2 isoform. Compound 11c demonstrated strong and selective COX-2 inhibitory activity (COX-1 IC50 = 1 μM, COX-2 IC50 = 0.011 μM; SI = ~92). Molecular docking studies of compounds 6b and 11bd into the binding sites of COX-1 and COX-2 allowed to shed light on the binding mode of these novel COX inhibitors.  相似文献   

4.
Synthesis, biological evaluation and structure–activity relationships for a series of novel γ-carboline analogues of Dimebon? are described. Among the studied compounds, γ-carbolines 3{8} and 3{14} have been identified as potent small molecule antagonists of histamine H1 (IC50 = 0.1 μM) and serotonin 5-HT6 (IC50 = 0.37 μM) receptors, respectively.  相似文献   

5.
A series of novel 4,5-dihydropyrazole derivatives (3a3t) containing hydroxyphenyl moiety as potential V600E mutant BRAF kinase (BRAFV600E) inhibitors were designed and synthesized. Docking simulation was performed to insert compounds 3d (1-(5-(5-chloro-2-hydroxyphenyl)-3-(p-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) and 3m (1-(3-(4-chlorophenyl)-5-(3,5-dibromo-2-hydroxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone) into the crystal structure of BRAFV600E to determine the probable binding model, respectively. Based on the preliminary results, compound 3d and 3m with potent inhibitory activity in tumor growth may be a potential anticancer agent. Results of the bioassays against BRAFV600E, MCF-7 human breast cancer cell line and WM266.4 human melanoma cell line all showed several compounds had potent activities IC50 value in low micromolar range, among them, compound 3d and compound 3m showed strong potent anticancer activity, which were proved by that 3d: IC50 = 1.31 μM for MCF-7 and IC50 = 0.45 μM for WM266.5, IC50 = 0.22 μM for BRAFV600E, 3m: IC50 = 0.97 μM for MCF-7 and IC50 = 0.72 μM for WM266.5, IC50 = 0.46 μM for BRAFV600E, which were comparable with the positive control Erlotinib.  相似文献   

6.
A series of N-substituted 1-aminomethyl-β-d-glucopyranoside derivatives was prepared. These novel synthetic compounds were assessed in vitro for inhibitory activity against yeast α-glucosidase and both rat intestinal α-glucosidases maltase and sucrase. Most of the compounds displayed α-glucosidase inhibitory activity, with IC50 values covering the wide range from 2.3 μM to 2.0 mM. Compounds 19a (IC50 = 2.3 μM) and 19b (IC50 = 5.6 μM) were identified as the most potent inhibitors for yeast α-glucosidase, while compounds 16 (IC50 = 7.7 and 15.6 μM) and 19e (IC50 = 5.1 and 10.4 μM) were the strongest inhibitors of rat intestinal maltase and sucrase. Analysis of the kinetics of enzyme inhibition indicated that 19e inhibited maltase and sucrase in a competitive manner. The results suggest that the aminomethyl-β-d-glucopyranoside moiety can mimic the substrates of α-glucosidase in the enzyme catalytic site, leading to competitive enzyme inhibition. Moreover, the nature of the N-substituent has considerable influence on inhibitory potency.  相似文献   

7.
Fifteen novel hybrids containing diterpene skeleton and nitric oxide (NO) donor were prepared from isosteviol. All the compounds were tested on preliminary cytotoxicity, and the results showed that six target compounds (8c, 10b, 14a, 14c, 18c, and 18d) exhibited anti-proliferation activity on HepG2 cells, with 8c (IC50 = 4.24 μM) and 18d (IC50 = 2.75 μM) superior to the positive control CDDO-Me (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-acid methyl ester, IC50 = 4.99 μM); eleven target compounds (8ac, 9ac, 10ab, 14a, 14c, 18d) exhibited anti-proliferation activities on B16F10 cells at different levels, among them, seven compounds were more potent than comptothecin (IC50 = 2.78 μM) and CDDO-Me (IC50 = 5.85 μM), particularly, 10b (IC50 = 0.02 μM) presented the strongest effect, which was selected as a candidate for further study.  相似文献   

8.
Two series of novel naphthalin-containing pyrazoline derivatives C1C14 and D1–D14 have been synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. Compound D14 displayed the most potent activity against EGFR and A549 cell line (IC50 = 0.05 μM and GI50 = 0.11 μM), being comparable with the positive control Erlotinib (IC50 = 0.03 μM and GI50 = 0.03 μM) and more potent than our previous compounds C0–A (IC50 = 5.31 μM and GI50 = 33.47 μM) and C0–B (IC50 = 0.09 μM and GI50 = 0.34 μM). Meanwhile, compound C14 displayed the most potent activity against HER-2 and MCF-7 cell line (IC50 = 0.88 μM and GI50 = 0.35 μM), being a little less potent than Erlotinib (IC50 = 0.16 μM and GI50 = 0.08 μM) but far more potent than C0–A (IC50 = 6.58 μM and GI50 = 27.62 μM) and C0–B (IC50 = 2.77 μM and GI50 = 3.79 μM). The docking simulation was performed to analyze the probable binding models and the QSAR models were built for reasonable design of EGFR/HER-2 inhibitors at present and in future. The structural modification of introducing naphthalin moiety reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity. Moreover, the replacement of thiourea skeleton by using benzene ring resulted in the slight diversity of the two series towards specific targets.  相似文献   

9.
All stereoisomers of methoxybutane and fluorobutane type of 1,7-seco-2,7′-cyclolignane were synthesized and cytotoxic activities of these compounds were compared with those of all stereoisomers of butane and butanol type compounds. Both enantiomers of butane type secocyclolignane showed higher cytotoxic activity (IC50 = 16–20 μM) than methoxy type compounds, whereas none was observed for all the stereoisomers of butanol type secocyclolignane, however, (−)-Kadangustin J showed stereospecific cytotoxic activity (IC50 = 47–67 μM). Since (R)-9′-fluoro derivative 23 was most potent (IC50 = 19 μM) among the corresponding fluoro stereoisomers, (R)-9′-alkyl derivatives were synthesized, hydrophobic 9′-heptyl derivative 27 showing highest activity (IC50 = 3.7 μM against HL-60, IC50 = 3.1 μM against HeLa) in this experiment. Apoptosis induction caused by Caspase 3 and 9 for (R)-9′-heptyl derivative 27 was observed in the research on the mechanism. A degradation of DNA into small fragments was also shown by DNA ladder assay.  相似文献   

10.
Flemingia philippinensis is used as a foodstuff or medicinal plant in the tropical regions of China. The methanol (95%) extract of the roots of this plant showed potent tyrosinase inhibition (80% inhibition at 30 μg/ml). Activity-guided isolation yielded six polyphenols that inhibited both the monophenolase (IC50 = 1.01–18.4 μM) and diphenolase (IC50 = 5.22–84.1 μM) actions of tyrosinase. Compounds 16 emerged to be three new polyphenols and three known flavanones, flemichin D, lupinifolin and khonklonginol H. The new compounds (13) were identified as dihydrochalcones which we named fleminchalcones (A–C), respectively. The most potent inhibitor, dihydrochalcone (3) showed significant inhibitions against both the monophenolase (IC50 = 1.28 μM) and diphenolase (IC50 = 5.22 μM) activities of tyrosinase. Flavanone (4) possessing a resorcinol group also inhibited monophenolase (IC50 = 1.79 μM) and diphenolase (IC50 = 7.48 μM) significantly. In kinetic studies, all isolated compounds behaved as competitive inhibitors. Fleminchalcone A was found to have simple reversible slow-binding inhibition against monophenolase.  相似文献   

11.
The cytotoxic activities of sesquilignans, (7S,8S,7′R,8′R)- and (7R,8R,7′S,8′S)-morinol A and (7S,8S,7′S,8′S)- and (7R,8R,7′R,8′R)-morinol B were compared, showing no significant difference between stereoisomers (IC50 = 24–35 μM). As a next stage, the effect of substituents at 7, 7′, and 7″-aromatic ring on the activity was evaluated to find out the higher activity of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18 (IC50 = 6–7 μM). In the research on the structure–activity relationship of 7″-position of (7S,8S,7′R,8′R)-7,7′,7″-phenyl derivative 18, the most potent compounds were 7,7′,7″-phenyl derivative 18 (IC50 = 6 μM) against HeLa cells. Against HL-60 cells, 7″-(4-nitrophenyl)-7,7′-phenyl derivative 33 and 7″-hexyl-7,7′-phenyl derivative 37 (IC50 = 5 μM) showed highest activity. We discovered the compounds showed four to sevenfold potent activity than that of natural (7S,8S,7′R,8′R)-morinol A. It was also confirmed that the 7′-benzylic hydroxy group have an important role for exhibiting activity, on the other hand, the resonance system of cinnamyl structure is not crucial for the potent activity.  相似文献   

12.
Twenty four pyrazoline derivatives modified from Celecoxib were designed and synthesized as bi-inhibitor of COX-2 and B-Raf. They were evaluated for their COX-1/COX-2/B-Raf inhibitory and anti-proliferation activities. Compound A3 displayed the most potent activity against COX-2 and HeLa cell line (IC50 = 0.008 μM; GI50 = 19.86 μM) and showed superb COX-1/COX-2 selectivity (>500), being more potent and selective than positive control Celecoxib or 5-fluorouracil. Compounds A5 and B5 were introduced best B-Raf inhibitory activities (IC50 = 0.15 μM and 0.12 μM, respectively). Compound A4 retained superb bioactivity against COX-2 and HeLa cell line (IC50 = 0.015 μM; GI50 = 23.82 μM) and displayed moderate B-Raf inhibitory activity (IC50 = 3.84 μM). Docking simulation was conducted to give binding patterns. QSAR models were built using bioactivity data and optimized conformations to provide a future modification of COX-2/B-Raf inhibitors.  相似文献   

13.
Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in melan-a cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a–e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC50 = 1.25 μM and 0.73 μM, respectively) as compared to 4-n-butyl resorcinol (IC50 = 21.64 μM) and hydroquinone (IC50 = 3.97 μM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.  相似文献   

14.
Nine rotenoids were isolated from the hexane and dichloromethane extracts of Derris trifoliata stems and were tested for nitric oxide (NO) inhibitory activity using RAW264.7 cells. The result indicated that 12a-hydroxyrotenone (7) possessed very potent NO inhibitory activity with an IC50 value of 0.002 μM, followed by 1 (deguelin, IC50=0.008 μM), 9 (12a-hydroxyelliptone, IC50=0.010 μM) and 2 (α-toxicarol, IC50=0.013 μM), respectively. In addition, the DPPH scavenging activity of rotenoids was also investigated. It was found that 6a,12a-dehydrodeguelin (5) possessed the highest activity against DPPH with an IC50 value of 7.4 μM, followed by deguelin (1, IC50=27.4 μM). All compounds did not show any cytotoxicity at their IC50 values for NO inhibitory activity.Structure–activity relationships (SARs) of these rotenoids against NO release are as follows: (1) hydroxylation at C12a dramatically increased activity, (2) prenylation at furan ring increased activity markedly and (3) hydrogenation of a double bond at C6a–C12a conferred higher activity. For the DPPH radical scavenging effect, it was found that (1) introduction of a double bond at C6a–C12a increased activity and (2) hydroxylation of C11 at the D-ring decreased activity. As regards active compounds of Derris trifoliata stems, the isolated compounds are responsible for the NO inhibitory effect, especially 7, 1, 9 and 2, whereas 5 and 1 are those for the DPPH scavenging activity.  相似文献   

15.
A series of novel l-tyrosine derivatives were designed, synthesized and assayed for their inhibitory activities on matrix metalloproteinase 2 (MMP-2) and histone deacetylase 8 (HDAC-8). The results showed that these l-tyrosine derivatives exhibited inhibitory profiles against MMP-2 and HDAC-8. The compounds 6h (IC50 = 0.013 ± 0.001 μM) and 6j (IC50 = 0.017 ± 0.001 μM) were equal potent MMP-2 inhibitors to the positive control NNGH (IC50 = 0.014 ± 0.001 μM). As for HDAC-8 inhibition, some of the hydroxamate compounds, such as 6d (IC50 = 3.6 ± 0.2 μM) and 6c (IC50 = 5.8 ± 0.5 μM), were equal potent to the positive control SAHA (IC50 = 1.6 ± 0.1 μM). Structure–activity relationships were also briefly discussed.  相似文献   

16.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

17.
Bioassay guided fractionation of the roots of Lantana montevidensis (Verbenaceae) has resulted in the isolation and identification of three new triterpenoids; 13β-hydroxy-3-oxo-olean-11-en-28-oic acid (1), 12β,13β-dihydroxyolean-3-oxo-28-oic acid (2) and 12β,13β,22β-trihydroxyolean-3-oxo-28-oic acid (3) in addition to nine known compounds: oleanonic acid (4), oleanolic acid (5), 3β,25β-dihydroxy-olean-12-en-28-oic acid (6), lantadene A (7), 19α-hydroxy-3-oxo-olean-12-en-28-oic acid (8) pomolic acid (9), camaric acid (10) together with β-sitosterol (11) and β-sitosterol-3-O-β-d-glucoside (12). The structures of the isolated metabolites were elucidated based on comprehensive 1D and 2D NMR spectroscopic data as well as HR-ESI–MS. The extracts and the isolated metabolites were evaluated for their antiprotozoal and antimicrobial activities. Compound 2 showed antibacterial activity against Staphylococcus aureus and methicillin resistant S. aureus with IC50 values against both organisms of 2.1 μM and compound 10 showed activity against same organisms with IC50 values 8.74 and 8.09 μM, respectively, compared to the positive control ciprofloxacin (IC50 = 0.3 μM against S. aureus and MRSA). Compounds 1, 4, 5, 6, and 10 showed moderate antileishmanial activity with IC50 values ranging between (2.54–14.95 μM) and IC90 values ranging between (11.90–19.47 μM), using pentamidine as a control (IC50 values 2.09  16.8 μM) and IC90 values ranging between (4.72  16.8 μM). These compounds also showed highly potent antitrypanosomal activity with IC50 values ranging between (0.39–7.12 μM) and IC90 values ranging between (1.91–10.51 μM), which are more efficient than the DFMO, the antitrypanosomal drug employed as positive control (IC50 and IC90values 11.82 and 30.82 μM).  相似文献   

18.
The discovery, synthesis, and preliminary structure–activity relationship (SAR) of a novel class of vasopressin V3 (V1b) receptor antagonists is described. Compound 1, identified by high throughput screening of a diverse, three million-member compound collection, prepared using ECLiPS? technology, had good activity in a V3 binding assay (IC50 = 0.20 μM), but less than desirable physicochemical properties. Optimization of compound 1 yielded potent analogs 19 (IC50 = 0.31 μM) and 24 (IC50 = 0.12 μM) with improved drug-like characteristics.  相似文献   

19.
We report the design and synthesis of a novel class of N,N′-disubstituted aroylguanidine-based lactam derivatives as potent and orally active FXa inhibitors. The structure–activity relationships (SAR) investigation led to the discovery of the nicotinoyl guanidine 22 as a potent FXa inhibitor (FXa IC50 = 4 nM, EC2×PT = 7 μM). However, the potent CYP3A4 inhibition activity (IC50 = 0.3 μM) of 22 precluded its further development. Detailed analysis of the X-ray crystal structure of compound 22 bound to FXa indicated that the substituent at the 6-position of the nicotinoyl group of 22 would be solvent-exposed, suggesting that efforts to attenuate the unwanted CYP activity could focus at this position without affecting FXa potency significantly. Further SAR studies on the 6-substituted nicotinoyl guanidines resulted in the discovery of 6-(dimethylcarbamoyl) nicotinoyl guanidine 36 (BMS-344577, IC50 = 9 nM, EC2×PT = 2.5 μM), which was found to be a selective, orally efficacious FXa inhibitor with an excellent in vitro liability profile, favorable pharmacokinetics and pharmacodynamics in animal models.  相似文献   

20.
On the basis of previous report on promising α-glucosidase inhibitory activity of 5-bromo-2-aryl benzimidazole derivatives, these derivatives were further screened for urease inhibitory and cytotoxicity activity in order to get more potent and non-cytotoxic potential dual inhibitor for the patients suffering from diabetes as well as peptic ulcer. In this study, all compounds showed varying degree of potency in the range of (IC50 = 8.15 ± 0.03–354.67 ± 0.19 μM) as compared to standard thiourea (IC50 = 21.25 ± 0.15 μM). It is worth mentioning that derivatives 7 (IC50 = 12.07 ± 0.05 μM), 8 (IC50 = 10.57 ± 0.12 μM), 11 (IC50 = 13.76 ± 0.02 μM), 14 (IC50 = 15.70 ± 0.12 μM) and 22 (IC50 = 8.15 ± 0.03 μM) were found to be more potent inhibitors than standard. All compounds were also evaluated for cytotoxicity towards 3T3 mouse fibroblast cell line and found to be completely non-toxic. Previously benzimidazole 125 were also showed α-glucosidase inhibitory potential. In silico studies were performed on the lead molecules i.e. 2, 7, 8, 11, 14, and 22, in order to rationalize the binding interaction of compounds with the active site of urease enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号