首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
3.
4.
5.
6.
7.
Gcn5 is a conserved histone acetyltransferase (HAT) found in a number of multisubunit complexes from Saccharomyces cerevisiae, mammals, and flies. We previously identified Drosophila melanogaster homologues of the yeast proteins Ada2, Ada3, Spt3, and Tra1 and showed that they associate with dGcn5 to form at least two distinct HAT complexes. There are two different Ada2 homologues in Drosophila named dAda2A and dAda2B. dAda2B functions within the Drosophila version of the SAGA complex (dSAGA). To gain insight into dAda2A function, we sought to identify novel components of the complex containing this protein, ATAC (Ada two A containing) complex. Affinity purification and mass spectrometry revealed that, in addition to dAda3 and dGcn5, host cell factor (dHCF) and a novel SANT domain protein, named Atac1 (ATAC component 1), copurify with this complex. Coimmunoprecipitation experiments confirmed that these proteins associate with dGcn5 and dAda2A, but not with dSAGA-specific components such as dAda2B and dSpt3. Biochemical fractionation revealed that ATAC has an apparent molecular mass of 700 kDa and contains dAda2A, dGcn5, dAda3, dHCF, and Atac1 as stable subunits. Thus, ATAC represents a novel histone acetyltransferase complex that is distinct from previously purified Gcn5/Pcaf-containing complexes from yeast and mammalian cells.  相似文献   

8.
9.
10.
11.
The Wnt pathway is a key regulator of embryonic development and stem cell self-renewal, and hyperactivation of the Wnt signalling is associated with many human cancers. The central player in the Wnt pathway is β-Catenin, a cytoplasmic protein whose function is under tight control by ubiquitination and degradation, however the precise regulation of β-Catenin stability/degradation remains elusive. Here, we report a new mechanism of β-Catenin ubiquitination acting in the context of chromatin. This mechanism is mediated by the histone acetyltransferase (HAT) complex component TRRAP and Skp1, an invariable component of the Skp-Cullin-F-box (SCF) ubiquitin ligase complex. TRRAP interacts with Skp1/SCF and mediates its recruitment to β-Catenin target promoter in chromatin. TRRAP deletion leads to a reduced level of β-Catenin ubiquitination, lower degradation rate and accumulation of β-Catenin protein. Furthermore, recruitment of Skp1 to chromatin and ubiquitination of chromatin-bound β-Catenin is abolished upon TRRAP knock-down, leading to an abnormal retention of β-Catenin at chromatin and concomitant hyperactivation of the canonical Wnt pathway. These results demonstrate that there is a distinct regulatory mechanism for β-Catenin ubiquitination/destruction acting in the nucleus which functionally complements cytoplasmic destruction of β-Catenin and prevents oncogenic stabilization of β-Catenin and chronic activation of the canonical Wnt pathway.  相似文献   

12.
Tumor cells often encounter hypoglycemic microenvironment due to rapid cell expansion. It remains elusive how tumors reprogram the genome to survive the metabolic stress. The tumor suppressor TIP60 functions as the catalytic subunit of the human NuA4 histone acetyltransferase (HAT) multi-subunit complex and is involved in many different cellular processes including DNA damage response, cell growth and apoptosis. Attenuation of TIP60 expression has been detected in various tumor types. The function of TIP60 in tumor development has not been fully understood. Here we found that suppressing TIP60 inhibited p53 K120 acetylation and thus rescued apoptosis induced by glucose deprivation in hepatocellular cancer cells. Excitingly, Lys-104 (K104), a previously identified lysine acetylation site of TIP60 with unknown function, was observed to be indispensable for inducing p53-mediated apoptosis under low glucose condition. Mutation of Lys-104 to Arg (K104R) impeded the binding of TIP60 to human NuA4 complex, suppressed the acetyltransferase activity of TIP60, and inhibited the expression of pro-apoptotic genes including NOXA and PUMA upon glucose starvation. These findings demonstrate the critical regulation of TIP60/p53 pathway in apoptosis upon metabolic stress and provide a novel insight into the down-regulation of TIP60 in tumor cells.  相似文献   

13.
14.
15.
16.
17.
18.
The androgen receptor (AR) promotes growth of prostate cancer cells by controlling the expression of target genes. This study showed that MRG domain binding protein (MRGBP) accelerated AR-mediated transactivation. We first showed that MRGBP promoted growth of AR-positive prostate cancer cells. MRGBP increased the expression of certain AR target genes, including KLK3 and TMPRSS2, and it associated with AR binding regions of these genes during androgen treatment. Furthermore, MRGBP interacted with MRG15 and TIP60 in prostate cancer cells. Androgen-stimulated AR enhanced histone H3K4me1 or H3K4me3 levels at AR binding regions. MRGBP was recruited to active gene regions through its binding with H3K4me1/3 by MRG15. Then, MRGBP promoted recruitment of TIP60 and acetylation of histone variant H2A.Z at the location of AR binding. Accordingly, AR occupancy of the AR binding regions was increased by MRGBP. Together, these results suggest that MRGBP promotes activation of AR-associated enhancer and promoter regions through an epigenetic mechanism.  相似文献   

19.
20.
Oral-facial-digital (OFD) type I syndrome is an X-linked dominant disease (MIM311200) characterized by malformations of oral cavity, face, and digits and by cystic kidneys. We previously identified OFD1, the gene responsible for this disorder, which encodes for a centrosomal protein with an unknown function. We now report that OFD1 localizes both to the primary cilium and to the nucleus. Moreover, we demonstrate that the OFD1 protein is able to self-associate and that this interaction is mediated by its coiled-coil rich region. Interestingly, we identify an OFD1-interacting protein RuvBl1, a protein belonging to the AAA(+)-family of ATPases, which has been recently associated to cystic kidney in zebrafish and to ciliary assembly and function in Chlamydomonas reinhardtii. We also provide experimental evidence that OFD1, together with RuvBl1, is able to coimmunoprecipitate with subunits of the human TIP60 histone acetyltransferase (HAT) multisubunit complex. On the basis of these results, we hypothesize that OFD1 may be part of a multi-protein complex and could play different biological functions in the centrosome-primary cilium organelles as well as in the nuclear compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号