首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of a L-threonine dehydrogenase (L-ThrDH; EC 1.1.1.103) from the psychrophilic bacterium Flavobacterium frigidimaris KUC-1, which shows no sequence similarity to conventional L-ThrDHs, was determined in the presence of NAD and a substrate analog, glycerol. The asymmetric unit consisted of two subunits related by a two-fold rotation axis. Each monomer consisted of a Rossmann-fold domain and a carboxyl-terminal catalytic domain. The overall fold of F. frigidimaris L-ThrDH showed significant similarity to that of UDP-galactose 4-epimerase (GalE); however, structural comparison of the enzyme with E. coli and human GalEs showed clear topological differences in three loops (loop 1, loop 2 and the NAD-binding loop) around the substrate and NAD binding sites. In F. frigidimaris L-ThrDH, loops 1 and 2 insert toward the active site cavity, creating a barrier preventing the binding of UDP-glucose. Alternatively, loop 1 contributes to a unique substrate binding pocket in the F. frigidimaris enzyme. The NAD binding loop, which tightly holds the adenine ribose moiety of NAD in the Escherichia coli and human GalEs, is absent in F. frigidimaris L-ThrDH. Consequently, the cofactor binds to F. frigidimaris L-ThrDH in a reversible manner, unlike its binding to GalE. The substrate binding model suggests that the reaction proceeds through abstraction of the β-hydroxyl hydrogen of L-threonine via either a proton shuttle mechanism driven by Tyr143 and facilitated by Ser118 or direct proton transfer driven by Tyr143. The present structure provides a clear bench mark for distinguishing GalE-like L-ThrDHs from GalEs.  相似文献   

2.
NAD kinase is a key enzyme in NADP biosynthesis. We solved the crystal structure of polyphosphate/ATP-NAD kinase from Mycobacterium tuberculosis (Ppnk) complexed with NAD (Ppnk-NAD) at 2.6A resolution using apo-Ppnk structure solved in this work, and revealed the details of the structure and NAD-binding site. Superimposition of tertiary structures of apo-Ppnk and Ppnk-NAD demonstrated a substantial conformational difference in a loop (Ppnk-flexible loop). As a quaternary structure, these Ppnk structures exhibited tetramer as in solution condition. Notably, the Ppnk-flexible loop was involved in the intersubunit contact and probably related to the NAD-binding of the other subunit. Furthermore, the two residues (Asp189, His226) substantially contributed to creating NAD-binding site on the other subunit. The two residues and the residues involved in NAD-binding were conserved. However, residues corresponding to the Ppnk-flexible loop were not conserved, making us to speculate that the Ppnk-flexible loop may be Ppnk-specific.  相似文献   

3.
A gene encoding an sn‐glycerol‐1‐phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2’ of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild‐type enzyme with NADPH, which suggests that the biased interactions around the C2’‐phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)‐dependent dehydrogenases. Proteins 2016; 84:1786–1796. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Urocanase (EC 4.2.1.49) from Pseudomonas putida was crystallized after removing one of the seven free thiol groups. The crystal structure was solved by multiwavelength anomalous diffraction (MAD) using a seleno-methionine derivative and then refined at 1.14 A resolution. The enzyme is a symmetric homodimer of 2 x 557 amino acid residues with tightly bound NAD+ cofactors. Each subunit consists of a typical NAD-binding domain inserted into a larger core domain that forms the dimer interface. The core domain has a novel chain fold and accommodates the substrate urocanate in a surface depression. The NAD domain sits like a lid on the core domain depression and points with the nicotinamide group to the substrate. Substrate, nicotinamide and five water molecules are completely sequestered in a cavity. Most likely, one of these water molecules hydrates the substrate during catalysis. This cavity has to open for substrate passage, which probably means lifting the NAD domain. The observed atomic arrangement at the active center gives rise to a detailed proposal for the catalytic mechanism that is consistent with published chemical data. As expected, the variability of the residues involved is low, as derived from a family of 58 proteins annotated as urocanases in the data banks. However, one well-embedded member of this family showed a significant deviation at the active center indicating an incorrect annotation.  相似文献   

5.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Summary Cytochromeb 561 (cytb 561) is a trans-membrane cytochrome probably ubiquitous in plant cells. In vitro, it is readily reduced by ascorbate or by juglonol, which in plasma membrane (PM) preparations from plant tissues is efficiently produced by a PM-associated NAD(P)Hquinone reductase activity. In bean hypocotyl PM, juglonol-reduced cytb 561 was not oxidized by hydrogen peroxide alone, but hydrogen peroxide led to complete oxidation of the cytochrome in the presence of a peroxidase found in apoplastic extracts of bean hypocotyls. This peroxidase active on cytb 561 was purified from the apoplastic extract and identified as an ascorbate peroxidase of the cytosolic type. The identification was based on several grounds, including the ascorbate peroxidase activity (albeit labile), the apparent molecular mass of the subunit of 27 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the dimeric native structure, the typical spectral properties of a heme-containing peroxidase, and an N-terminal sequence strongly conserved with cytosolic ascorbate peroxidases of plants. Cytb 561 used in the experiments was purified from bean hypocotyl PM and juglonol was enzymatically produced by recombinant NAD(P)H:quinone reductase. It is shown that NADPH, NAD(P)H:quinone reductase, juglone, cytb 561, the peroxidase interacting with cytb 561, and H2O2, in this order, constitute an artificial electron transfer chain in which cytb 561 is indirectly reduced by NADPH and indirectly oxidized by H2O2.Abbreviations APX ascorbate peroxidase - b 561PX cytochrome 6561 peroxidase - CPX coniferol peroxidase - cyt cytochrome - GPX guaia-col peroxidase - IWF intercellular washing fluid - MDHA monodehydroascorbate - PM plasma membrane  相似文献   

7.
Transhydrogenase (TH) is a dimeric integral membrane enzyme in mitochondria and prokaryotes that couples proton translocation across a membrane with hydride transfer between NAD(H) and NADP(H) in soluble domains. Crystal structures of the NAD(H) binding alpha1 subunit (domain I) of Rhodospirillum rubrum TH have been determined at 1.8 A resolution in the absence of dinucleotide and at 1.9 A resolution with NADH bound. Each structure contains two domain I dimers in the asymmetric unit (AB and CD); the dimers are intimately associated and related by noncrystallographic 2-fold axes. NADH binds to subunits A and D, consistent with the half-of-the-sites reactivity of the enzyme. The conformation of NADH in subunits A and D is very similar; the nicotinamide is in the anti conformation, the A-face is exposed to solvent, and both N7 and O7 participate in hydrogen bonds. Comparison of subunits A and D to six independent copies of the subunit without bound NADH reveals multiple conformations for residues and loops surrounding the NADH site, indicating flexibility for binding and release of the substrate (product). The NADH-bound structure is also compared to the structures of R. rubrum domain I with NAD bound (PDB code 1F8G) and with NAD bound in complex with domain III of TH (PDB code 1HZZ). The NADH- vs NAD-bound domain I structures reveal conformational differences in conserved residues in the NAD(H) binding site and in dinucleotide conformation that are correlated with the net charge, i.e., oxidation state, of the nicotinamides. The comparisons illustrate how nicotinamide oxidation state can affect the domain I conformation, which is relevant to the hydride transfer step of the overall reaction.  相似文献   

8.
Transhydrogenase (TH) couples direct and stereospecific hydride transfer between NAD(H) and NADP(H), bound within soluble domains I and III, respectively, to proton translocation across membrane bound domain II. The cocrystal structure of Rhodospirillum rubrum TH domains I and III has been determined in the presence of limiting NADH, under conditions in which the subunits reach equilibrium during crystallization. The crystals contain three heterotrimeric complexes, dI(2)dIII, in the asymmetric unit. Multiple conformations of loops and side-chains, and NAD(H) cofactors, are observed in domain I pertaining to substrate/product exchange, and highlighting electrostatic interactions during the hydride transfer. Two interacting NAD(H)-NADPH pairs are observed where alternate conformations of the NAD(H) phosphodiester and conserved arginine side-chains are correlated. In addition, the stereochemistry of one NAD(H)-NADPH pair approaches that expected for nicotinamide hydride transfer reactions. The cocrystal structure exhibits non-crystallographic symmetry that implies another orientation for domain III, which could occur in dimeric TH. Superposition of the "closed" form of domain III (PDB 1PNO, chain A) onto the dI(2)dIII complex reveals a severe steric conflict of highly conserved loops in domains I and III. This overlap, and the overlap with a 2-fold related domain III, suggests that motions of loop D within domain III and of the entire domain are correlated during turnover. The results support the concept that proton pumping in TH is driven by the difference in binding affinity for oxidized and reduced nicotinamide cofactors, and in the absence of a difference in redox potential, must occur through conformational effects.  相似文献   

9.
Porphobilinogen synthase (PBG synthase) gene from Pyrobaculum calidifontis was cloned and expressed in E. coli. The recombinant enzyme was purified as an octamer and was found by mass spectrometry to have a subunit Mr of 37676.59 (calculated, 37676.3). The enzyme showed high thermal stability and retained almost all of its activity after incubation at 70 °C for 16 h in the presence of β-mercaptoethanol (β-ME) and zinc chloride. However, in the absence of the latter the enzyme was inactivated after 16 h although it regained full activity in the presence of β-ME and zinc chloride. The protein contained 4 mol of tightly bound zinc per octamer. Further, 4 mol of low affinity zinc could be incorporated following incubation with exogenous zinc salts. The enzyme was inactivated by incubation with levulinic acid followed by treatment with sodium borohydride. Tryptic digest of the modified enzyme and mass spectrometric analysis showed that Lys257 was the site of modification, which has previously been shown to be the site for the binding of 5-aminolevulinic acid giving rise to the propionate-half of porphobilinogen. P. calidifontis PBG synthase was inactivated by 5-chlorolevulinic acid and the residue modified was shown to be the central cysteine (Cys127) of the zinc-binding cysteine-triad, comprising Cys125, 127, 135. The present results in conjunction with earlier findings on zinc containing PBG synthases, are discussed which advocate that the catalytic role of zinc in the activation of the 5-aminolevulinic acid molecule forming the acetate-half of PBG is possible.  相似文献   

10.
Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri (mkSerRS) and histidyl tRNA synthetases from Thermus thermophilus (ttHisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.  相似文献   

11.
Horse liver alcohol dehydrogenase is a homodimer, the protomer having a coenzyme-binding domain and a catalytic domain. Using all available x-ray structures and 50 ns of molecular dynamics simulations, we investigated the mechanism of NAD+-induced domain closure. When the well-known loop at the domain interface was modeled to its conformation in the closed structure, the NAD+-induced domain closure from the open structure could be simulated with remarkable accuracy. Native interactions in the closed structure between Arg369, Arg47, His51, Ala317, Phe319, and NAD+ were seen to form at different stages during domain closure. Removal of the Arg369 side-chain charge resulted in the loss of the tendency to close, verifying that specific interactions do help drive the domains closed. Further simulations and a careful analysis of x-ray structures suggest that the loop prevents domain closure in the absence of NAD+, and a cooperative mechanism operates between the subunits for domain closure. This cooperative mechanism explains the role of the loop as a block to closure because in the absence of NAD+ it would prevent the occurrence of an unliganded closed subunit when the other subunit closes on NAD+. Simulations that started with one subunit open and one closed supported this.  相似文献   

12.
13.
14.
Abstract

The high affinity IgE receptor, possesses a tetrameric structure. The 243 residue β subunit is a polytopic protein with four hydrophobic membrane-spanning segments, whereas the individual α and γ subunits are bitopic proteins each containing one transmembrane domain in their monomeric form. In the proposed topographical model (Blank et al., 1989), the four trans-membrane α helices of the β subunit are connected by three loop sequences.

To study the individual subunits and intact receptor, this membrane protein was divided into domains such as its loop peptides, cytoplasmic peptides and transmembrane helices according to Blank et al., 1989. The 3D structure of the synthesized loop peptides and cytoplasmic peptides were calculated; CD and/or NMR data were used as appropriate to generate the resultant structures which were then used as data basis for the higher level calculations.

The four individual transmembrane helices of the β subunit were characterised, first of all, by mapping the relative lipophilicity of their surfaces using lipophilic probes. A second procedure, docking of the individual helices in pairs, was used to predict helix–helix interactions.

The data on the relative lipophilicity of the surfaces as well as the surfaces that favoured helix–helix interactions were used in combination with the spectroscopy-based structures of the loops and cytoplasmic domains to calculate via molecular dynamics, the helix arrangement and 3D structure of the β subunit of the high affinity IgE receptor. In the final analysis, the molecular simulations yielded two structures of the β subunit, which should form a basis for the modelling of the whole high affinity IgE receptor.  相似文献   

15.
Maleylacetate reductase plays a crucial role in catabolism of resorcinol by catalyzing the NAD(P)H‐dependent reduction of maleylacetate, at a carbon–carbon double bond, to 3‐oxoadipate. The crystal structure of maleylacetate reductase from Rhizobium sp. strain MTP‐10005, GraC, has been elucidated by the X‐ray diffraction method at 1.5 Å resolution. GraC is a homodimer, and each subunit consists of two domains: an N‐terminal NADH‐binding domain adopting an α/β structure and a C‐terminal functional domain adopting an α‐helical structure. Such structural features show similarity to those of the two existing families of enzymes in dehydroquinate synthase‐like superfamily. However, GraC is distinct in dimer formation and activity expression mechanism from the families of enzymes. Two subunits in GraC have different structures from each other in the present crystal. One subunit has several ligands mimicking NADH and the substrate in the cleft and adopts a closed domain arrangement. In contrast, the other subunit does not contain any ligand causing structural changes and adopts an open domain arrangement. The structure of GraC reveals those of maleylacetate reductase both in the coenzyme, substrate‐binding state and in the ligand‐free state. The comparison of both subunit structures reveals a conformational change of the Tyr326 loop for interaction with His243 on ligand binding. Structures of related enzymes suggest that His243 is likely a catalytic residue of GraC. Mutational analyses of His243 and Tyr326 support the catalytic roles proposed from structural information. The crystal structure of GraC characterizes the maleylacetate reductase family as a third family in the dehydroquinate synthase‐like superfamily. Proteins 2016; 84:1029–1042. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-β-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme–product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.  相似文献   

17.
Proton pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an alpha subunit with the NAD(H)-binding domain I and a beta subunit with the NADP(H)-binding domain III. The membrane domain (domain II) harbors the proton channel and is made up of the hydrophobic parts of the alpha and beta subunits. The interface in domain II between the alpha and the beta subunits has previously been investigated by cross-linking loops connecting the four transmembrane helices in the alpha subunit and loops connecting the nine transmembrane helices in the beta subunit. However, to investigate the organization of the nine transmembrane helices in the beta subunit, a split was introduced by creating a stop codon in the loop connecting transmembrane helices 9 and 10 by a single mutagenesis step, utilizing an existing downstream start codon. The resulting enzyme was composed of the wild-type alpha subunit and the two new peptides beta1 and beta2. As compared to other split membrane proteins, the new transhydrogenase was remarkably active and catalyzed activities for the reduction of 3-acetylpyridine-NAD(+) by NADPH, the cyclic reduction of 3-acetylpyridine-NAD(+) by NADH (mediated by bound NADP(H)), and proton pumping, amounting to about 50-107% of the corresponding wild-type activities. These high activities suggest that the alpha subunit was normally folded, followed by a concerted folding of beta1 + beta2. Cross-linking of a betaS105C-betaS237C double cysteine mutant in the functional split cysteine-free background, followed by SDS-PAGE analysis, showed that helices 9, 13, and 14 were in close proximity. This is the first time that cross-linking between helices in the same beta subunit has been demonstrated.  相似文献   

18.
The crystal structure of recombinant putidaredoxin reductase (Pdr), an FAD-containing NADH-dependent flavoprotein component of the cytochrome P450cam monooxygenase from Pseudomonas putida, has been determined to 1.90 A resolution. The protein has a fold similar to that of disulfide reductases and consists of the FAD-binding, NAD-binding, and C-terminal domains. Compared to homologous flavoenzymes, the reductase component of biphenyl dioxygenase (BphA4) and apoptosis-inducing factor, Pdr lacks one of the arginine residues that compensates partially for the negative charge on the pyrophosphate of FAD. This uncompensated negative charge is likely to decrease the electron-accepting ability of the flavin. The aromatic side-chain of the "gatekeeper" Tyr159 is in the "out" conformation and leaves the nicotinamide-binding site of Pdr completely open. The presence of electron density in the NAD-binding channel indicates that NAD originating from Escherichia coli is partially bound to Pdr. A structural comparison of Pdr with homologous flavoproteins indicates that an open and accessible nicotinamide-binding site, the presence of an acidic residue in the middle part of the NAD-binding channel that binds the nicotinamide ribose, and multiple positively charged arginine residues surrounding the entrance of the NAD-binding channel are the special structural elements that assist tighter and more specific binding of the oxidized pyridine nucleotide by the BphA4-like flavoproteins. The crystallographic model of Pdr explains differences in the electron transfer mechanism in the Pdr-putidaredoxin redox couple and their mammalian counterparts, adrenodoxin reductase and adrenodoxin.  相似文献   

19.
Whole cells of Desulfobulbus propionicus fermented [1-13C]ethanol to [2-13C] and [3-13C]propionate and [1-13C]-acetate, which indicates the involvement of a randomizing pathway in the formation of propionate. Cell-free extracts prepared from cells grown on lactate (without sulfate) contained high activities of methylmalonyl-CoA: pyruvate transacetylase, acetase kinase and reasonably high activities of NAD(P)-independent L(+)-lactate dehydrogenase NAD(P)-independent pyruvate dehydrogenase, phosphotransacetylase, acetate kinase and reasonably high activity of NAD(P)-independent L(+)-lactate dehydrogenase, fumarate reductase and succinate dehydrogenase. Cell-free extracts catalyzed the conversion of succinate to propionate in the presence of pyruvate, CoA and ATP and the oxaloacetate-dependent conversion of propionate to succinate. After growth on lactate or propionate in the presence of sulfate similar enzyme levels were found except for fumarate reductase which was considerably lower. Fermentative growth on lactate led to higher cytochrome b contents than growth with sulfate as electron acceptor.The labeling studies and the enzyme measurements demonstrate that in Desulfobulbus propionate is formed via a succinate pathway involving a transcarboxylase like in Propionibacterium. The same pathway may be used for the degradation of propionate to acetate in the presence of sulfate.Abbreviations DCPIP 2,6-dichlorophenolindophenol - PEP phosphoenolpyruvate  相似文献   

20.
Summary The presence of two diaphorases has been shown in rat liver and embryos of Vicia fdba. One of these, the NAD(P)H tetrazolium reductase, was firmly bound in the section and was not lost into the incubation medium under conditions of histochemical assay The second diaphorase (soluble diaphorase) was lost from the section into the incubation medium during the first five minutes of incubation. This soluble diaphorase from both rat liver and embryos of V. faba is capable of transferring electrons from NAD(P)H to MTT, INT, NBT and TNBT, but not to tellurite, TTC, BT and NT. The behaviour of the soluble diaphorase in histochemical reactions involving tetrazolium salts as electron acceptors is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号