首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine non-pathogenic bacterial isolates, recovered from Datura metel organs and able to colonise the internal stem tissues of tomato cultivar Rio Grande, were screened for their ability to suppress tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici (FOL), and to enhance plant growth. S33 and S85 isolates tested were found to be the most effective in decreasing Fusarium wilt severity by 94–95% compared to FOL-inoculated and untreated control. A significant enhancement of growth parameters was recorded on tomato plants inoculated or not with FOL. Both isolates were characterised and identified using 16S rDNA sequencing genes as Stenotrophomonas sp. str. S33 (KR818084) and Pseudomonas sp. str. S85 (KR818087). Screened in vitro for their antifungal activity towards FOL, these isolates led to 38.7% and 22.5% decrease in pathogen radial growth and to the formation of an inhibition zone of 12.75 and 8.37?mm respectively. Stenotrophomonas sp. str. S33 and Pseudomonas sp. str. S85 were found to be chitinase-, protease- and pectinase-producing strains but unable to produce hydrogen cyanide. Production of indole-3-acetic acid-like compounds, phosphate solubilising ability and pectinase activity were investigated for elucidating their plant growth-promoting traits and their endophytic colonisation ability.  相似文献   

2.
Seven culturable bacterial isolates, obtained from the internal stem tissues of Solanum elaeagnifolium and successfully colonizing the internal stem tissues of tomato cv. Rio Grande, were screened for their in vivo antifungal activity against Fusarium oxysporum f.sp. lycopersici (FOL) and their growth‐promoting potential on tomato plants. SV101 and SV104 isolates, assessed on pathogen‐challenged tomato plants led to a significant decrease (77–83%) in Fusarium wilt severity and vascular browning extent (76%), as compared to the inoculated and untreated control. Isolates enhanced growth parameters on pathogen‐challenged and unchallenged tomato plants. SV104 and SV101 isolates were most effective in suppressing disease and enhancing plant growth. These two isolates were identified as Bacillus sp. str. SV101 ( KU043040 ) and B. tequilensis str. SV104 ( KU976970 ). They displayed antifungal activity against FOL; pathogen growth was inhibited by 64% and an inhibition zone (11.50 and 19.75 mm) against FOL could be formed using whole cell suspensions. SV101 and SV104 extracellular metabolites also inhibited FOL growth by 20 and 55%, respectively, as compared to control. B. tequilensis str. SV104 was shown to produce protease, chitinase, pectinase, IAA and siderophores. Bacillus sp. str. SV101 displayed pectinase activity and was found to be an IAA‐producing and phosphate‐solubilizing agent. To our knowledge, this is the first study reporting on S. elaeagnifolium use as a potential source of potent biocontrol and plant growth‐promoting agents.  相似文献   

3.
Simultaneous infestation with root-knot nematodes (RKN) and Fusarium oxysporum f. sp. lycopersici (FOL) leads to formation of a disease complex that increases crop losses than effect of either RKN or FOL. In this study a management programme involving plant resistance, biological control agents, and neem was carried out to manage RKN and fusarium wilt disease complex. The biological control agents were Purpureocillium lilacinum (PL) and Trichoderma harzianum (TH) while the RKN was Meloidogyne javanica. In vitro dual culture plates were set up to test the interaction of biological control agents and FOL. Greenhouse experiments were conducted using two tomato cultivars Rambo F1 and Prostar F1. The treatments were; PL, TH, PL–TH, neem, PL neem, TH neem, and PL–TH neem. Each treatment was replicated four times and the treatments set up in a randomised complete block design in the greenhouse. Inhibition of FOL mycelial growth by TH and PL was 51.9%, and 44% respectively by the ninth day in vitro culture plates. In the cultivar, Prostar F1, the treatments PL–TH, PL, and TH in the presence or absence of neem had a FOL disease severity score significantly lower than the untreated control. Host resistance sufficed to prevent infection of Rambo F1 with FOL. The treatments PL–TH, PL and TH reduced FOL propagules and M. javanica juveniles in the roots and performed even better when combined with neem in both tomato cultivars. Therefore, a host that is resistant combined with biological control agents and organic amendments can be used in the management of RKN and FOL in tomato production.  相似文献   

4.
An antimicrobial substance produced by the Paenibacillus alvei strain AN5 was detected in fermentation broth. Subsequently, cell-free culture supernatant (CFCS) was obtained by medium centrifugation and filtration, and its antimicrobial activity was tested. This showed a broad inhibitory spectrum against both Gram-positive and -negative bacterial strains. The CFCS was then purified and subjected to SDS-PAGE and infrared spectroscopy, which indicated the proteinaceous nature of the antimicrobial compound. Some de novo sequencing using an automatic Q-TOF premier system determined the amino acid sequence of the purified antimicrobial peptide as Y-S-K-S-L-P-L-S-V-L-N-P (1,316 Da). The novel peptide was designated as peptide AN5-1. Its mode of action was bactericidal, inducing cell lysis in E. coli ATCC 29522 and S. aureus, and non-cell lysis in both S. marcescens and B. cereus ATCC 14579. Peptide AN5-1 displayed stability at a wide range of pH values (2–12) and remained active after exposure to high temperatures (100 °C). It also maintained its antimicrobial activity after incubation with chemicals such as SDS, urea and EDTA.  相似文献   

5.
Serratia grimesii 4–9 and Serratia plymuthica 5–6, isolated from the rhizosphere of pea, Pisum sativum (L), were evaluated for their potential to suppress growth of Fusarium sambucinum in vitro and to reduce Fusarium dry rot in stored potatoes (Solanum tuberosum L). In vitro studies indicated that these bacterial isolates suppressed growth of F. sambucinum by 60% or more at both 15 and 25°C. In a potato tuber slice assay the number of infection sites in potato slices exposed to F. sambucinum and treated with S. grimesii 4–9 and S. plymuthica 5–6 was reduced by 96 and 97%, respectively, at 15°C. The diameter (mm) of the infection sites was reduced 91 and 96%, respectively, when compared to slices treated with F. sambucinum alone. Studies with Fusarium-infected whole potato tubers also showed significant reduction in dry rot formation following treatment with the bacterial isolates or the fungicide thiabendazole. When applied simultaneously with the pathogen, S. grimesii 4–9 and S. plymuthica 5–6 suppressed development of Fusarium dry rot by 60 and 77%, respectively, at 15°C and by 63 and 84%, respectively, at 25°C compared to tubers inoculated with the pathogen alone. Thiabendazole suppressed development of Fusarium dry rot by 66 and 81% at 15 and 25°C, respectively, compared to tubers inoculated with the pathogen alone. These studies demonstrate the potential of soil bacteria as biofungicides for managing post-harvest crop diseases. Due to the potential risks to human health associated with S. grimesii 4–9, S. plymuthica 5–6 is recommended for further study for biofungicide development.  相似文献   

6.
Pot trials were carried out under controlled conditions to evaluate the effectiveness against Fusarium wilt of rocket (Fusarium oxysporum f.sp. conglutinans) and basil (Foxysporum f.sp. basilici) of soil amendments based on a patented formulation of Brassica carinata defatted seed meal and compost, combined or not with a simulation of soil solarization. The soil solarization treatment was carried out in a growth chamber by heating the soil for 7 and 14 days at optimal (55–52°C for 6 h, 50–48°C for 8 h and 47–45°C for 10 h/day) and sub‐optimal (50–48°C for 6 h, 45–43°C for 8 h and 40–38°C for 10 h/day) temperatures similar to those observed in summer in solarized soil in greenhouses in Northern Italy. Two subsequent cycles of plant cultivation were carried out in the same soil. Even at sub‐optimal temperature regimes, 7 days of thermal treatment provided very valuable results in terms of disease control on both rocket and basil. In general, the thermal treatment was more effective against F. oxysporum f.sp. basilici than against Foxysporum f.sp. conglutinans. Control of Fusarium wilt of rocket is improved with 14 days of thermal treatment. The combination of organic amendments with a short period of soil solarization (7 or 14 days), although not providing any improvement to the level of disease management, did significantly increase biomass and positively affected yield.  相似文献   

7.
Allamanda leaf extract (Allamanda cathertica) was made in water at room temperature (25?± 2?°C) as well as in a number of less polar to highly polar solvents like methylene chloride, benzene, chloroform and ethyl acetate at their boiling point, that means, at refluxing temperature (40?± 2?°C). Methylene chloride, benzene, chloroform, ethyl acetate and water extracts were applied to determine their growth inhibition against Phomopsis vexans, Phytophthora capsici, Fusarium oxysporum, Rhizoctonia solani and Sclerotium rolfsii. Results of these extracts showed that refluxing methanol, ethanol and ethyl acetate extracts of Allamanda were statistically similar for inhibition of mycelial growth of all fungi tested. But effect of 50% ethanol extract is different; it inhibited 100% mycelial growth of P. vexans, P. capsici and F. oxysporum; 83.33% of R. solani and 88.63% of S. rolfsii. Effort was also made to find out the compound in Allamanda to be responsible for such antifungal activity. Thin layer chromatography (TLC) of Allamanda extracts showed the presence of a number of compounds having polarity very high to low. The Rf values of compounds in 37–42 fractions were calculated and from these six fractions, crystals were separated. These crystals were more or less white. Melting point of these crystals was determined by ordinary and digital melting point apparatus that ranged from 145.5–162 C. Structural determination of the compound was done by Infra-red (IR) spectral study. The finger print region was 700–1400?cm?1. The strong band at 1612.4, 1633.6, 1693.4, 1655 and 2850.6?cm?1 indicated the presence of conjugated double bond (–C=C–C=C–), non-conjugated double-bond (–C=C–C–C–C=C–), carbonyl group attached to carbon–carbon double (–CO–C=C), ester (–COOR) and C–H stretching, respectively. Mass spectra of separated compounds gave molecular weight 470. All these characters are typical to pumieride as described previously. Again, In vitro screening of plumieride against P. vexans, P. capsici, F. oxysporum, R. solani and S. rolfsii were found effective in inhibiting radial mycelial growth of these fungi at 1:2 w/v concentration.  相似文献   

8.
Tomato is a popular vegetable widely grown in the tropics, which is mainly attacked by fusarium wilt incited by Fusarium oxysporum f. sp. lycopersici (FOL). In the present scenario, an ecofriendly alternative strategy such as use of fungi from rhizosphere is being explored to combat the phytopathogen invasion. This study was carried out to evaluate the efficacy of Trichoderma asperellum MSST to promote the growth and yield parameters of tomato S-22, a susceptible variety. This study was also undertaken to manage fusarium wilt disease under in vitro and in vivo conditions. Significant increase in vegetative parameters like root length, shoot length, plant weight and chlorophyll content 60 days after sowing (DAS) was observed. There was reduction in the incidence of fusarium wilt in tomato up to 85%. Increase in the level of total phenol, peroxidase, polyphenoloxidase and phenylalanine ammonium lyase activity at 10th day of pathogen inoculation showed enhancement of plant defence mechanism by T. asperellum MSST against FOL. Overall study revealed that isolate MSST was proven to be potential biocontrol agent showing induced resistance against FOL.  相似文献   

9.
A thermostable chitinase was purified by chitin affinity from the culture supernatant of Bacillus cereus TKU028 with shrimp head powder (SHP) as the sole carbon/nitrogen source. TKU028 chitinase was purified using a one-step affinity adsorbent system, and the molecular mass of TKU028 chitinase (approximately 40 kDa) was then determined using SDS-PAGE. The enzyme was stable for 60 min at temperatures below 60 °C and stable over a broad pH range of 4–9 for 60 min. In addition, the temporal changes of a bacterial community in mangrove river sediment of the Tamsui River with added SHP were also analysed by PCR–denaturing gradient gel electrophoresis to investigate the effects of B. cereus TKU028 on the degradation of SHP. The 6-week incubation sample of SHP and B. cereus TKU028-amended mangrove river sediment displayed the highest amount of biomass, reducing sugar and total sugar, and some variance of bacterial community composition existed in the soils.  相似文献   

10.
Fusarium oxysporum is a common soil‐borne pathogen that causes serious economic losses in tomato crops worldwide. The purpose of this study was to evaluate the influence of the bio‐control agents Bacillus amyloliquefaciens SN16‐1 and Pseudomonas fluorescens SN15‐2 and the pathogen Fusarium oxysporum f.sp. lycopersici (FOL) inoculation on tomato rhizosphere bacterial communities and growth, as measured by terminal restriction fragment length polymorphism (T‐RFLP). Treatment with SN16‐1 and SN15‐2 had a transient influence on indigenous bacterial communities, withSN16‐1 showing great potential for controlling FOL. The corresponding genera of terminal restriction fragments (T‐RFs) that were significantly altered after 10 days were obtained using Ribosomal Database Project (RDP) database comparison. Genera that produce antibiotics and promote plant growth were activated by SN16‐1 and FOL treatments, indicating that SN16‐1 responds quickly to FOL invasion. Moreover, the bioremediation activity characteristic of certain genera and the levels of enzymes that degrade pathogen cell walls were decreased while bacterial nutrient cycling and plant growth promotion were enhanced with FOL treatment. In conclusion, we found that SN16‐1 possesses the capacity to control tomato wilt, acts synergistically with soil microbes and does not have a persistent effect on the rhizosphere bacterial communities of tomato.  相似文献   

11.
During the summer season of 2003 and 2004, wilt syndromes of grapevine leaves (Cv. crimson) and vascular discolouration of roots have been observed in 2-year-old grapevine plants in the field at two sides in Gharbeia Governorate, Egypt. First, symptoms of wilt began on bottom leaves borderline as chlorosis and then these turned to necrotic spots and the leaves died. Wilt symptoms were spread to apical associated with vascular discolouration of roots and stem basal. Routine isolations of discoloured root tissue from diseased plant yielded eight isolates of Fusarium oxysporum Schlechtend only where no other fungi were developed. Microscopic examination revealed the presence of three shapes of microconidia, first is avoid shape non-septate measuring 2.5–3.0 μm × 6–10 μm, second is cylindrical with one septa measuring 2.6 μm × 17.0 μm and third shape also cylindrical with two septate measuring 3.0 μm × 20.0 μm. Macroconidia was rarely with three septate measuring 3.5– 4.0 μm × 35.0–38.0 μm, and chlamydospores were found singly or in pairs or chains. F. oxysporum isolates attacked grapevine plants (Cv. crimson) causing vascular wilt (66.7%) and root-rot syndrome (33.3%). In vitro isolates of F. oxysporum causing wilt of grapevine (Cv. crimson) varied for producing lytic enzymes, i.e. polygalacturonase (PG) and cellulase. The reactions of several grapevines (Cvs.) with a virulent isolate of F. oxysporum indicated the presence of two different symptoms, i.e. vascular wilt only on grapevine plants (Cv. crimson) and root-rot on the other grapevine (Cvs.), i.e. superior, Thompson, King robi and flame seedless. All F. oxysporum isolates caused vascular wilt of grapevine Cv. crimson, successfully reisolated from symptomatic vascular infected tissue and complete identification on the basis of colony, conidia morphology and host range at formae speciales level as F. oxysporum f. sp. herbemontis (Tochetto) Gordan. This is the first report of Fusarium wilt on grapevine in Egypt.  相似文献   

12.
Fusarium wilt is caused by the soil-inhabiting fungus Fusarium oxysporum ff. spp. and is one of the most devastating plant diseases, resulting in losses and decreasing the quality and safety of agricultural crops. We recently reported the structures and biochemical properties of two biotin-binding proteins, streptavidin C1 and C2 (isolated from Streptomyces cinnamonensis strain KPP02129). In the present study, the potential of the biotin-binding proteins as antifungal agent for Fusarium wilt pathogens was investigated using recombinant streptavidin C1 and C2. The minimum inhibitory concentration of streptavidin C2 was found to be 16 µg ml–1 for inhibiting the mycelial growth of F. oxysporum f.sp. cucumerinum and F. oxysporum f.sp. lycopersici, while that of streptavidin C1 was found to be 64 µg ml–1. Compared with the nontreated control soil, the population density of F. oxysporum f.sp. lycopersici in the soil was reduced to 49·5% and 39·6% on treatment with streptavidin C1 (500 µg ml–1) and C2 (500 µg ml–1), respectively. A greenhouse experiment revealed that Fusarium wilt of tomato plants was completely inhibited on soil drenching using a 50-ml culture filtrate of the streptavidin-producing strain KPP02129.  相似文献   

13.
Fusarium wilt, caused by Fusarium oxysporum f. sp. lycopersici (FOL), is an important disease of tomato. Pathogenicity and vegetative compatibility tests, although reliable, are laborious for the identification of FOL isolates and cannot efficiently quantify population densities of FOL in the soil. The objective of this study was to develop a rapid, sensitive and quantitative real‐time polymerase chain reaction (PCR) assay for detecting and quantifying FOL in soil. An inexpensive and relatively simple method for soil DNA extraction and purification was developed based on bead‐beating and a silica‐based DNA‐binding method. A TaqMan probe and PCR primers were designed using the DNA sequence of the species‐specific virulence gene SIX1, which is only present in isolates of FOL, not in isolates of other formae speciales or non‐pathogenic isolates of F. oxysporum. The real‐time PCR assay successfully amplified isolates of three races of FOL used in this study and quantified FOL DNA in soils, with a detection limit of 0.44 pg of genomic DNA of FOL in 20 μl of the real‐time PCR. A spiking test performed by adding different concentrations of conidia to soil showed a significant linear relationship between the amount of genomic DNA of FOL detected by the real‐time PCR assay and the concentration of conidia added. In addition, the real‐time PCR assay revealed a significant quadratic regression for a glasshouse experiment between disease severity and DNA concentration of FOL. The soil DNA extraction method and real‐time PCR assay developed in this study could be used to determine population densities of FOL in soil, develop threshold models to predict Fusarium wilt severity, identify high‐risk fields and measure the impact of cultural practices on FOL populations in soils.  相似文献   

14.
The health of the plant and soil fertility is dependent on the plant–microbes interaction in the rhizosphere. Microbial life tends to endure various rhizosphere plant–microbe interactions. Phytohormones such as auxins, cytokinins, gibberellic acid, ethylene and abscisic acid are termed as the classical group of hormones. Out of the 70 rhizobacterial strains isolated from the Coleus rhizosphere, three different rhizobacterial strains Pseudomonas stutzeri MTP40, Stenotrophomonas maltophilia MTP42 and Pseudomonas putida MTP50 having plant growth-promoting attributes were isolated and characterized for its phytohormone-producing ability. The phytohormones such as indole 3-acetic acid (IAA), gibberellic acid and cytokinin (kinetin and 6-benzyladenosine) were affirmed in culture supernatant of the above isolates. IAA was detected in all the three isolates, where in highest production was found in S. maltophilia MTP42 (240?µg/mL) followed by P. stutzeri MTP40 (250?µg/mL) and P. putida MTP50 (233?µg/mL). Gibberellic acid production was found maximum in MTP40 (34?µg/mL), followed by MTP42 (31?µg/mL) and MTP50 (27?µg/mL). The cytokinin production from the isolates, namely, MTP40, MTP42 and MTP50 were 13, 11 and 7.5?µg/mL, respectively. The isolates showing the production of plant growth enhancing phytohormones can be commercialized as potent bioformulations.  相似文献   

15.
Large-scale purification of the highly hydrophobic bacteriocin thurincin H was accomplished via a novel and simple two-step method: ammonia sulfate precipitation and C18 solid-phase extraction. The inhibition spectrum and stability of thurincin H as well as its antagonistic activity against Bacillus cereus F4552 spores were further characterized. In the purification method, secreted proteins contained in the supernatant of a 40 h incubated culture of B. thuringiensis SF361 were precipitated by 68 % ammonia sulfate and purified by reverse-phase chromatography, with a yield of 18.53 mg/l of pure thurincin H. Silver-stained SDS–PAGE, high-performance liquid chromatography, and liquid chromatography–mass spectrometry confirmed the high purity of the prepared sample. Thurincin H exhibited a broad antimicrobial activity against 22 tested bacterial strains among six different genera including Bacillus, Carnobacterium, Geobacillus, Enterococcus, Listeria, and Staphylococcus. There was no detectable activity against any of the selected yeast or fungi. The bacteriocin activity was stable for 30 min at 50 °C and decreased to undetectable levels within 10 min at temperatures above 80 °C. Thurincin H is also stable from pH 2–7 for at least 24 h at room temperature. Thurincin H is germicidal against B. cereus spores in brain heart infusion broth, but not in Tris–NaCl buffer. The efficient purification method enables the large-scale production of pure thurincin H. The broad inhibitory spectrum of this bacteriocin may be of interest as a potential natural biopreservative in the food industry, particularly in post-processed and ready-to-eat food.  相似文献   

16.
The purpose of this research was to study how the bacteria Bacillus cereus (DCB1) utilizes calcium ions in a culture medium with carbon dioxide (CO2) to yield calcium carbonate (CaCO3). The bacteria strain DCB1 was a dominant strain isolated from dolomitic surfaces in areas of Karst topographies. The experimental method was as follows: a modified beef extract-peptone medium (beef extract 3.0 g, peptone 10 g, NaCl 5.0 g, CaCl2 2.0 g, glass powder 2.0 g, distilled water 1 L, and a pH between 6.5 and 7.5) was inoculated with B. cereus to attempt to induce the synthesis of CaCO3. The sample was then processed by centrifugation every 24 h during the 7-day cultivation period. The pH, carbonic anhydrase (CA) activity, and the concentrations of both HCO- 3 and Ca2+ in the supernatant fluid were measured. Subsequently, precipitation in the culture medium was analyzed to confirm, or otherwise, the presence and if present, the formation, of CaCO3. Methods used included X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive Spectroscopy (EDS). Meanwhile, the carbon source in the carbonate was classified by its isotope composition. Results showed that B. cereus can improve its pH value in this culture medium; concentrations of HCO- 3 and Ca2+ showed a significant decline over the duration of the cultivation period. CA activity reached its maximum during the second day; XRD, SEM, TEM, and isotope analysis all revealed the presence of CaCO3 as a precipitate. Additionally, these results did not occur in an aseptic control group: no detectable level of CaCO3 was produced therein. In conclusion: B. cereus can metabolize active materials, such as secretase, by its own growth and metabolism, and can either utilize atmospheric CO2, or respire, to induce CaCO3 production. Experimental evidence is offered for a concomitant CO2 reduction and CaCO3 induction by microorganisms.  相似文献   

17.
From investigation of 60 filamentous fungi, we identified Fusarium merismoides var. acetilereum, which uses 4-N-trimethylamino-1-butanol (TMA-butanol) as the sole source of carbon and nitrogen. The fungus produced NAD+-dependent TMA-butanol dehydrogenase (DH) when it was cultivated in medium containing TMA-butanol. The enzyme showed molecular mass of 40 kDa by SDS–PAGE and 160 kDa by gel filtration, suggesting that it is a homotetramer. TMA-butanol DH is stable at pH 7.5–9.0. It exhibits moderate stability with respect to temperature (up to 30 °C). Additionally, it has optimum activity at 45 °C and at pH 9.5. The enzyme has broad specificity to various alkyl alcohols and amino alkyl alcohols, and the carbon chains of which are longer than butanol. Moreover, the activity is strongly inhibited by oxidizing agents, carbonyl and thiol modulators, and chelating agents. This report is the first study examining TMA-butanol DH from eukaryotic microbes.  相似文献   

18.
The biocontrol activities of cells and cell-free extracts of Streptomyces griseus was tested against Fusarium oxysporum f.sp. cubense tropical race 4 (FOC race 4) in a sterile soil environment. They were first formulated in sodium alginate, kaolin clay and in alginate–kaolin combination, prior to introducing into sterile soil inoculated with 6 log10 cfu FOC race 4 g?1 soil. Results revealed that bioformulated cells of S. griseus, irrespective of the materials used, were generally more effective in inhibiting growth of FOC race 4 when compared to non-formulated cells of S. griseus. Kaolin was the most suitable inert material as formulation of S. griseus with kaolin effectively suppressed FOC race 4, with only 5.40 log10 cfu g?1 of FOC race 4 recovered after 20 days. Kaolin formulations also allowed good cell recovery post-formulation. Alginate was less desirable as poorer control was demonstrated, with 6.12 and 6.16 log10 cfu g?1 of FOC race 4 recovered from soils treated with alginate only and alginate–kaolin formulated S. griseus, respectively. Bioformulations did not benefit cell-free extracts at all. Our study suggests formulation of cells of S. griseus is more beneficial than cell-free extracts and kaolin is the preferred material for formulation.  相似文献   

19.
Fusarium oxysporum f. sp. lycopersici (FOL) induces resistance in pepper against the airborne pathogen Botrytis cinerea and the soil‐borne pathogen Verticillium dahliae. However, its practical use is limited due to its pathogenicity to other crops. In this study we tested several fractions of a heat‐sterilised crude FOL‐elicitor preparation to protect pepper against B. cinerea and V. dahliae. Only the protein‐free insoluble fraction of the preparation reduced B. cinerea infection. However, none of the fractions reduce V. dahliae symptoms. The insoluble protein‐free fraction induced expression of defence genes in the plant, namely a chitinase (CACHI2), a peroxidase (CAPO1), a sesquiterpene cyclase (CASC1) and a basic PR1 (CABPR1). Even though the CASC1 gene was not induced directly after treatment with the insoluble fraction in the leaves, it was induced after B. cinerea inoculation, showing a priming effect. The insoluble protein‐free FOL‐elicitor protected pepper against the airborne pathogen through a mechanism that involves induced responses in the plant, but different to the living FOL.  相似文献   

20.
When a reticulocyte lysate, supplemented with hemin, was warmed at 42 °C, its protein-synthesizing activity was greatly decreased. This was accompanied by the reduced formation of the 40 S·Met-tRNAf initiation complex. This complex preformed at 34 °C, however, was stable and combined with added globin mRNA and the 60 S ribosomal subunit to form the 80 S complex at the elevated temperature. When the ribosome-free supernatant fraction of lysates was warmed at 42 °C with hemin and then added to the fresh lysate system, it inhibited protein synthesis by decreasing the formation of the 40 S complex. This decrease in protein synthesis by warmed lysates or warmed supernatant could be overcome by high concentrations of GTP and cyclic AMP. This effect of GTP and cyclic AMP was antagonized by ATP. The results indicate that the inactivation of protein synthesis by the lysate warmed at 42 °C is due to the formation of an inhibitor in the supernatant. The ribosomal KCl extract prepared from the lysate that had been warmed at 34 °C and then incubated at this temperature for protein synthesis supported protein synthesis by the KCl-washed ribosome at both 34 and 42 °C. On the contrary, the extract from lysates that had been warmed at 42 °C and then incubated at 34 °C could not support protein synthesis at 42 °C, although it was almost equally as promotive as the control extract in supporting protein synthesis at 34 °C. The results indicate that the factor which can protect protein synthesis against inactivation at 42 °C is itself inactivated in lysates warmed at 42 °C. However, the activity of this extract to support formation of the ternary complex with Met-tRNAf and GTP was not reduced. Native 40 S ribosomal subunits isolated from lysates that had been warmed at 42 °C and then incubated for protein synthesis indicated that the quantity of subunits of density 1.40 g/cm3 in a CsCl density gradient were decreased while those of density 1.49 g/cm3 were increased. The factor-promoted binding of Met-tRNAf to the 40 S subunit of lower density from the warmed and unwarmed lysates was equal, suggesting that the ribosomal subunit was not inactivated. These results were discussed in terms of the action of the inhibitor formed in the supernatant at 42 °C, which may inactivate a ribosomal factor essential for protein synthesis initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号