首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the role of intracellular proline under freezing and desiccation stress conditions in Saccharomyces cerevisiae. When cultured in liquid minimal medium, the proline-nonutilizing mutant containing the put1 mutation (proline oxidase-deficient) produced more intracellular proline, and increased the cell survival rate as compared to the wild-type strain after freezing and desiccation. We also constructed two PUT1 gene disruptants. PUT1-disrupted mutants in minimal medium supplemented with external proline at 0.1% accumulated higher proline levels than those of the control strains (17-22-fold). These disruptants also had a 2-5-fold increase in cell viability compared to the control strains after freezing and desiccation stresses. These results indicate that proline has a stress-protective function in yeast.  相似文献   

2.
The PUT1 and PUT2 genes encoding the enzymes of the proline utilization pathway of Saccharomyces cerevisiae are induced by proline and activated by the product of the PUT3 gene. Two upstream activation sequences (UASs) in the PUT1 promoter were identified by homology to the PUT2 UAS. Deletion analysis of the two PUT1 UASs showed that they were functionally independent and additive in producing maximal levels of gene expression. The consensus PUT UAS is a 21-base-pair partially palindromic sequence required in vivo for induction of both genes. The results of a gel mobility shift assay demonstrated that the proline-specific UAS is the binding site of a protein factor. In vitro complex formation was observed in crude extracts of yeast strains carrying either a single genomic copy of the PUT3 gene or the cloned PUT3 gene on a 2 microns plasmid, and the binding was dosage dependent. DNA-binding activity was not observed in extracts of strains carrying either a put3 mutation that caused a noninducible (Put-) phenotype or a deletion of the gene. Wild-type levels of complex formation were observed in an extract of a strain carrying an allele of PUT3 that resulted in a constitutive (Put+) phenotype. Extracts from a strain carrying a PUT3-lacZ gene fusion formed two complexes of slower mobility than the wild-type complex. We conclude that the PUT3 product is either a DNA-binding protein or part of a DNA-binding complex that recognizes the UASs of both PUT1 and PUT2. Binding was observed in extracts of a strain grown in the presence or absence of proline, demonstrating the constitutive nature of the DNA-protein interaction.  相似文献   

3.
The PUT2 gene was isolated on a 6.5-kilobase insert of a recombinant DNA plasmid by functional complementation of a put2 (delta 1-pyrroline-5-carboxylate dehydrogenase-deficient) mutation in Saccharomyces cerevisiae. Its identity was confirmed by a gene disruption technique in which the chromosomal PUT2+ gene was replaced by plasmid DNA carrying the put2 gene into which the S. cerevisiae HIS3+ gene had been inserted. The cloned PUT2 gene was used to probe specific mRNA levels: full induction of the PUT2 gene resulted in a 15-fold increase over the uninduced level. The PUT2-specific mRNA was approximately 2 kilobases in length and was used in S1 nuclease protection experiments to locate the gene to a 3-kilobase HindIII fragment. When delta 1-pyrroline-5-carboxylate dehydrogenase activity levels were measured in strains carrying the original plasmid, as well as in subclones, similar induction ratios were found as compared with enzyme levels in haploid yeast strains. Effects due to increased copy number or position were also seen. The cloned gene on a 2 mu-containing vector was used to map the PUT2 gene to chromosome VIII.  相似文献   

4.
5.
A mutation has been identified that prevents Saccharomyces cerevisiae cells from growing on proline as the sole source of nitrogen, causes noninducible expression of the PUT1 and PUT2 genes, and is completely recessive. In the put3-75 mutant, the basal level of expression (ammonia as nitrogen source) of PUT1-lacZ and PUT2-lacZ gene fusions as measured by beta-galactosidase activity is reduced 4- and 7-fold, respectively, compared with the wild-type strain. Normal regulation is not restored when the cells are grown on arginine as the sole nitrogen source and put3-75 cells remain sensitive to the proline analog, L-azetidine-2-carboxylic acid, indicating that the block is not at the level of transport of the inducer, proline. In a cross between the put3-75 strain and the semidominant, constitutive mutation PUT3c-68, only parental ditype tetrads were found, indicating allelism of the two mutations. Further support for allelism derives from the comparison of enzyme levels in heteroallelic and heterozygous diploid strains. The constitutive allele appears to be fully dominant to the noninducible allele but only partially dominant to the wild type, suggesting an interaction between the wild-type and PUT3c-68 gene products. The PUT3 gene maps on chromosome XI, about 5.7 cM from the centromere. The phenotypes of alleles of the PUT3 gene, either recessive and noninducible (the put3-75 phenotype) or semidominant and constitutive (the PUT3c-68 phenotype), and their pleiotropy suggest that the PUT3 gene product is a positive activator of the proline utilization pathway.  相似文献   

6.
7.
Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants.  相似文献   

8.
A mutation resulting in inducer-independent expression of the proline-degradative enzymes was isolated in the yeast Saccharomyces cerevisiae. Strains carrying the mutation, put3, are partially constitutive for proline oxidase and delta 1-pyrroline-5-carboxylate dehydrogenase when grown on a medium lacking proline and are hyperinducible for both enzyme activities when grown on a proline-containing medium. put3 segregates as a single nuclear gene, is not linked to either of the presumed structural genes for proline oxidase and delta 1-pyrroline-5-carboxylate dehydrogenase, and does not affect proline transport. When heterozygous in diploid strains, put3 behaves neither fully dominant nor fully recessive. Endogenous induction by proline has been eliminated as a cause of the inducer-independent enzyme expression in the put3 mutant and the mutation is believed to be in a regulatory component of the proline-degradative pathway.  相似文献   

9.
10.
11.
We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding gamma-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking.  相似文献   

12.
delta 1-Pyrroline-5-carboxylate (P5C) dehydrogenase, the second enzyme in the proline utilization (Put) pathway of Saccharomyces cerevisiae and the product of the PUT2 gene, was localized to the matrix compartment by a mitochondrial fractionation procedure. This result was confirmed by demonstrating that the enzyme had limited activity toward an externally added substrate that could not penetrate the inner mitochondrial membrane (latency). To learn more about the nature of the import of this enzyme, three gene fusions were constructed that carried 5'-regulatory sequences through codons 14, 124, or 366 of the PUT2 gene ligated to the lacZ gene of Escherichia coli. When these fusions were introduced into S. cerevisiae either on multicopy plasmids or stably integrated into the genome, proline-inducible beta-galactosidase was made. The shortest gene fusion, PUT2-lacZ14, caused the production of a high level of beta-galactosidase that was found exclusively in the cytoplasm. The PUT2-lacZ124 and PUT2-lacZ366 fusions made lower levels of beta-galactosidases that were mitochondrially localized. Mitochondrial fractionation and protease-protection experiments showed that the PUT2-lacZ124 hybrid protein was located exclusively in the matrix, while the PUT2-lacZ366 hybrid was found in the matrix as well as the inner membrane. Thus, the amino-terminal 124 amino acids of P5C dehydrogenase carries sufficient information to target and deliver beta-galactosidase to the matrix compartment. The expression of the longer hybrids had deleterious effects on cell growth; PUT2-lacZ366-containing strains failed to grow on proline as the sole source of nitrogen. In the presence of the longest hybrid beta-galactosidase, the wild-type P5C dehydrogenase was still properly localized in the matrix compartment, but its activity was reduced. The nature of the effects of these hybrid proteins on cell growth is discussed.  相似文献   

13.
14.
15.
The nuclear gene for subunit IV of cytochrome oxidase (COX4) in Saccharomyces cerevisiae contains a 342 bp intron which is contained entirely within the 5' leader of the message. Splicing of the intron results in removal of several small open reading frames; subsequently, the COX4 AUG becomes the 5' proximal initiation codon. A strain with an rna2- mutation fails to splice mRNA efficiently at restrictive temperature and was used to map the intron splice junctions by RNase protection. Two major mRNA initiation sites were mapped by primer extension of synthetic oligodeoxynucleotides. The splice junctions and internal TACTAAC box conform to consensus sequences previously determined from other yeast introns. One gene for subunit V of cytochrome oxidase (COX5b) has also been shown to contain an intron. The significance of introns in two nuclear genes encoding subunits of cytochrome oxidase is discussed.  相似文献   

16.
The yeast PCK1 gene coding for phosphoenolpyruvate carboxykinase (PEPCK) was isolated by functional complementation of pck1 strains from S. cerevisiae. Only one copy of the gene was found per haploid yeast genome. An RNA of about 2 kb which hybridized with a DNA probe internal to the PCK1 gene was found only in cells growing in non-fermentable carbon sources. Yeast strains carrying multiple copies of the PCK1 gene showed normal catabolite repression of PEPCK except those carrying the shortest insertion complementing the mutation (2.2 kb) that presented an altered kinetics of derepression. Catabolite inactivation was decreased in strains transformed with multicopy plasmids carrying the PCK1 gene.  相似文献   

17.
Exogenous proline can protect cells of Saccharomyces cerevisiae from oxidative stress. We altered intracellular proline levels by overexpressing the proline dehydrogenase gene (PUT1) of S. cerevisiae. Put1p performs the first enzymatic step of proline degradation in S. cerevisiae. Overexpression of Put1p results in low proline levels and hypersensitivity to oxidants, such as hydrogen peroxide and paraquat. A put1-disrupted yeast mutant deficient in Put1p activity has increased protection from oxidative stress and increased proline levels. Following a conditional life/death screen in yeast, we identified a tomato (Lycopersicon esculentum) gene encoding a QM-like protein (tQM) and found that stable expression of tQM in the Put1p-overexpressing strain conferred protection against oxidative damage from H2O2, paraquat, and heat. This protection was correlated with reactive oxygen species (ROS) reduction and increased proline accumulation. A yeast two-hybrid system assay was used to show that tQM physically interacts with Put1p in yeast, suggesting that tQM is directly involved in modulating proline levels. tQM also can rescue yeast from the lethality mediated by the mammalian proapoptotic protein Bax, through the inhibition of ROS generation. Our results suggest that tQM is a component of various stress response pathways and may function in proline-mediated stress tolerance in plants.  相似文献   

18.
Baker’s yeast strains with freeze-tolerance are highly desirable to maintain high leavening ability after freezing. Enhanced intracellular concentration of trehalose and proline in yeast is linked with freeze-tolerance. In this study, we constructed baker’s yeast with enhanced freeze-tolerance by simultaneous deletion of the neutral trehalase-encoded gene NTH1 and the proline oxidase-encoded gene PUT1. We first used the two-step integration-based seamless gene deletion method to separately delete NTH1 and PUT1 in haploid yeast. Subsequently, through two rounds of hybridization and sporulation-based allelic exchange and colony PCR-mediated tetrad analysis, we obtained strains with restored URA3 and deletion of NTH1 and/or PUT1. The resulting strain showed higher cell survival and dough-leavening ability after freezing compared to the wild-type strain due to enhanced accumulation of trehalose and/or proline. Moreover, mutant with simultaneous deletion of NTH1 and PUT1 exhibits the highest relative dough-leavening ability after freezing compared to mutants with single-gene deletion perhaps due to elevated levels of both trehalose and proline. These results verified that it is applicable to construct frozen dough baker’s yeast using the method proposed in this paper.  相似文献   

19.
20.
We constructed self-cloning diploid baker's yeast strains by disrupting PUT1, encoding proline oxidase, and replacing the wild-type PRO1, encoding γ-glutamyl kinase, with a pro1(D154N) or pro1(I150T) allele. The resultant strains accumulated intracellular proline and retained higher-level fermentation abilities in the frozen doughs than the wild-type strain. These results suggest that proline-accumulating baker's yeast is suitable for frozen-dough baking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号