首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract. The development of frost hardiness in Pinus radiata was investigated to establish whether there is quantitative relationship between photoperiod and the hardening process. Three controlled environment experiments were carried out. In the first, seedlings were exposed to a photoperiod that shortened from 13 h at a rate of 3 min d?1 to 9.5 h. At intervals, the photoperiod was either held constant or lengthened. In the second experiment, seedlings were exposed to one of five constant photoperiods between 9 and 12 h for up to 90 d. In the third, seedlings were exposed to photoperiods shortening at rates of 1 or 5 min d?1. Frost hardiness was also measured during the natural photoperiod-controlled stage of hardening in outdoor-grown seedlings. Frost hardiness developed at a constant rate in response to a shortening photoperiod once it had declined to about 12 h. This rate was consistent with the hardening rate that occurred in outdoor-grown seedlings. Hardening stopped when the photoperiod became constant, indicating a tight coupling between changes in photoperiod and hardiness development. When the photoperiod was held constant, the extent of frost hardiness was directly dependent on the photoperiod but the rate of hardening was apparently independent of the length of photoperiod. However, the rate of hardening was dependent on the rate at which the photoperiod shortened, increasing linearly with increases in the rate of change in photoperiod between 0 and 3 min d?1. These results suggest shortening photoperiods control the first stage of the hardening process by regulating the rate of hardening. Frost hardening was inherently unstable once the maximum hardiness was reached since spontaneous dehardening occurred in spite of the controlled conditions. Dehardening also occurred when the photoperiod was lengthened suggesting that the cue for dehardening to commence was the shift from shortening to lengthening photoperiods.  相似文献   

2.
LEINONEN  ILKKA 《Annals of botany》1996,78(6):687-693
The changes in the frost hardiness of Scots pine were modelledby a dynamic model where the input variables were temperatureand photoperiod and the phase of annual development. The damagecaused by freezing was described by the sigmoidal relationshipbetween the relative needle damage and freezing temperature.The model simulations were carried out using temperature datafrom two sites in central Finland—Suonenjoki and Tampere.The validity of the frost hardiness model was tested with measuredfrost hardiness data from Suonenjoki. The effects of climaticwarming were also simulated by increasing temperature of thelong-term climatic data. Genotypic differences in chilling requirement,which determines the timing of the reduction of hardening competence,were included in the simulations. The simulated needle damageincreased as a result of climatic warming, and the differencesin the chilling requirement had a stronger effect on the amountof damage in the warmed climate than in the present climate.A large variation between years was found in the level of damage. Annual development; climatic change; dynamic model; freeze damage; frost hardiness,Pinus sylvestris ; Scots pine  相似文献   

3.
Abstract. In controlled environments, the interactive effects of warm (16: 8°C, day: night) and cool (12: 4°C, day: night) temperatures and long (13.5 h) and short (10 h) photoperiods on the dehardening of seedlings of Pinus radiata D. Don were investigated. In another experiment, the effect of four photoperiods from 9 to 14 h was examined. In a third, dehardening at constant temperatures from 5 to 17°C was followed. There was no evidence for an interaction between photoperiod and temperature. Dehardening was temporarily delayed by photoperiods below about 10 h, but there was no other quantitative effect of photoperiod. At constant temperatures, the rate of dehardening was initially constant but declined as the minimum summer frost hardiness was reached. In the initial phase the rate of dehardening was a linear function of temperature, increasing from 0.05°C day−1 at 8°C to 0.30 °C day−1 at 17°C. Temperature controlled the loss of frost hardiness by regulating the rate of dehardening.  相似文献   

4.
This introductory overview shows that cold, in particular frost, stresses a plant in manifold ways and that the plant’s response, being injurious or adaptive, must be considered a syndrome rather than a single reaction. In the course of the year perennial plants of the temperate climate zones undergo frost hardening in autumn and dehardening in spring. Using Scots pine (Pinus sylvestris L.) as a model plant the environmental signals inducing frost hardening and dehardening, respectively, were investigated. Over 2 years the changes in frost resistance of Scots pine needles were recorded together with the annual courses of day-length and ambient temperature. Both act as environmental signals for frost hardening and dehardening. Climate chamber experiments showed that short day-length as a signal triggering frost hardening could be replaced by irradiation with far red light, while red light inhibited hardening. The involvement of phytochrome as a signal receptor could be corroborated by respective night-break experiments. More rapid frost hardening than by short day or far red treatment was achieved by applying a short period (6 h) of mild frost which did not exceed the plant’s cold resistance. Both types of signals were independently effective but the rates of frost hardening were not additive. The maximal rate of hardening was − 0.93°C per day and frost tolerance of < − 72°C was achieved. For dehardening, temperature was an even more effective signal than day-length.  相似文献   

5.
Effects of climatic warming on cold hardiness were investigated for some northern woody plants. In the first experiment, seedlings of Norway spruce ( Picea abies [L.] Karst.), Scots pine ( Pinus sylvestris L.) and lodgepole pine ( Pinus contorta Dougl. var. latifolia Engelm.) were exposed to naturally fluctuating temperatures averaging −6°C (ambient) and 0°C (elevated) for 16 weeks in midwinter before they were thawed and re-saturated with water. In lodgepole pine, needle sugar concentrations had decreased by 15%, and the temperature needed to induce 10% injury to needles in terms of electrolyte leakage had increased by 6°C following treatment to elevated as compared with control temperatures. In contrast, Norway spruce and Scots pine showed no effects. The lack of an effect for Scots pine was ascribed to seedlings containing unusually large energy reserves that buffered respiratory expenditure of sugars. A strong, linear relationship between levels of cold hardiness, assessed by the electrolyte leakage method, and sugars was found when combining data from this and previous, similar experiments. In the second experiment, the evergreen dwarf shrub Empetrum hermaphroditum Hagerup was analysed for leaf cold hardiness, using the electrolyte leakage method, and sugar concentrations in late spring and late autumn during the third year of a warming experiment in a subarctic dwarf shrub community. The objective was to test the hypothesis that warming in the growing season alters hardening/dehardening cycles by increasing soil nitrogen mineralization and plant growth. Data found, however, suggested that cold hardening/dehardening cycles were unaffected by warming.  相似文献   

6.
A Second-order Dynamic Model for the Frost Hardiness of Trees   总被引:3,自引:0,他引:3  
The development of frost hardiness in forest trees is describedby a dynamic model in which the input variables are the prevailingenvironmental conditions and the developmental stage of trees.The assumption of the model is that for each temperature andphotoperiod there is a discrete stationary level of frost hardiness,which is attained if these environmental factors remain constant.The dependence of the stationary level on temperature and photoperiodis assumed to be piece-wise linear and additive. The rate ofacclimation, i.e. frost hardening or dehardening, is describedas a second-order dynamic process with two time constants, thesecond of which changes depending on the stage of the annualdevelopment of the trees. The frost hardiness model was calibratedand tested using experimental data from Douglas fir [Pseudotsugamenziesii var. glauca (Beissn.) Franco] seedlings. The resultssuggest that the second-order model describes the changes infrost hardiness better than the first-order model with onlyone time constant.Copyright 1995, 1999 Academic Press Acclimation, developmental stage, Douglas fir, dynamic model, frost hardiness, photoperiod, Pseudotsuga menziesii, temperature  相似文献   

7.
G. Vogg  R. Heim  J. Hansen  C. Schäfer  E. Beck 《Planta》1998,204(2):193-200
Photosynthetic CO2 uptake, the photochemical efficiency of photosystem II, the contents of chlorophyll and chlorophyll-binding proteins, and the degree of frost hardiness were determined in three-year-old Scots pine (Pinus sylvestris L.) trees growing in the open air but under controlled daylength. The following conditions were compared: 9-h light period (short day), 16-h light period (long day), and natural daylength. Irrespective of induction by short-day photoperiods or by subfreezing temperatures, frost hardening of the trees was accompanied by a long-lasting pronounced decrease in the photosynthetic rates of one-year-old needles. Under moderate winter conditions, trees adapted to a long-day photoperiod, assimilated CO2 with higher rates than the short-day-treated trees. In the absence of strong frost, photochemical efficiency was lower under short-day conditions than under a long-day photoperiod. Under the impact of strong frost, photochemical efficiency was strongly inhibited in both sets of plants. The reduction in photosynthetic performance during winter was accompanied by a pronounced decrease in the content of chlorophyll and of several chlorophyll-binding proteins [light-harvesting complex (LHC)IIb, LHC Ib, and a chlorophyll-binding protein with MW 43 kDa (CP 43)]. This observed seasonal decrease in photosynthetic pigments and in pigment-binding proteins was irrespective of the degree of frost hardiness and was apparantly under the control of the length of the daily photoperiod. Under a constant 9-h daily photoperiod the chlorophyll content of the needles was considerably lower than under long-day conditions. Transfer of the trees from short-day to long-day conditions resulted in a significantly increased chlorophyll content, whereas the chlorophyll content decreased when trees were transferred from a long-day to a short-day photoperiod. The observed changes in photosynthetic pigments and pigment-binding proteins in Scots pine needles are interpreted as a reduction in the number of photosynthetic units induced by shortening of the daily light period during autumn. This results in a reduction in the absorbing capacity during the frost-hardened state. Received: 3 March 1997 / Accepted: 16 July 1997  相似文献   

8.
Quantitative Analysis of Cold Hardening and Dehardening in Lolium   总被引:3,自引:0,他引:3  
A. P.  GAY; C. F.  EAGLES 《Annals of botany》1991,67(4):339-345
The change in cold hardiness of three Lolium multiflorum Lam.varieties was followed in plants exposed to hardening or dehardeningconditions at a range of temperatures. Hardening and dehardeningwere analysed as quantitative processes dependent upon temperatureand time. Their time courses changed exponentially to an asymptotewhich was logistically related to temperature. Both componentsof the model were fitted simultaneously. Parameters of biologicalinterest, such as the initial rates of hardening and dehardeningfor a given temperature and the percentage of the process completedin a given time, were derived and compared for varieties ofcontrasting hardiness. The analysis demonstrated the importanceof dehardening in determining hardiness. Similar results wereobtained when the model was applied to hardening and dehardeningdata for Lolium perenne L. The potential of this quantitative analysis for distinguishingbetween possible mechanisms of cold hardiness is discussed andfurther experiments required to characterise the kinetics ofhardening and dehardening more fully are identified. Lolium multiflorum, Lolium perenne, cold hardening, cold dehardening, processes, model, varieties  相似文献   

9.
Seedlings of five mountain birch populations (Betula pubescens Ehrh. ssp. czerepanovii) from Fennoscandia and Iceland were raised and grown at natural daylengths at Tromsø, Norway (69°N) and different temperatures during late summer and fall season, followed by winter temperature treatment at ambient and +4 °C above ambient temperatures at Bergen, Norway (60°N). The experiment took place during two seasons (2000/01 and 2001/02). The following summer shoot and biomass growth were reduced as a result of winter warming and subsequent premature dehardening in early flushing provenances and treatments. Biomass increased in plants grown at low hardening temperature when compared with high temperature treatment. As a conclusion, increased winter temperatures would tend to increase the risk of spring frost damage and reduce growth in birch seedlings, because the differences between the frost hardening and ambient temperatures are decreasing, and because the time from budbreak to dehardening is shortened. The results are discussed in relation to simultaneous experiments with frost hardiness in the same populations and treatments.  相似文献   

10.
The influence of short days and low temperature on the development of frost hardiness in seedlings of Scots pine (Pinus silvestris L.) and Norway spruce [Picea abies (L.) Karst.], grown for 6 months in glasshouses and climate chambers, was investigated. The degree of hardiness was estimated by freezing the shoots of the seedlings to predetermined temperatures. After 8 weeks in a glasshouse the viability of the seedlings was determined by establishing bud flushing. The most effective climate for the development of frost hardiness was short days (SD) and low temperature (2°C); the next most effective was SD and room temperature (20°C). However, long days (LD) and low temperature also had a marked effect on the development of hardiness. A combination of 3 weeks’treatment with SD and 20°C, and 3 weeks with SD and 2°C gave the same results as 6 weeks with SD and 2°C. The results clearly demonstrate the importance of the photoperiod prior to low temperature for the development of frost hardiness. In conclusion both short days and low temperature induce frost hardiness development. Probably this occurs by initiation of different processes in the two cases. The degree of frost hardiness development appears to depend on the sum of these different processes and on the timing between them.  相似文献   

11.
Large changes occur in carbohydrate contents of pine (Pinus silvestris L.) and spruce (Picea abies (L.) Karst.) seedlings cold-hardened by photoperiod or by combined photo- and thermo-period. The largest change is in sucrose content, which is almost doubled after six weeks short-day (6/18 h) treatment; and more than doubled (spruce) or more than tripled (pine), when also temperature is lowered (10/5°C). Development of frost hardiness is strongly correlated with the change in carbohydrate contents. At dehardening, the carbohydrate content decreases rapidly, especially in pine, and the raffinose formed during the rest period disappears within 2–4 weeks. Frost hardiness decreases in parallel. The content of soluble carbohydrates may thus play a role in frost hardiness, although it is not the only factor. Bud formation at cold acclimation is not directly correlated with the changes in carbohydrate content and hardiness.  相似文献   

12.
The relationship between from hardiness and growth potential, and their dependence on temperature and photoperiod, was investigated in the one-year-old cambium of balsam fir [Abies balsamea (L.) Mill.]. Six-year-old trees were exposed for 9 weeks to either the natural environment or one of 4 controlled environments in the fall (18 September-18 November), spring (12 April–14 June) and summer (19 July – 19 September). The 4 controlled environments were (1) WS, warm temperature (24/20°C in day/night) + short day (8 h). (2) WL. warm temperature (24/20°C) + long day (8 h + 1 h night break), (3) CS. cold temperature (9/5°C) + short day (8 h) and (4) CL, cold temperature (9/5°C) + long day (8 h + 1 h night break). At the beginning and end of each exposure, cambial activity was measured by recording the number of xylem, cambium and phloem cells, frost hardiness was estimated from the cambium's ability to survive freezing to –40°C, and cambial growth potential was deduced from the duration of the cell cycle and the production of xylem, cambium and phloem cells in cuttings cultured for 4 weeks with exogenous indole-3-acetic acid (IAA) under environmental conditions favourable for cambial activity. In the natural environment, frost hardening began in September and was completed in November, while dehardening occurred when the cambium reactivated. CL, CS, and to a lesser extent WS, promoted hardening in the summer and fall, but did not prevent dehardening in the spring. The cambial growth potential in the natural environment declined from a maximum in April to a low level in June, reached a minimum in September, then increased to a high level in November. This potential was promoted by CL and CS on all dates by WL in the summer and fall. The ratio of xylem to phloem induced by IAA treatment was greatest in June and least in September in cuttings from trees exposed to the natural environment, and was increased by CL and CS in the fall. The cambium in intact branches of trees protected from chilling during the fall and winter resumed cell cycling after less than 9 weeks of dormancy, but produced mostly or only phloem in the subsequent growing period. It is concluded that the frost hardiness of the cambium, the IAA-induced cycling of cambial cells, and IAA-induced xylem to phloem ratio vary independently with season, temperature and photoperiod, and that the periodicity of these processes is regulated endogenously.  相似文献   

13.
The effect of photoperiod and temperature on growth and induction and development of frost hardiness in cloudberry ( Rubus chamaemorus L.) was examined in two experiments. The photoperiods were 8, 12 or 24 h and the temperatures were 18, 15, 12, 9, 4, 3, –3 or –4°C depending on the experiment. The level of hardiness was expressed as LT66 or LT50 (the lethal temperature for 66 or 50% of the plant material) for percentage of bud break and for the degree of coloring by triphenyltetrazolium chloride for rhizomes. The vegetative growth was clearly affected by daylength; petiole elongation, leaf growth, shoot dry weight and number of shoots per plant were all reduced under short days compared with long days. However, the photoperiod had no significant effect on hardening of buds or rhizomes. Hardening increased with successively decreasing temperatures. To get the maximum hardiness, plants had to be exposed to freezing temperatures.  相似文献   

14.
The frost hardening and frost damage of 12 varieties of Englishryegrass (Lolium perenne) was studied by electrical impedancespectroscopy. For the measurement of the impedance spectrum(80 Hz to 1 MHz) a 10 mm length sample was cut from the stemabove the growing point, but the growing point was included.The impedance spectra were analysed by an asymmetric distributedcircuit model. The impedance spectra were measured at two phasesof hardiness and after freezing, i.e. (a) before hardening,(b) after hardening in controlled conditions, and (c) aftercontrolled frost exposure at -16 °C after hardening. Twomodel parameters, i.e. intra- and extracellular resistance,increased with hardening. The intracellular resistance and theskewness factor before hardening, and the ratio between thosetwo parameters before and after hardening, strongly correlatedwith hardening of different varieties of English ryegrass. Theextracellular resistance and the relaxation time decreased asa result of the frost exposure at -16 °C. Cold acclimation; electrical impedance; English ryegrass; frost hardiness; impedance spectroscopy; Lolium perenne  相似文献   

15.
Successful winter survival of perennial plants, like white clover, is dependent on proper timing of both hardening and dehardening. The purpose of this study was to investigate the regulation of these processes in two cultivars (AberCrest and AberHerald) and two Norwegian ecotypes (Særheim collected at 58°46′N lat. and Bodø at 67°20′N lat.) of white clover (Trifolium repens L.). For hardening and dehardening, plants were exposed to controlled temperature conditions and frost hardiness of stolons was tested by programmed freezing at the rate of 3°C per hour. In addition, stolons were analysed for starch, soluble sugars and soluble amino acids. Cultivars AberCrest and AberHerald, selected for growth at low temperature and winter hardiness in the United Kingdom, were significantly less hardy than the Norwegian populations. After six weeks of hardening (2 weeks at 6°C and 4 weeks at 0.5°C), estimated LT50 values were ?13.8, ?13.0, ?17.8 and ?20.3°C for AberCrest, AberHerald, Saerheim and Bodø, respectively. The rate of dehardening increased with increasing temperature. At low temperature (6°C), the northern ecotype from Bodø was more resistant to dehardening than AberHerald. However, at 18°C the absolute rate of dehardening (°C day?1) was twice as high in Bodø as in AberHerald plants. Stolon elongation during dehardening was initiated at lower temperatures in AberHerald than in plants of the Bodø ecotype. The content of total soluble sugars, sucrose and the amino acids proline and arginine were significantly higher in hardy plants of Bodø than in those of AberHerald. Sucrose levels decreased during dehardening and correlations between sucrose content and LT50 during this process were statistically highly significant for both Bodø and AberHerald. The least hardy populations of white clover were characterized by thick stolons, long internodes and large leaves.  相似文献   

16.
The frost hardiness of 20 to 25-year-old Scots pine (Pinus sylvestris L.) saplings was followed for 2 years in an experiment that attempted to simulate the predicted climatic conditions of the future, i.e. increased atmospheric CO2 concentration and/or elevated air temperature. Frost hardiness was determined by an electrolyte leakage method and visual damage scoring on needles. Elevated temperatures caused needles to harden later and deharden earlier than the controls. In the first year, elevated CO2 enhanced hardening at elevated temperatures, but this effect disappeared the next year. Dehardening was hastened by elevating CO2 in both springs. The frost hardiness was high (相似文献   

17.
The effect of 14 combinations of photoperiod, soil and air temperature, and growth substance applications on the cold hardiness of Chrysanthemum morifolium‘Astrid’ rhizomes was evaluated. Both triphenyl tetrazolium chloride and regrowth tests were used to determine the viability of the cold-stressed rhizome tissues. The rhizomes exhibited different degrees of cold hardiness under these environmental conditions. A combination of short photoperiod and low air and soil temperatures induced maximum cold hardiness. Low soil temperature accompanied by long photoperiods and warm aerial temperatures did not induce rhizome hardening, while some hardening in cool soils was evident under either short photoperiods or low aerial temperatures. Warm soils reduced rhizome hardening under the normally inductive short photoperiod-cool aerial conditions. Since the induction of rhizome hardening was dependent on the induction of the aerial organs, the involvement of translocatable hardiness promoters is indicated. Foliar applications of low levels of gibberllic acid (GA3) or abscisic acid only slightly influenced rhizome hardiness.  相似文献   

18.
Hardening and dehardening responses of two contrasting varietiesof Lolium perenne, measured as LT50 estimates, were followedin fluctuating temperature environments. Unhardened seedlingswere exposed to hardening environments for 7, 14, and 21 d inall combinations of 2, 4, 6, 8 and 10 C with either high dayand low night temperatures or low day and high night temperatures.Seedlings hardened for 28 d at 2 C were exposed to dehardeningenvironments in all combinations of 4, 6, 8, 10, and 12 C withhigh day and low night temperatures. A low day, or night, temperature of 2 C in combination withany other temperature increased hardening compared with theconstant higher temperature. For Premo, a hardy variety, thisincrease was 3 C when night temperature was reduced from 10to 2 C in combination with a day temperature of 10 C. Similarly,a low night temperature reduced the dehardening response ofPremo to higher day temperatures. At 12 C this effect on LT60was greater than 2 C. Much smaller responses to daily periodsof low temperature were found for the less hardy variety, GrasslandsRuanui. During each 24-h period, exposures to 2 C of longer than 4h were required to achieve greater hardening than that achievedin continuous 10 C treatments. Hardiness was not improved furtherby exposures longer than 8 h. Responses to diurnal temperature fluctuations were discussedin relation to possible mechanisms and to changes in hardinessduring the winter under different weather systems. Lolium perenne, cold hardening, cold dehardening, diurnal temperature fluctuations, varieties  相似文献   

19.
BREWSTER  J. L. 《Annals of botany》1983,51(4):429-440
The effects of photoperiod, nitrogen nutrition and temperatureon inflorescence initiation and development in onion cv. Rijnsburgerand cv. Senshyu Semi-globe Yellow were studied in controlledenvironments. Rates of inflorescence initiation were estimatedusing the data for leaf numbers formed prior to flower formationand the rates of leaf initiation. At 9 °C inflorescenceinitiation was accelerated by long photoperiods particularlyfor cv. Rijnsburger where the average time for initiation was86 days in 8 h and 38 days in 20 h photoperiods. Initiationwas as rapid at 12 °C as at 9 °C but was slower at 6°C. A reduction in the nitrate concentration in the nutrientsolution from 0.012 to 0.0018 M greatly accelerated inflorescenceinitiation particularly in photoperiods and temperatures notconducive to rapid initiation. Cv. Senshyu initiated more slowlythan cv. Rijnsburger and was less sensitive to photoperiod andnitrogen level. The development rate of inflorescences afterinitiation was accelerated by long photoperiods and increasesin temperature from 6 to 12 °C but was retarded by the lowernitrogen level. Allium cepa L., onion, flower initiation, inflorescence development, photoperiod, nitrogen nutrition, temperature, vernalization  相似文献   

20.
A field study was conducted to test the hypothesis that wheatdevelopment rate responds to the rate of change of photoperiod.Two wheat cultivars (Condor and Thatcher) were sown on 18 Aug.1992 at Melbourne (38° S). Photoperiod was extended artificiallyto give five treatments up to terminal spikelet initiation (TS)viz.: natural photoperiod (rate of change of photoperiod, 2·3mind d-1), two faster rates of change (9·8 and 13·1min d-1) and two constant photoperiods of 14·0 and 15·5h. After TS, the two constant photoperiods were extended to15·0 and 16·5 h, respectively and treatments wererandomly re-allocated, i.e. some plots received different photoperiodregimes before and after TS. There were no significant differences among treatments in thelength of the period from sowing (S) to seedling emergence (E)phase, ranging from 15 to 16·3 d. The rate of developmentfrom E to TS responded to increases in photoperiod in both cultivars,increasing with average photoperiod across all treatments butthere was no effect of rate of change of photoperiod independentof its average photoperiod. The rate of development from TSto anthesis (A) did not show any trend with average photoperiod.This lack of effect of photoperiod on the period from TS toA contrasts with other results from the literature and possiblereasons for this conflicting result are discussed. Rate of changeof photoperiod did not affect the duration of the phase fromTS to A either. Therefore, the effect of photoperiod on theduration of the S-A period was strongly and positively correlatedto that of the length of the E-TS phase.Copyright 1994, 1999Academic Press Triticum aestivum L., wheat, phasic development, photoperiod, rate of change  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号