首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide (3AB) has been reported to have very different effects on X-ray-induced chromosome aberrations in G0 human lymphocytes. One group of investigators observed a 2-3-fold increase in the yield of rings, dicentrics and chromosome breaks after X-irradiation and 3AB treatment, whereas another group found that 3AB had no effect on X-ray-induced chromosome aberrations. To resolve this discrepancy, we repeated the experiments as described by both groups and found no effect of 3 mM or 5 mM 3AB on the frequency of chromosome aberrations induced by either 1 Gy or 2 Gy of X-rays. Furthermore, we found no effect of 3AB on X-ray-induced aberration yields in C-banded prematurely condensed chromosome preparations from unstimulated human lymphocytes. These results indicate that poly(ADP-ribose) polymerase is not involved in the repair of cytogenetic damage in G0 human lymphocytes.  相似文献   

2.
Once electroporated into the nucleus of eukaryotic cells, restriction enzymes will bind at specific DNA sequences and cleave DNA to make double-strand breaks. These induced breaks can lead to chromosome aberrations and consequently offer one approach to determining the mechanism(s) of aberration formation. Because the higher-order structure of DNA in eukaryotic cells might influence the ability of restriction enzymes to locate their recognition sequence, bind, and cleave DNA, we have investigated whether enzymes will cut DNA during metaphase when the chromosomes are most condensed. Chinese hamster ovary cells synchronized in mitosis and treated with either AluI or Sau3AI showed few chromosome aberrations when held in mitosis for 1, 2, or 3 h after enzyme treatment. However, some disruption of chromosome morphology was seen, especially after exposure to Sau3AI. When cells were allowed to complete one cell cycle after enzyme treatment in the preceding mitosis, there was extensive chromosome damage, with the most abundant type of lesion being the interstitial deletion. It appears that restriction enzymes will cleave the highly condensed DNA in mitotic cells but that decondensation, DNA replication, and recondensation are required before the aberrations are manifested.  相似文献   

3.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

4.
Experimental evidence is presented for the involvement of DNA double-strand breaks in the formation of radiation-induced chromosomal aberrations. When X-irradiated cells were post-treated with single-strand specific Neurospora crassa endonuclease (NE), the frequencies of all classes of aberration increased by about a factor 2. Under these conditions, the frequencies of DNA double-strand breaks induced by X-rays (as determined by neutral sucrose-gradient centrifugation), also increased by a factor of 2. The frequency of chromosomal aberrations induced by fast neutrons (which predominantly induce DNA double-strand breaks) was not influenced by post-treatment with NE. Inhibition of poly(ADP-ribose) polymerase, an enzyme that uses DNA with double-strand breaks as an optimal template, by 3-aminobenzamide also increased the frequencies of X-ray-induced chromosomal aberrations, which supports the idea that DNA double-strand breaks are important lesions for the production of chromosomal aberrations induced by ionizing radiation.  相似文献   

5.
A. T. Natarajan  G. Obe 《Chromosoma》1984,90(2):120-127
Chinese hamster ovary cells (CHO cells) and mouse fibroblasts (PG 19) were permeabilized with inactivated Sendai virus, treated with different types of restriction endonucleases (Eco RV, Pvu II, Bam HI, Sma I, Asu III, Nun II), and studied for the occurrence of chromosomal aberrations at different times following treatment. The pattern of chromosomal aberrations observed was similar to that induced by ionizing radiations. Restriction endonucleases that induce blunt double-strand breaks (Eco RV, Pvu II) were more efficient in inducing chromosomal aberrations than those that induce breaks with cohesive ends (Bam HI, Nun II, Asu III). Ring types were very frequent among the aberrations induced by restriction enzymes. Cytosine arabinoside, an inhibitor of DNA repair, was found to increase the frequencies of aberrations induced by restriction enzymes, indicating its effect on ligation of double-strand breaks. The relevance of these results to the understanding of the mechanisms of chromosomal aberration formation following treatment with ionizing radiations is discussed.  相似文献   

6.
Human lymphocytes were treated with combined UVC radiation and X-rays or they were X-irradiated and incubated for 60–90 min in the presence of DNA-repair inhibitor ara-C. The X-ray induced chromosome exchange aberration yield was enhanced both by UVC and ara-C by approximately a factor of two in the linear (low dose) portion of the dose-response curve. The enhancement was small in the dose squared (high dose) portion where previous dose-fractionation experiments have shown that X-ray-induced lesions leading to aberrations exist for several hours. The yield of aberrations in lymphocytes incubated after irradiation in the presence of ara-C reaches a saturation level almost immediately after irradiation (5–15 min). These cytogenetic observations together with a previous finding (Holmberg and Strausmanis, 1983) give direct and indirect evidence that the enhanced aberration yield is due to short-lived DNA breaks formed immediately after X-irradiation.

Measurements on the repair kinetics of the DNA breaks induced by X-irradiation show that ara-C strongly impairs the repair of short-lived X-ray-induced DNA breaks. It was also observed that the DNA breaks generated after UVC irradiation occur almost immediately after irradiation and the level of these transient DNA breaks reaches saturation even for short incubation times. Thus, the repair of these breaks can compete with the repair of short-lived X-ray-induced DNA-breaks in combined irradiation with UVC and X-rays.

The experimental results can be explained on the assumption that X-ray-induced aberrations originate from exchange complexes formed in interactions between both short-lived DNA breaks. The short-lived DNA breaks give rise to exchange complexes mainly within single ionization tracks where the DNA breaks are close together. The time between irradiation and exchange complex formation is of the order of 5–15 min within such a track, and short-lived breaks might be repaired before complexes have been formed. If the DNA repair of these breaks is delayed by UVC or ara-C treatment this results in a higher probability of exchange-complex formation. In contrast, interactions between breaks in different tracks originate from long-lived DNA breaks and the probability for complex formation from these breaks is not markedly affected by UVC or ara-C.  相似文献   


7.
The cytogenetic endpoints sister chromatid exchange (SCE) and chromosome aberrations are widely used as indicators of DNA damage induced by mutagenic carcinogens. Chromosome aberrations appear to result directly from DNA double-strand breaks, but the lesion(s) giving rise to SCE formation remains unknown. Most compounds that induce SCEs induce a spectrum of lesions in DNA. To investigate the role of double-strand breakage in SCE formation, we constructed a plasmid that gives rise to one specific lesion, a staggered-end ("cohesive") DNA double-strand break. This plasmid, designated pMENs, contains a selectable marker, neo, which is a bacterial gene for neomycin resistance, and the coding sequence for the bacterial restriction endonuclease EcoRI attached to the mouse metallothionein gene promoter. EcoRI recognizes G decreases AATTC sequences in DNA and makes DNA double-strand breaks with four nucleotides overhanging as staggered ends. Cells transfected with pMENS were resistant to the antibiotic G418 and contained an integrated copy of the EcoRI gene, detectable by DNA filter hybridization. The addition of the heavy metal CdSO4 resulted in the intracellular production of EcoRI, as measured by an anti-EcoRI antibody. Cytogenetic analysis after the addition of CdSO4 indicated a dramatic increase in the frequency of chromosome aberrations but very little effect on SCE frequency. Although there was some intercellular heterogeneity, these results confirm that DNA double-strand breaks do result in chromosome aberrations but that these breaks are not sufficient to give rise to SCE formation.  相似文献   

8.
Incorporation of BrdUrd into nuclear DNA sensitizes CHO cells (1) to the induction of chromosomal aberrations by X-rays and 0.5 MeV neutrons and (2) to induction of chromosomal aberrations and SCEs by lw-UV. We have attempted to establish a correlation between induced chromosomal alterations and induced single- or double-strand breaks in DNA. The data show that while DSBs correlate very well with X-ray-induced aberrations, no clear correlation could be established between lw-UV induced SSBs (including alkali-labile sites) and chromosomal alterations.

In addition the effect of 3-aminobenzamide (3AB) on the induction of chromosomal aberrations and SCEs induced by lw-UV has been determined. It is shown that 3AB is without any effect when lw-UV-irradiated cells are posttreated with this inhibitor.

The significance of these results is discussed.  相似文献   


9.
Permeabilized Chinese hamster cells were treated with the restriction enzymes Pvu II and Bam H1 which generate blunt-ended with cohesive-ended double-strand breaks in the DNA respectively. Cells were then allowed to progress to the first mitosis, where chromosomal aberrations were scored. It was found that blunt-ended double-strand breaks induced both chromosome and chromatid aberrations of exchange and deletion types, including a high frequency of tri-radials. The total aberration frequency at high enzyme concentrations was more than ten times the control background frequency. Treatment with Bam H1 on the other hand did not induce aberrations above the background rate. This may indicate that the cohesive ends generated by this enzyme may be easily repaired by the cell due to the stabilization of the hydrogen bonding at the site of the double-strand break. Measurements using the unwinding method showed that the enzymes caused strand breaks in the DNA of permeabilized cells, and an approximate X-ray dose equivalent of the restriction-enzyme-induced breaks could be calculated. This indicated that restriction-induced blunt-ended double-strand breaks are relatively inefficient in causing chromosomal aberrations. This may be because of the presence of 'clean ends' at the site of a double-strand break, which may be repaired by ligation. The method of introducing restriction enzymes into cells opens up a new model approach for the study of the conversion of double-strand breaks into chromosome aberrations.  相似文献   

10.
Comparison was made between the effectiveness of restrictases inducing double-strand DNA breaks with blunt (Hae III and Eco RV) and cohesive (Hind III and Sal I) ends and that of gamma-radiation on the initiation of chromosome aberrations. The analysis of the spectrum of chromosome aberrations induced in the presence or absence of DNA repair inhibitors, as well as the study of the pattern of cell distribution by the number of DNA breaks per cell showed that the decisive role in the initiation of chromosome mutagenesis is played by the localization of the break in certain sequences of target DNA rather than the type of the break.  相似文献   

11.
《Mutation Research Letters》1993,301(3):177-182
Topoisomerase II inhibitors such as etoposide (VP16) are able to stabilize the enzyme—DNA complex by trapping the topoisomerase on DNA without affecting its strand-break activity. To test if this inhibition resulting in chromosomal breakage via double-strand breaks could underlie gene amplification, we performed VP16 treatments followed by selection for PALA resistance in V79/B7 Chinese hamster cells. We found that VP16 induced PALA-resistant cells very efficiently, and in a dose-dependent manner. On the other hand VP16 in combination with 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase involved in DNA repair, reduced the frequency of PALA-resistant cells. Cytogenetic analysis revealed a higher number of chromosomal aberrations in VP16-treated cells than in cells treated with VP16 plus 3AB. These results suggest a correlation between frequency of chromosomal aberrations and frequency of PALA-resistant cells, and are consistent with models which consider chromosomal breakage as an important step in initiating gene amplification.  相似文献   

12.
Chromosome aberrations induced by UV-light or X-rays were suppressed by the post-treatment with antimutagenic flavorings, such as anisaldehyde, cinnamaldehyde, coumarin, and vanillin. UV- or X-ray-irradiated surviving cells increased in the presence of each flavoring. X-ray-induced breakage-type and exchange-type chromosome aberrations were suppressed by the vanillin treatment in the G1 phase of the cell cycle and a greater decrease in the number of X-ray-induced chromosome aberrations during G1 holding was observed in the presence of vanillin. Furthermore, a greater decrease in the number of X-ray-induced DNA single-strand breaks was observed in the presence of vanillin. Treatment with vanillin in the G2 phase suppressed UV- and X-ray-induced breakage-type but not exchange-type chromosome aberrations. The suppression of breakage-type aberrations was assumed to be due to a modification of the capability of the post-replicational repair of DNA double-strand breaks. These G1- and G2-dependent anticlastogenic effects were not observed in the presence of 2',3'-dideoxythymidine, an inhibitor of DNA polymerase beta. Based on these results, the anticlastogenic effect of vanillin was considered to be due to the promotion of the DNA rejoining process in which DNA polymerase beta acts.  相似文献   

13.
Human lymphocytes in the quiescent stage were UVC-irradiated and then incubated for 90 min in the presence of the DNA-repair inhibitor ara-C. The cells were then cultured and analyzed for chromosome aberrations. A single treatment with UVC or ara-C gives rise to a very low yield of dicentrics, whereas the combined treatment can induce a high frequency of these chromosome-type aberrations. The yield in the combined treatment is approximately proportional to the square of the UVC fluence in the range 1-3 J/m2. In addition, the experiments demonstrate that synergistic effects arise when cells are treated with UVC + ara-C and then exposed to X-rays. The results can be explained on the assumption that the UVC + ara-C treatment induces DNA double-strand breaks which, to the first approximation, are randomly distributed over the chromosomes. These breaks are able to interact with each other as well as with X-ray-induced DNA double-strand breaks to form a chromosome-type exchange aberration.  相似文献   

14.
《Mutation research》1993,285(1):53-60
The role of recombination of nonhomologous DNA ends in chromosomal aberration formation was investigated in Chinese hamster ovary cells. Restriction enzymes that produce blunt, 3′ overhanging, or 5′ overhanging DNA double-strand breaks were electroporated into cells in various combinations, and chromosomal aberrations were analyzed at metaphase. For all enzyme combinations tested, there was a significant increase in the frequency of aberrations whose formation requires two breaks in the DNA over the sum obtained when each of the enzymes was tested separately and the aberration frequencies were totaled. No such pattern existed for terminal deletions, which presumably require only one DNA break. The extent of interaction did not depend on the homology in the overhanging sequences or on the combination of ends used, although the largest effect was seen with a combination of two blunt ends. This study shows that nonhomologous DNA double-strand breaks can interact to increase chromosomal aberration formation significantly.  相似文献   

15.
The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled.  相似文献   

16.
The effect of a 2-h post-treatment with aphidicolin at a dose sufficient to inhibit DNA synthesis on the yield of X-ray-induced chromosomal aberrations throughout the cell cycle was measured. Exposure to aphidicolin during and after irradiation brought about an increase in exchanges in cells irradiated in G2, in sister unions only in cells irradiated in S, and in all chromosome aberration types (fragments, sister unions, and dicentrics) in cells irradiated in G1. It is suggested that, during G1 and G2 but not during S inhibiting the repair enzyme alpha-polymerase brings about the conversion of some X-ray-induced DNA lesions to double-strand which can then take part in aberrations.  相似文献   

17.
本文报道了新制癌菌素(NCS)能诱发植物染色体畸变,同时观察了利用咖啡因后处理对NCS、PYM诱发染色体畸变的影响,研究了PYM切断DNA断头的性质。结果表明,NCS切割DNA产生3'-羟基末端和3'-磷酸末端;咖啡因能封闭3'-羟基末端抑制DNA的修复,从而提高诱变频率。PYM加咖啡因后处理,其染色体畸变频率与PYM单独处理无明显差异。说明PYM切断DNA所得到的产物,不是3'-羟基末端,而是3'-磷酸末端。  相似文献   

18.
Human lymphocytes exposed to low doses of ionizing radiation from incorporated tritiated thymidine or from X-rays become less susceptible to the induction of chromatid breaks by high doses of X-rays. This response can be induced by 0.01 Gy (1 rad) of X-rays, and has been attributed to the induction of a repair mechanism that causes the restitution of X-ray-induced chromosome breaks. Because the major lesions responsible for the induction of chromosome breakage are double-strand breaks in DNA, attempts have been made to see if the repair mechanism can affect various types of clastogenic lesions induced in DNA by chemical mutagens and carcinogens. When cells exposed to 0.01 Gy of X-rays or to low doses of tritiated thymidine were subsequently challenged with high doses of tritiated thymidine or bleomycin, which can induce double-strand breaks in DNA, or mitomycin C, which can induce cross-links in DNA, approximately half as many chromatid breaks were induced as expected. When, on the other hand, the cells were challenged with the alkylating agent methyl methanesulfonate (MMS), which can produce single-strand breaks in DNA, approximately twice as much damage was found as was induced by MMS alone. The results indicate that prior exposure to 0.01 Gy of X-rays reduces the number of chromosome breaks induced by double-strand breaks, and perhaps even by cross-links, in DNA, but has the opposite effect on breaks induced by the alkylating agent MMS. The results also show that the induced repair mechanism is different from that observed in the adaptive response that follows exposure to low doses of alkylating agents.  相似文献   

19.
Caffeine alone causes DNA damage in Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
Caffeine has been shown to enhance the lethal effect of DNA-damaging agents in mammalian cells, and the potentiation by caffeine of this effect is generally interpreted as the result of inhibition by caffeine of the repair of damaged DNA. However, the mechanism by which caffeine enhances the lethal effect of DNA-damaging agents has not yet been elucidated. During studies on the effect of caffeine on DNA repair, we found by alkaline elution analysis that caffeine alone produced DNA strand breaks or alkali labile sites in Chinese hamster ovary cells. The amount of DNA breakage or alkali labile sites depended on the concentration of caffeine. We propose that DNA breakage induced by caffeine may be involved in the enhancement of the lethal effect of DNA-damaging agents.  相似文献   

20.
The repair of X-ray-induced DNA lesions in repair-deficient mutant strains was studied as a way of investigating the mechanism of the induction of genetic damage. Genetic effects on the recovery of X-ray-induced damage by the repair-deficient strains ebony (photoreactivation repair-deficient) and mus(1)101D1 (post-replication repair-deficient) were interpreted as impaired repair of single- and double-strand DNA breaks. We investigated the repair of X-ray-induced DNA breaks and alkaline-labile sites in primary cell cultures of ebony and mus(1)101D1 and in cultures of their control strains. No significant differences were found between the repair rates in the mutants and control strains. This indicates that the genetic effects of these mutants are not due to an impaired rate of repair of DNA breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号