首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two glucosephosphate isomerase (GPI; D-glucose-6-phosphate ketolisomerase; EC 5.3.1.9) alleloenzymes from the blue mussel, Mytilus edulis, were purified to homogeneity. The steady-state kinetic properties of GPI1.00 and GPI.96, which exhibit latitudinal clines in frequency along the Atlantic coast of North America, were determined in both the glycolytic and the gluconeogenic reaction directions at physiological temperatures and pH levels. The two alleloenzymes are catalytically similar at low temperatures (5-10 degrees C), while GPI1.00 diverges to become more efficient at higher physiological temperatures (15-25 degrees C). This pattern of differentiation is consistent with the latitudinal distributions of the alleloenzymes and is due to the greater temperature sensitivities of GP1.00 Vmax/Km values; the Vmax values of the two alleloenzymes are virtually the same over the physiological range of temperatures. The observed pattern of catalytic differentiation is similar to that seen for interspecific GPI variants.  相似文献   

2.
The activity of diamine oxidase [EC 1.4.3.6] (DAO) isolated from pea cotyledons was measured in Britton-Robinson buffers at pH range 5.0-9.6 by spectrophotometric method with E-1,4-diamino-2-butene as substrate. The enzyme has the highest activity at pH = 7.7 and in pH greater than 8.0 it is irreversible denaturated with time. The dissociation constants of the enzyme and enzyme-substrate complex were calculated by Dixon's method from plots of log Vmax, log KM and log Vmax/KM against pH. The pKEA = 6.5 suggests that histidine is in active site of DAO.  相似文献   

3.
A membrane-bound sialidase was isolated from blood stream (BS) Trypanosoma evansi partially purified and characterized. The enzyme is a glycosyl phosphatidyl inositol (GPI) membrane anchored protein. It was solubilized from T. evansi cells recovered from infected camel blood by detergent treatment with Triton CF 54 and partially purified by a series of chromatography steps. The enzyme was optimally active at pH 5.5 and 37 degrees C. It had a KM and Vmax values of 4.8 x 10(-6) M and 3.75 x 10(-6) mol/min x mg protein with Neu5Acalpha2, 3lac as substrate respectively. The KM and Vmax values with fetuin (4-nitrophenyl-oxamic acid) as substrate were 2.9 x 10(-2) M and 4.2 x 10(-3) mol/min x mg protein in the same respect. Kinetic analysis with methly umbelliferyl sialate (MU-Neu5Ac) gave KM and Vmax values of 0.17 mM and 0.84 mmol/min x mg protein respectively. The T. evansi SD could hydrolyse internally linked sialic acid residues of the ganglioside GM2, but was inactive towards colomic acid, and NeuSAc2, 6. lac. When ghost red blood cell (RBC) was used as substrate, it desialylated the RBC in the following order of efficiency; mouse, rat, camel, goat, and dog. Similarly, cerebral cells isolated from BalbC mouse was desialylated by the T. evansi SD. Inhibition studies using 2-deoxy-2, 3 didehydro-N-acetyl neuraminic acid (NeuAc2, 3en) against MU-Neu5Ac revealed a competitive inhibition pattern with Ki of 5.8 microM. The enzyme was also inhibited non-competitively by parahydroxy oxamic acid (pHOA), and competitively by N-ethylmaleimide and N-bromosuccinate with Ki values of 25, 42, and 53 microM, respectively. It was activated by Mg2+ ion and inhibited by Cu2+ and Zn2+.  相似文献   

4.
(1) Dimethyl sulfoxide (DMSO) markedly inhibited the Vmax of multisite ATPase activity in Escherichia coli F1-ATPase at concentrations greater than 30% (v/v). Vmax/KM was reduced by 2 orders of magnitude in 40% (v/v) DMSO at pH 7.5, primarily due to reduction of Vmax. The inhibition was rapidly reversed on dilution into aqueous buffer. (2) KdATP at the first, high-affinity catalytic site was increased 1500-fold from 2.3 x 10(-10) to 3.4 x 10(-7) M in 40% DMSO at pH 7.5, whereas KdADP was increased 3.2-fold from 8.8 to 28 microM. This suggests that the high-affinity catalytic site presents a hydrophobic environment for ATP binding in native enzyme, that there is a significant difference between the conformation for ADP binding as opposed to ATP binding, and that the ADP-binding conformation is more hydrophilic. (3) Rate constants for hydrolysis and resynthesis of bound ATP in unisite catalysis were slowed approximately 10-fold by 40% DMSO; however, the equilibrium between bound Pi/bound ATP was little changed. The reduction in catalysis rates may well be related to the large increase in KdATP (less constrained site). (4) Significant Pi binding to E. coli F1 could not be detected either in 40% DMSO or in aqueous buffer using a centrifuge column procedure. (5) We infer, on the basis of the measured constants KaATP, K2 (hydrolysis/resynthesis of ATP), k+3 (Pi release), and KdADP and from estimates of k-3 (Pi binding) that delta G for ATP hydrolysis in 40% DMSO-containing pH 7.5 buffer is between -9.2 and -16.8 kJ/mol.  相似文献   

5.
The human liver alpha alpha and beta 1 beta 1 isoenzymes are straight-chain alcohol dehydrogenases with different efficiencies toward secondary alcohols. Two of the 24 amino acid substitutions in alpha alpha (A for F93 and I for T94) were made by site-directed mutagenesis of beta 1 beta 1 and the substrate specificity of beta 93A94I was examined. The Vmax/KM values of beta 93A94I for secondary alcohols (especially R enantiomers) are similar to that of alpha alpha and as much as 4000-fold greater than beta 1 beta 1, but the dependences of Vmax/KM on primary alcohol chain length are similar to beta 1 beta 1, but not alpha alpha. Thus, the substitutions of A for F93 and I for T94 in beta 1 beta 1 account for the increased efficiency towards secondary alcohols and stereoselectivity for enantiomeric alcohols, but not for the effects of chain length on the Vmax/KM for primary alcohols seen with alpha alpha.  相似文献   

6.
The oxidase cho of Methylobacillus flagellatus KT was purified to homogeneity by nondenaturing gel electrophoresis, and the kinetic properties and substrate specificity of the enzyme were studied. Ascorbate and ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) were oxidized by cbo with a pH optimum of 8.3. When TMPD served as electron donor for the oxidase cho, the optimal pH (7.0 to 7.6) was determined from the difference between respiration rates in the presence of ascorbate/TMPD and of only ascorbate. The kinetic constants, determined at pH 7.0, were as follows: oxidation by the enzyme of reduced TMPD at pH 7.0 was characterized by KM = 0.86 mM and Vmax = 1.1 mumol O2/(min mg protein), and oxidation of reduced cytochrome c from horse heart was characterized by KM = 0.09 mM and Vmax = 0.9 mumol O2/(min mg protein) Cyanide inhibited ascorbate/TMPD oxidase activity (Ki = 4.5-5.0 microM). The soluble cytochrome cH (12 kDa) partially purified from M. flagellatus KT was found to serve as the natural electron donor for the oxidase cbo.  相似文献   

7.
A detailed kinetic analysis of purified yeast membrane-associated phosphatidate phosphatase was performed using Triton X-100/phosphatidate mixed micelles. Enzyme activity was dependent on the bulk and surface concentrations of phosphatidate. These results were consistent with the "surface dilution" kinetic scheme (Deems, R. A., Eaton, B. R., and Dennis, E. A. (1975) J. Biol. Chem. 250, 9013-9020) where phosphatidate phosphatase binds to the mixed micelle surface before binding to its substrate and catalysis occurs. Phosphatidate phosphatase was shown to physically associate with Triton X-100 micelles in the absence of phosphatidate, however, the enzyme was more tightly associated with micelles when its substrate was present. The enzyme had 5- to 6-fold greater affinity (reflected in the dissociation constant nKsA/chi) for Triton X-100 micelles containing dioleoyl-phosphatidate and dipalmitoyl-phosphatidate when compared to micelles containing dicaproyl-phosphatidate. The Vmax for dioleoyl-phosphatidate was 3.8-fold higher than the Vmax for dipalmitoyl-phosphatidate, whereas the interfacial Michaelis constant chi KmB for dipalmitoyl-phosphatidate was 3-fold lower than the chi KmB for dioleoyl-phosphatidate. The specificity constants (Vmax/chi KmB) of both substrates were similar which indicated that dioleoyl-phosphatidate and dipalmitoyl-phosphatidate were equally good substrates. Based on catalytic constants (Vmax and chi KmB), dicaproyl-phosphatidate was the best substrate with an 11- and 14-fold greater specificity constant when compared to dioleoyl-phosphatidate and dipalmitoyl-phosphatidate, respectively.  相似文献   

8.
Scientific literature from the past 25 years was searched to obtain in vitro biotransformation rate and affinity data for fish. To maximize the environmental relevance of this dataset, we focused on studies conducted at multiple substrate concentrations, and established acceptance criteria with respect to assay temperature and pH. Altogether, enzyme rate and affinity parameters are provided for 43 species and 77 compounds. In all but three instances, the reported reactions exhibited saturation at high substrate concentrations and could be used to calculate Michaelis-Menten rate (Vmax) and affinity (Km) constants. Most of this information was obtained using in vitro systems derived from liver tissue. Information from non-hepatic tissues was included, however, to provide a basis for comparisons among tissues. Where possible, in vitro enzyme parameters were examined to compare: (1) hepatic metabolism of a common substrate within a species, (2) hepatic metabolism of common substrates by different species, and (3) metabolism of a common substrate by different tissues of one species. Comparisons within species highlight a number of factors that may substantially influence xenobiotic metabolism in fish including gender, life stage, and acclimation temperature. Limited data suggest that Vmax and Km for the same reaction may vary by up to three orders of magnitude among species.  相似文献   

9.
B A Owen  W G Owen 《Biochemistry》1990,29(40):9412-9417
Factor Xa modified by reductive methylation (greater than 92%) loses the capacity to bind heparin as determined both by gel chromatography and by sedimentation equilibrium ultracentrifugation. The kinetic properties of methylated factor Xa differ, with respect to KM and Vmax for a synthetic tripeptide substrate and for antithrombin III inhibition rate constants, from those of the unmodified enzyme. The 10,000-fold rate enhancement elicited by the addition of heparin to the antithrombin III inhibition reaction, however, is the same. The observed second-order rate constants (k"obs) for antithrombin III inhibition of factor Xa and methylated factor Xa are 3000 and 340 M-1 s-1, respectively, whereas k"obs values for the inhibition of factor Xa or methylated factor Xa with antithrombin III-heparin are 4 X 10(7) and 3 X 10(6) M-1 s-1, respectively. These findings provide direct evidence that the interaction of factor Xa with heparin is not involved in the heparin-enhanced inhibition of this enzyme.  相似文献   

10.
The collagen substrate specificity of rat uterus collagenase   总被引:4,自引:0,他引:4  
The collagen substrate specificity of rat uterus collagenase was studied as a function of both collagen type and species of substrate origin. For each collagen examined, values for the basic kinetic parameters, Km and Vmax (kcat), were determined on collagen in solution at 25 degrees C. In all cases, Lineweaver-Burk plots were linear and rat uterus collagenase behaved as a normal Michaelis-Menten enzyme. Collagen types I, II, and III of all species tested were degraded by rat uterus collagenase. Collagen types IV and V were resistant to enzymatic attack. Both enzyme-substrate affinity and catalytic rates were very similar for all susceptible collagens (types I-III). Values for Km ranged from 0.9 to 2.5 X 10(-6) M. Values for kcat varied from 10.7 to 28.1 h-1. The homologous rat type I collagen was no better a substrate than the other animal species type I collagens. The ability of rat uterus collagenase to degrade collagen types I, II, and III with essentially the same catalytic efficiency is unlike the action of human skin fibroblast collagenase or any other interstitial collagenase reported to date. The action of rat uterus collagenase on type I collagen was compared to that of human skin fibroblast collagenase, with regard to their capacity to cleave collagen as solution monomers versus insoluble fibrils. Both enzymes had essentially equal values for kcat on monomeric collagen, yet the specific activity of the rat uterus collagenase was 3- to 6-fold greater on collagen fibrils than the skin fibroblast enzyme. Thus, in spite of their similar activity on collagen monomers in solution, the rat uterus collagenase can degrade collagen aggregated into fibrils considerably more readily than can human skin fibroblast collagenase.  相似文献   

11.
Analysis of androgen-5 alpha-reductase (A-5 alpha-R) is commonly done by measuring distinct testosterone (T) metabolites after tissue incubation. In the present study, A-5 alpha-R analysis was performed according to the principles of Michaelis-Menten, i.e. by evaluation of KM and Vmax data of the enzyme. 48 tissue samples (foreskin) of healthy boys in the age group 6 months to 8 years were examined. Incubation was carried out using increasing concentrations of 3H-T (8-208 nM) as substrate, followed by extraction and thin layer chromatography (TLC) of the reaction products. Zone detection and quantitation of radioactivity was done by a computing TLC scanner. The specific radioactivity of the metabolites was evaluated by high resolution radio gas chromatography. KM values ranged from 81.8 to 118.1 nM and Vmax from 8.9 to 30.1 pmol/mg . h. Coefficient of variation was smaller for KM (0.1) than for Vmax (0.38). It is recommended to do A-5 alpha-R analysis by evaluation of the enzyme kinetics as this is a reproducible method giving accurate biochemical data of the qualitative and quantitative characteristics of the enzyme.  相似文献   

12.
P Carter  L Abrahmsén  J A Wells 《Biochemistry》1991,30(25):6142-6148
A mutant of the serine protease, subtilisin BPN', in which the catalytic His64 is replaced by Ala (H64A), is very specific for substrates containing a histidine, presumably by the substrate-bound histidine assisting in catalysis [Carter, P., & Wells, J.A. (1987) Science (Washington, D.C.) 237, 394-399]. Here we probe the catalytic mechanism of H64A subtilisin for cleaving His and non-His substrates. We show that the ratio of aminolysis to hydrolysis is the same for ester and amide substrates as catalyzed by the H64A subtilisin. This is consistent with formation of a common acyl-enzyme intermediate for H64A subtilisin, analogous to the mechanism of the wild-type enzyme. However, the catalytic efficiencies (kcat/KM) for amidase and esterase activities with His-containing substrates are reduced by 5000-fold and 14-fold, respectively, relative to wild-type subtilisin BPN, suggesting that acylation is more compromised than deacylation in the H64A mutant. High concentrations of imidazole are much less effective than His substrates in promoting hydrolysis by the H64A variant, suggesting that the His residue on the bound (not free) substrate is involved in catalysis. The reduction in catalytic efficiency kcat/KM for hydrolysis of the amide substrate upon replacement of the oxyanion stabilizing asparagine (N155G) is only 7-fold greater for wild-type than H64A subtilisin. In contrast, the reductions in kcat/KM upon replacement of the catalytic serine (S221A) or aspartate (D32A) are about 3000-fold greater for wild-type than H64A subtilisin, suggesting that the functional interactions between the Asp32 and Ser221 with the substrate histidine are more compromised in substrate-assisted catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A Sobieszek 《Biochemistry》1985,24(5):1266-1274
Phosphorylation of vertebrate smooth muscle myosin or its isolated 20 000-dalton light chains by myosin light-chain kinase (MLCK) was found to follow first-order kinetics not only at low ([M] much less than Km) but also at high ([M] greater than or equal to Km) substrate concentration. This observation can most simply be explained by a product inhibition for which the Michaelis constants (Km) of the enzyme for the substrate (dephosphorylated myosin) and for the product (phosphorylated myosin) are approximately the same. For such a case, integration of the kinetic velocity equation gives an exponential formula similar to that of a true first-order reaction, the only difference being that its rate constant (k) depends additionally on the initial substrate concentration ([M]0). The standard kinetic constants (k, Km, Vmax) have been calculated by using this pseudo-first-order relationship. Independent evidence for the validity of the derived kinetic relationship was obtained from binding studies with myosin and MLCK. These showed that MLCK binds to phosphorylated and dephosphorylated myosin with approximately equal affinity (Ks = 30 X 10(-9) M). The possible applicability of the same kinetic relationship to other enzyme systems is discussed.  相似文献   

14.
Hydrolysis of several N alpha-substituted L-arginine 4-nitroanilides with porcine pancreatic kallikrein was studied under different conditions of pH, temperature, and salt concentration. At high substrate concentrations a deviation from Michaelis-Menten kinetics was observed with a significant increase in the hydrolysis rates of almost all substrates. Kinetic data were analyzed on the assumption that porcine pancreatic kallikrein presents an additional binding site with lower affinity for the substrate. Binding to this auxiliary site gives rise to a modulated enzyme species which can hydrolyze an additional molecule of the substrate through a second catalytic pathway. The values of both Michaelis-Menten and catalytic rate constants were higher for the modulated species than for the free enzyme, suggesting a mechanism of enzyme activation by substrate. Kinetic data indicated similar substrate requirements for binding at the primary and auxiliary sites of the enzyme. Tris(hydroxymethyl)aminomethane hydrochloride and NaCl were shown to alter the kinetic parameters of the hydrolysis of N alpha-acetyl-L-Phe-L-Arg 4-nitroanilide by porcine pancreatic kallikrein but not the enzyme activation pattern (ratio of the catalytic constants for the activated and the free enzyme forms). Similar observations were made when the hydrolysis of D-Val-L-Leu-L-Arg 4-nitroanilide was studied under different pH and temperature conditions.  相似文献   

15.
1. The rate equation for a generalized Michaelian type of enzymic reaction mechanism has been analyzed in order to establish how the mechanism should be kinetically designed in order to optimize the catalytic efficiency of the enzyme for a given average magnitude of true and apparent first-order rate constants in the mechanism at given concentrations of enzyme, substrate and product. 2. As long as on-velocity constants for substrate and product binding to the enzyme have not reached the limiting value for a diffusion-controlled association process, the optimal state of enzyme operation will be characterized by forward (true and apparent) first-order rate constants of equal magnitude and reverse rate constants of equal magnitude. The drop in free energy driving the catalysed reaction will occur to an equal extent for each reaction step in the mechanism. All internal equilibrium constants will be of equal magnitude and reflect only the closeness of the catalysed reaction to equilibrium conditions. 3. When magnitudes of on-velocity constants for substrate and product binding have reached their upper limits, the optimal kinetic design of the reaction mechanism becomes more complex and has to be established by numerical methods. Numerical solutions, calculated for triosephosphate isomerase, indicate that this particular enzyme may or may not be considered to exhibit close to maximal efficiency, depending on what value is assigned to the upper limit for a ligand association rate constant. 4. Arguments are presented to show that no useful information on the evolutionary optimization of the catalytic efficiency of enzymes can be obtained by previously taken approaches that are based on the application of linear free-energy relationships for rate and equilibrium constants in the reaction mechanism.  相似文献   

16.
Furanacryloyl-Phe-Gly-Gly has been shown to be a convenient substrate for angiotensin converting enzyme (dipeptidyl carboxypeptidase, EC 3.4.15.1). A detailed kinetic analysis of the hydrolysis of this substrate indicates normal Michaelis-Menten behavior with kcat = 19000 min-1 and KM = 3.0 x 10(-4) M determined at pH 7.5, 25 degrees C. The enzyme is inhibited by phosphate and activated by chloride; maximal activity is observed with 300 mM NaCl. In the absence of added zinc, activity is lost rapidly below pH 7.5 due to spontaneous dissociation of the metal, but in the presence of zinc, the enzyme remains fully active to about pH 6. The pH-rate profile indicates two groups on the enzyme with apparent pK values of 5.6 and 8.4. The substrate specificity of the enzyme has been examined in terms of the fundamental specificity quantity kcat/KM as well as the separate constants by using a series of furanacryloyl-tripeptides. The activity toward furanacryloyl-Phe-Gly-Gly has been compared with that toward the physiological substrates angiotensin I and bradykinin.  相似文献   

17.
A stopped flow kinetic analysis has been performed with a homogeneous protein fraction of plant glutamate dehydrogenase. The enzyme exerts strong negative cooperativity with ammonium as variable substrate. The limiting initial rate constants for low substrate concentrations, as calculated from the kinetic data, indicate that the catalytic efficiency of the enzyme increases at low ammonium concentrations. From this it becomes evident that the reductive amination reaction is highly adaptive to the ammonium environment.  相似文献   

18.
The cold-active protein tyrosine phosphatase found in psychrophilic Shewanella species exhibits high catalytic efficiency at low temperatures as well as low thermostability, both of which are characteristics shared by many cold-active enzymes. The structure of cold-active protein tyrosine phosphatase is notable for the presence of three hydrophobic sites (termed the CA, Zn-1 and Zn-2 sites) behind the loop structures comprising the catalytic region. To identify the structural components responsible for specific enzyme characteristics, we determined the structure of wild-type cold-active protein tyrosine phosphatase at high resolution (1.1 A) and measured the catalytic efficiencies of enzymes containing mutations in the three hydrophobic sites. The bulkiness of the amino acid side chains in the core region of the Zn-1 site strongly affects the thermostability and the catalytic efficiency at low temperatures. The mutant enzyme I115M possessed a higher kcat at low temperatures. Elucidation of the crystal structure of I115M at a resolution of 1.5 A revealed that the loop structures involved in retaining the nucleophilic group and the acid catalyst are more flexible than in the wild-type enzyme.  相似文献   

19.
A kinetic analysis of MspI DNA methyltransferase (M.MspI) is presented. The enzyme catalyzes methylation of lambda-DNA, a 50-kilobase pair linear molecule with multiple M.MspI-specific sites, with a specificity constant (kcat/KM) of 0.9 x 10(8) M-1 s-1. But the values of the specificity constants for the smaller DNA substrates (121 and 1459 base pairs (bp)) with single methylation target or with multiple targets (sonicated lambda-DNA) were less by an order of magnitude. Product inhibition of the M.MspI-catalyzed methylation reaction by methylated DNA is competitive with respect to DNA and noncompetitive with respect to S-adenosylmethionine (AdoMet). The S-adenosylhomocysteine inhibition of the methylation reaction is competitive with respect to AdoMet and uncompetitive with respect to DNA. The presteady state kinetic analysis showed a burst of product formation when AdoMet was added to the enzyme preincubated with the substrate DNA. The burst is followed by a constant rate of product formation (0.06 mol per mol of enzyme s-1) which is similar to catalytic constants (kcat = approximately 0.056 s-1) measured under steady state conditions. The isotope exchange in chasing the labeled methyltransferase-DNA complex with unlabeled DNA and AdoMet leads to a reduced burst as compared with the one involving chase with labeled DNA and AdoMet. The enzyme is capable of exchanging tritium at C-5 of target cytosine in the substrate DNA in the absence of cofactor AdoMet. The kinetic data are consistent with an ordered Bi Bi mechanism for the M.MspI-catalyzed DNA methylation where DNA binds first.  相似文献   

20.
Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号