首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Cystic fibrosis (CF) is a childhood hereditary disease in which the most common mutant form of the CF transmembrane conductance regulator (CFTR) DeltaF508 fails to exit the endoplasmic reticulum (ER). Export of wild-type CFTR from the ER requires the coat complex II (COPII) machinery, as it is sensitive to Sar1 mutants that disrupt normal coat assembly and disassembly. In contrast, COPII is not used to deliver CFTR to ER-associated degradation. We find that exit of wild-type CFTR from the ER is blocked by mutation of a consensus di-acidic ER exit motif present in the first nucleotide binding domain. Mutation of the code disrupts interaction with the COPII coat selection complex Sec23/Sec24. We propose that the di-acidic exit code plays a key role in linking CFTR to the COPII coat machinery and is the primary defect responsible for CF in DeltaF508-expressing patients.  相似文献   

2.
Compounds that enhance either the function or biosynthetic processing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel may be of value in developing new treatments for cystic fibrosis (CF). Previous studies suggested that the herbal extract curcumin might affect the processing of a common CF mutant, CFTR-DeltaF508. Here, we tested the hypothesis that curcumin influences channel function. Curcumin increased CFTR channel activity in excised, inside-out membrane patches by reducing channel closed time and prolonging the time channels remained open. Stimulation was dose-dependent, reversible, and greater than that observed with genistein, another compound that stimulates CFTR. Curcumin-dependent stimulation required phosphorylated channels and the presence of ATP. We found that curcumin increased the activity of both wild-type and DeltaF508 channels. Adding curcumin also increased Cl(-) transport in differentiated non-CF airway epithelia but not in CF epithelia. These results suggest that curcumin may directly stimulate CFTR Cl(-) channels.  相似文献   

3.
Proteostasis (Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008;319:916-919) refers to the biology that maintains the proteome in health and disease. Proteostasis is challenged by the most common mutant in cystic fibrosis, DeltaF508, a chloride channel [the cystic fibrosis transmembrane conductance regulator (CFTR)] that exhibits a temperature-sensitive phenotype for coupling to the coatomer complex II (COPII) transport machine for exit from the endoplasmic reticulum. Whether rescue of export of DeltaF508 CFTR at reduced temperature simply reflects energetic stabilization of the chemical fold defined by its primary sequence or requires a unique proteostasis environment is unknown. We now show that reduced temperature (30 degrees C) export of DeltaF508 does not occur in some cell types, despite efficient export of wild-type CFTR. We find that DeltaF508 export requires a local biological folding environment that is sensitive to heat/stress-inducible factors found in some cell types, suggesting that the energetic stabilization by reduced temperature is necessary, but not sufficient, for export of DeltaF508. Thus, the cell may require a proteostasis environment that is in part distinct from the wild-type pathway to restore DeltaF508 coupling to COPII. These results are discussed in the context of the energetics of the protein fold and the potential application of small molecules to achieve a proteostasis environment favoring export of a functional form of DeltaF508.  相似文献   

4.
Deletion of phenylalanine 508 (DeltaF508) from the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common mutation in cystic fibrosis. The F508 region lies within a surface-exposed loop that has not been assigned any interaction with associated proteins. Here we demonstrate that the pleiotropic protein kinase CK2 that controls protein trafficking, cell proliferation, and development binds wild-type CFTR near F508 and phosphorylates NBD1 at Ser-511 in vivo and that mutation of Ser-511 disrupts CFTR channel gating. Importantly, the interaction of CK2 with NBD1 is selectively abrogated by the DeltaF508 mutation without disrupting four established CFTR-associated kinases and two phosphatases. Loss of CK2 association is functionally corroborated by the insensitivity of DeltaF508-CFTR to CK2 inhibition, the absence of CK2 activity in DeltaF508 CFTR-expressing cell membranes, and inhibition of CFTR channel activity by a peptide that mimics the F508 region of CFTR (but not the equivalent DeltaF508 peptide). Disruption of this CK2-CFTR association is the first described DeltaF508-dependent protein-protein interaction that provides a new molecular paradigm in the most frequent form of cystic fibrosis.  相似文献   

5.
Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In CF, the most common mutant DeltaF508-CFTR is misfolded, is retained in the ER and is rapidly degraded. If conditions could allow DeltaF508-CFTR to reach and to stabilize in the plasma membrane, it could partially correct the CF defect. We have previously shown that annexin V (anxA5) binds to both the normal CFTR and the DeltaF508-CFTR in a Ca(2+)-dependent manner and that it regulates the chloride channel function of Wt-CFTR through its membrane integration. Our aim was to extend this finding to the DeltaF508-CFTR. Because some studies show that thapsigargin (Tg) increases the DeltaF508-CFTR apical expression and induces an increased [Ca(2+)](i) and because anxA5 relocates and binds to the plasma membrane in the presence of Ca(2+), we hypothesized that the Tg effect upon DeltaF508-CFTR function could involve anxA5. Our results show that raised anxA5 expression induces an augmented function of DeltaF508-CFTR due to its increased membrane localization. Furthermore, we show that the Tg effect involves anxA5. Therefore, we suggest that anxA5 is a potential therapeutic target in CF.  相似文献   

6.
The activation of mutant forms of the cystic fibrosis transmembrane conductance regulator (CFTR), particularly the most frequent mutant allele (DeltaF508), is a potential strategy for the treatment of the disease cystic fibrosis (CF). Therefore, it is of great interest that curcumin, a component of the spice turmeric, is reported to restore function to this allele, both in heterologous expression systems and in DeltaF508 CF mice. Although other laboratories have not been able to confirm the initial observations, activating DeltaF508 CFTR could have such important therapeutic implications that a thorough investigation of the potential of curcumin is warranted.  相似文献   

7.
Cystic fibrosis (CF) is caused by the mutation in CF transmembrane conductance regulator (CFTR), a cAMP-dependent Cl(-) channel at the plasma membrane of epithelium. The most common mutant, DeltaF508 CFTR, has competent Cl(-) channel function, but fails to express at the plasma membrane since it is retained in the endoplasmic reticulum (ER) by the ER quality control system. Here, we show that calnexin (CNX) is not necessary for the ER retention of DeltaF508 CFTR. Our data show that CNX knockout (KO) does not affect the biosynthetic processing, cellular localization or the Cl(-) channel function of DeltaF508 CFTR. Importantly, cAMP-induced Cl(-) current in colonic epithelium from CNX KO/DeltaF508 CFTR mice was comparable with that of DeltaF508 CFTR mice, indicating that CNX KO failed to rescue the ER retention of DeltaF508 CFTR in vivo. Moreover, we show that CNX assures the efficient expression of WT CFTR, but not DeltaF508 CFTR, by inhibiting the proteasomal degradation, indicating that CNX might stimulate the productive folding of WT CFTR, but not DeltaF508 CFTR, which has folding defects.  相似文献   

8.
BACKGROUND INFORMATION: CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, DeltaF508 (deletion of Phe-508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na(+)/H(+)-exchanger regulatory factor 1) in CF airway cells induced both a redistribution of DeltaF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)-dependent activation of DeltaF508CFTR-dependent chloride secretion. In view of the potential importance of the targeted up-regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o(-), with subsequent rescue of apical DeltaF508CFTR chloride transport activity. RESULTS: We found that CFBE41o(-) cells do express ERs (oestrogen receptors) in the nuclear fraction and that beta-oestradiol treatment was able to significantly rescue DeltaF508CFTR-dependent chloride secretion in CFBE41o(-) cell monolayers with a peak between 6 and 12 h of treatment, demonstrating that the DeltaF508CFTR translocated to the apical membrane can function as a cAMP-responsive channel, with a significant increase in chloride secretion noted at 1 nM beta-oestradiol and a maximal effect observed at 10 nM. Importantly, knock-down of NHERF1 expression by transfection with siRNA (small interfering RNA) for NHERF1 inhibited the beta-oestradiol-dependent increase in DeltaF508CFTR protein expression levels and completely prevented the beta-oestradiol-dependent rescue of DeltaF508CFTR transport activity. CONCLUSIONS: These results demonstrate that beta-oestradiol-dependent up-regulation of NHERF1 significantly increases DeltaF508CFTR functional expression in CFBE41o(-) cells.  相似文献   

9.
We tested whether cystic fibrosis (CF) airway epithelia have larger innate immune responses than non-CF or cystic fibrosis transmembrane conductance regulator (CFTR)-corrected cells, perhaps resulting from ER stress due to retention of DeltaF508CFTR in the endoplasmic reticulum (ER) and activation of cytosolic Ca(2+) (Ca(i)) and nuclear factor (NF)-kappaB signaling. Adenovirus infections of a human CF (DeltaF508/DeltaF508) nasal cell line (CF15) provided isogenic comparisons of wild-type (wt) CFTR and DeltaF508CFTR. In the absence of bacteria, there were no or only small differences among CF15, CF15-lacZ (beta-galactosidase-expressing), CF15-wtCFTR (wtCFTR-corrected), and CF15-DeltaF508CFTR (to test ER retention of DeltaF508CFTR) cells in NF-kappaB activity, interleukin (IL)-8 secretion, Ca(i) responses, and ER stress. Non-CF and CF primary cultures of human bronchial epithelial cells (HBE) secreted IL-8 equivalently. Upon infection with Pseudomonas aeruginosa (PA) or flagellin (key activator for airway epithelia), CF15, CF15-lacZ, CF15-wtCFTR, and CF15DeltaF508CFTR cells exhibited equal PA binding, NF-kappaB activity, and IL-8 secretion; cells also responded similarly to flagellin when both CFTR (forskolin) and Ca(i) signaling (ATP) were activated. CF and non-CF HBE responded similarly to flagellin + ATP. Thapsigargin (Tg, releases ER Ca(2+)) increased flagellin-stimulated NF-kappaB and ER stress similarly in all cells. We conclude that ER stress, Ca(i), and NF-kappaB signaling and IL-8 secretion were unaffected by wt- or DeltaF508CFTR in control and during exposure to PA, flagellin, flagellin + ATP, or flagellin + ATP + forskolin. Tg, but not wt- or DeltaF508CFTR, triggered ER stress. Previous measurements showing hyperinflammatory responses in CF airway epithelia may have resulted from cell-specific, rather than CFTR- or DeltaF508CFTR-specific effects.  相似文献   

10.
Cystic fibrosis (CF) is an autosomal disease associated with malfunction in fluid and electrolyte transport across several mucosal membranes. The most common mutation in CF is an in-frame three-base pair deletion that removes a phenylalanine at position 508 in the first nucleotide-binding domain of the cystic fibrosis conductance regulator (CFTR) chloride channel. This mutation has been studied extensively and leads to biosynthetic arrest of the protein in the endoplasmic reticulum and severely reduced channel activity. This review discusses a novel method of rescuing ΔF508 with transcomplementation, which occurs when smaller fragments of CFTR containing the wild-type nucleotide binding domain are co-expressed with the F508 deletion mutant. Transcomplementation rescues the processing and channel activity of ΔF508 and reduces its rate of degradation in airway epithelial cells. To apply transcomplementation as a therapy would require that the cDNA encoding the truncated CFTR be delivered to cells. We also discuss a gene therapeutic approach based on delivery of a truncated form of CFTR to airway cells using adeno-associated viral vectors.  相似文献   

11.
The DeltaF508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) is a trafficking mutant, which is retained and degraded in the endoplasmic reticulum by the ubiquitin-proteasome pathway. The mutant protein fails to reach a completely folded conformation that is no longer a substrate for ubiquitination ("stable B"). Wild type protein reaches this state with 25% efficiency. In this study the rabbit reticulocyte lysate with added microsomal membranes has been used to reproduce the post-translational events in the folding of wild type and DeltaF508 CFTR. In this system wild type CFTR does not reach the stable B form if the post-translational temperature is 37 degrees C, whereas at 30 degrees C the behavior of both wild type and mutant proteins mimics that observed in the cell. Geldanamycin stabilizes DeltaF508 CFTR with respect to ubiquitination only when added post-translationally. The interaction of wild type and mutant CFTR with the molecular chaperones heat shock cognate 70 (hsc70) and heat shock protein 90 (hsp90) has been assessed. Release of wild type protein from hsc70 coincides with the cessation of ubiquitination and formation of stable B. Geldanamycin immediately prevents the binding of hsp90 to DeltaF508 CFTR, and after a delay releases it from hsc70. Release of mutant protein from hsc70 also coincides with the formation of stable B DeltaF508 CFTR.  相似文献   

12.
The DeltaF508 gene mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to the plasma membrane. The current study examines the biochemical basis for the upregulation of DeltaF508 CFTR expression by sodium butyrate and low temperature. Surface CFTR protein expression was determined by quantitative immunoblot following surface biotinylation and streptavidin extraction. CF gene expression was measured by Northern analysis and CFTR function by forskolin-stimulated (125)I efflux. Butyrate increased DeltaF508 mRNA levels and protein expression but did not increase the biochemical or functional expression of DeltaF508 CFTR at the cell surface. Low temperature increased the biochemical and functional expression of DeltaF508 CFTR at the cell surface but did not increase CFTR mRNA levels. Combining treatments led to a synergistic increase in both DeltaF508 mRNA and surface protein levels that results from the stabilization of CFTR mRNA and protein by low temperature. These findings indicate that surface expression of DeltaF508 CFTR can be markedly enhanced by carefully selected combination agents.  相似文献   

13.
The most common mutation in cystic fibrosis (deletion of Phe-508 in the first nucleotide binding domain (DeltaF508)) in the cystic fibrosis transmembrane conductance regulator (CFTR) causes retention of the mutant protein in the endoplasmic reticulum. We previously showed that the DeltaF508 mutation causes the CFTR protein to be retained in the endoplasmic reticulum in an inactive and structurally altered state. Proper packing of the transmembrane (TM) segments is critical for function because the TM segments form the chloride channel. Here we tested whether the DeltaF508 mutation altered packing of the TM segments by disulfide cross-linking analysis between TM6 and TM12 in wild-type and DeltaF508 CFTRs. These TM segments were selected because TM6 appears to line the chloride channel, and cross-linking between these TM segments has been observed in the CFTR sister protein, the multidrug resistance P-glycoprotein. We first mapped potential contact points in wild-type CFTR by cysteine mutagenesis and thiol cross-linking analysis. Disulfide cross-linking was detected in CFTR mutants M348C(TM6)/T1142C(TM12), T351C(TM6)/T1142C(TM12), and W356C(TM6)/W1145C(TM12) in a wild-type background. The disulfide cross-linking occurs intramolecularly and was reducible by dithiothreitol. Introduction of the DeltaF508 mutation into these cysteine mutants, however, abolished cross-linking. The results suggest that the DeltaF508 mutation alters interactions between the TM domains. Therefore, a potential target to correct folding defects in the DeltaF508 mutant of CFTR is to identify compounds that promote correct folding of the TM domains.  相似文献   

14.
Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR (cystic fibrosis transmembrane conductance regulator). The most frequent mutation, DeltaF508, results in protein misfolding and, as a consequence, prevents CFTR from reaching its final location at the cell surface. CFTR is expressed in various cell types including red blood cells. The functional role of CFTR in erythrocytes is still unclear. Since the number of CFTR copies in a single erythrocyte of healthy donors and CF patients with a homozygous DeltaF508 mutation is unknown, we counted CFTR, localized in erythrocyte plasma membrane, at the single molecule level. A novel experimental approach combining atomic force microscopy with quantum-dot-labeled anti-CFTR antibodies, used as topographic surface markers, was employed to detect individual CFTR molecules. Analysis of erythrocyte plasma membranes taken from healthy donors and CF patients with a homozygous DeltaF508 mutation reveals mean (SEM) values of 698 (12.8) (n=542) and 172 (3.8) (n=538) CFTR molecules per red blood cell, respectively. We conclude that erythrocytes reflect the CFTR status of the organism and that quantification of CFTR in a blood sample could be useful in the diagnosis of CFTR related diseases.  相似文献   

15.
The cystic fibrosis transmembrane conductance regulator (CFTR) is recognized as a multifunctional protein that is involved in Cl(-) secretion, as well as acting as a regulatory protein. In order for acid secretion to take place a complex interaction of transport proteins and channels must occur at the apical pole of the parietal cell. Included in this process is at least one K(+) and Cl(-) channel, allowing for both recycling of K(+) for the H,K-ATPase, and Cl(-) secretion, necessary for the generation of concentrated HCl in the gastric gland lumen. We have previously shown that an ATP-sensitive potassium channel (K(ATP)) is expressed in parietal cells. In the present study we measured secretagogue-induced acid secretion from wild-type and DeltaF508-deficient mice in isolated gastric glands and whole stomach preparations. Secretagogue-induced acid secretion in wild-type mouse gastric glands could be significantly reduced with either glibenclamide or the specific inhibitor CFTR-inh172. In DeltaF508-deficient mice, however, histamine-induced acid secretion was significantly less than in wild-type mice. Furthermore, immunofluorescent localization of sulfonylurea 1 and 2 failed to show expression of a sulfonylurea receptor in the parietal cell, thus further implicating CFTR as the ATP-binding cassette transporter associated with the K(ATP) channels. These results demonstrate a regulatory role for the CFTR protein in normal gastric acid secretion.  相似文献   

16.
17.
Cystic fibrosis (CF) is caused by mutations in the apical chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) with 90% of patients carrying at least one deletion of the F508 (ΔF508) allele. This mutant form of CFTR is characterized by a folding and trafficking defect that prevents exit from the endoplasmic reticulum. We previously reported that ΔF508 CFTR can be recovered in a complex with Hsp90 and its co-chaperones as an on-pathway folding intermediate, suggesting that Δ508 CF disease arises due to a failure of the proteostasis network (PN), which manages protein folding and degradation in the cell. We have now examined the role of FK506-binding protein 8 (FKBP8), a component of the CFTR interactome, during the biogenesis of wild-type and ΔF508 CFTR. FKBP8 is a member of the peptidylprolyl isomerase family that mediates the cis/trans interconversion of peptidyl prolyl bonds. Our results suggest that FKBP8 is a key PN factor required at a post-Hsp90 step in CFTR biogenesis. In addition, changes in its expression level or alteration of its activity by a peptidylprolyl isomerase inhibitor alter CFTR stability and transport. We propose that CF is caused by the sequential failure of the prevailing PN pathway to stabilize ΔF508-CFTR for endoplasmic reticulum export, a pathway that can be therapeutically managed.  相似文献   

18.
Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator (DeltaF508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective DeltaF508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and alpha-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the DeltaF508-CFTR defect. Pre-incubation (>or=6h) of CF IB3-1 airway cells with >or=1mM ST7 or ST20 restored the ability of 100microM forskolin to stimulate an (125)I(-) efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl(-) channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the DeltaF508 mutation.  相似文献   

19.
Cystic fibrosis (CF) is a disease that is caused by mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, DeltaF508, accounts for 70% of all CF alleles and results in a protein that is defective in folding and trafficking to the cell surface. However, DeltaF508-CFTR is functional when properly localized. We report that a single, noncytotoxic dose of the anthracycline doxorubicin (Dox, 0.25 microM) significantly increased total cellular CFTR protein expression, cell surface CFTR protein expression, and CFTR-associated chloride secretion in cultured T84 epithelial cells. Dox treatment also increased DeltaF508-CFTR cell surface expression and DeltaF508-CFTR-associated chloride secretion in stably transfected Madin-Darby canine kidney cells. These results suggest that anthracycline analogs may be useful for the clinical treatment of CF.  相似文献   

20.
The pathways that distinguish transport of folded and misfolded cargo through the exocytic (secretory) pathway of eukaryotic cells remain unknown. Using proteomics to assess global cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein interactions (the CFTR interactome), we show that Hsp90 cochaperones modulate Hsp90-dependent stability of CFTR protein folding in the endoplasmic reticulum (ER). Cell-surface rescue of the most common disease variant that is restricted to the ER, DeltaF508, can be initiated by partial siRNA silencing of the Hsp90 cochaperone ATPase regulator Aha1. We propose that failure of DeltaF508 to achieve an energetically favorable fold in response to the steady-state dynamics of the chaperone folding environment (the "chaperome") is responsible for the pathophysiology of CF. The activity of cargo-associated chaperome components may be a common mechanism regulating folding for ER exit, providing a general framework for correction of misfolding disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号