首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The probability of, and time to, fixation of a mutation in a population has traditionally been studied by the classic Wright–Fisher model where population size is constant. Recent theoretical expansions have covered fluctuating populations in various ways but have not incorporated models of how the environment fluctuates in combination with different levels of density-compensation affecting fecundity. We tested the hypothesis that the probability of, and time to, fixation of neutral, advantageous and deleterious mutations is dependent on how the environment fluctuates over time, and on the level of density-compensation. We found that fixation probabilities and times were dependent on the pattern of autocorrelation of carrying capacity over time and interacted with density-compensation. The pattern found was most pronounced at small population sizes. The patterns differed greatly depending on whether the mutation was neutral, advantageous, or disadvantageous. The results indicate that the degree of mismatch between carrying capacity and population size is a key factor, rather than population size per se, and that effective population sizes can be very low also when the census population size is far above the carrying capacity. This study highlights the need for explicit population dynamic models and models for environmental fluctuations for the understanding of the dynamics of genes in populations.  相似文献   

2.
Growth competition assays have been developed to quantify the relative fitness of HIV-1 mutants. In this article, we develop mathematical models to describe viral/cellular dynamic interactions in the assay system from which the competitive fitness indices or parameters are defined. In our previous HIV-viral fitness experiments, the concentration of uninfected target cells was assumed to be constant (Wu et al. 2006). But this may not be true in some experiments. In addition, dual infection may frequently occur in viral fitness experiments and may not be ignorable. Here, we relax these two assumptions and extend our earlier viral fitness model (Wu et al. 2006). The resulting models then become nonlinear ODE systems for which closed-form solutions are not achievable. In the new model, the viral relative fitness is a function of time since it depends on the target cell concentration. First, we studied the structure identifiability of the nonlinear ODE models. The identifiability analysis showed that all parameters in the proposed models are identifiable from the flow-cytometry-based experimental data that we collected. We then employed a global optimization approach (the differential evolution algorithm) to directly estimate the kinetic parameters as well as the relative fitness index in the nonlinear ODE models using nonlinear least square regression based on the experimental data. Practical identifiability was investigated via Monte Carlo simulations.  相似文献   

3.
This study was designed to identify the rare?type?ABO?blood?groups, B(A) 02, from Eastern China. Three samples with discordant serological results during routine blood type identification and four samples from one sample’ family were selected. All of them were detected by serological method. The exon 6 and 7 of the ABO genes were amplified by PCR and sequenced. They were typed as AsubB by serology and as BO by genotype. In AsubB samples, nt 700C>G mutation was detected in B gene, which was previously defined as B(A)02 alleles. In these seven samples, six showed B(A)02/O01 and one showed B(A)02/O02.B(A)02 allele was found to be more common in this study than B(A)04 which is considered to be more frequent than B(A)02. The careful identification of rare blood types is important for the safety of clinical blood transfusion.  相似文献   

4.
The apoptosis program of physiological cell death elicits a range of non-phlogistic homeostatic mechanisms—“recognition, response and removal”—that regulate the microenvironments of normal and diseased tissues via multiple modalities operating over short and long distances. The molecular mechanisms mediate intercellular signaling through direct contact with neighboring cells, release of soluble factors and production of membrane-delimited fragments (apoptotic bodies, blebs and microparticles) that allow for interaction with host cells over long distances. These processes effect the selective recruitment of mononuclear phagocytes and the specific activation of both phagocytic and non-phagocytic cells. While much evidence is available concerning the mechanisms underlying the recognition and responses of phagocytes that culminate in the engulfment and removal of apoptotic cell bodies, relatively little is yet known about the non-phagocytic cellular responses to the apoptosis program. These responses regulate inflammatory and immune cell activation as well as cell fate decisions of proliferation, differentiation and death. Here, we review current knowledge of these processes, considering especially how apoptotic cells condition the microenvironments of normal and malignant tissues. We also discuss how apoptotic cells that persist in the absence of phagocytic clearance exert inhibitory effects over their viable neighbors, paying particular attention to the specific case of cell cultures and highlighting how new cell-corpse-clearance devices—Dead-Cert® Nanoparticles—can significantly improve the efficacy of cell cultures through effective removal of non-viable cells in the absence of phagocytes in vitro.  相似文献   

5.
The possibility of inducing somatic embryogenesis in petiole cultures of two cultivars of Pelargonium × hortorum and of one cultivar of Pelargonium × domesticum using thidiazuron (TDZ) was investigated. Petioles were cultivated on a modified Murashige and Skoog medium with different concentrations and application periods of TDZ. Regeneration was achieved with all TDZ treatments for all cultivars and was highly variable. Shoots of different shapes and somatic embryo-like structures were observed. Histological examination revealed that no somatic embryos were formed, and regenerants had to be classified as shoots and shoot-like or leaf-like structures. The importance of these results on the classification of regeneration induced by TDZ in these species and on the propagation of these pelargoniums is discussed.  相似文献   

6.
Bifidobacterium adolescentis Int-57 (INT57), isolated from human feces, secretes an amylase. We have shot-gun cloned, sequence analyzed and expressed the gene encoding this amylase in B. longum. The sequenced 2477 bp fragment was homologous to other extracellular amylases. The encoded protein was predicted to be composed of 595 amino acids with a molecular weight of 64 kDa, and was designated AmyB. Highly conserved amylase domains were found in AmyB. The signal sequence and cleavage site was predicted by sequence analysis. AmyB was subcloned into pBES2, a novel E. coliBifidobacterium shuttle vector, to construct pYBamy59. Subsequently, B. longum, with no apparent amylase activity, was transformed with pYBamy59. More than 90% of the amylase activity was detected in the culture broth. This approach may open the way for the development of more efficient expression and secretion systems for Bifidobacterium. Both authors contributed equally Received 17 June 2005; Revisions requested 13 July 2005 and 26 September 2005; Revisions received 12 September 2005 and 8 November 2005; Accepted 11 November 2005  相似文献   

7.
8.
The paper presents a deterministic compartmental model for the transmission dynamics of swine influenza (H1N1) pandemic in a population in the presence of an imperfect vaccine and use of drug therapy for confirmed cases. Rigorous analysis of the model, which stratifies the infected population in terms of their risk of developing severe illness, reveals that it exhibits a vaccine-induced backward bifurcation when the associated reproduction number is less than unity. The epidemiological consequence of this result is that the effective control of H1N1, when the reproduction number is less than unity, in the population would then be dependent on the initial sizes of the subpopulations of the model. For the case where the vaccine is perfect, it is shown that having the reproduction number less than unity is necessary and sufficient for effective control of H1N1 in the population (in such a case, the associated disease-free equilibrium is globally asymptotically stable). The model has a unique endemic equilibrium when the reproduction number exceeds unity. Numerical simulations of the model, using data relevant to the province of Manitoba, Canada, show that it reasonably mimics the observed H1N1 pandemic data for Manitoba during the first (Spring) wave of the pandemic. Further, it is shown that the timely implementation of a mass vaccination program together with the size of the Manitoban population that have preexisting infection-acquired immunity (from the first wave) are crucial to the magnitude of the expected burden of disease associated with the second wave of the H1N1 pandemic. With an estimated vaccine efficacy of approximately 80%, it is projected that at least 60% of Manitobans need to be vaccinated in order for the effective control or elimination of the H1N1 pandemic in the province to be feasible. Finally, it is shown that the burden of the second wave of H1N1 is expected to be at least three times that of the first wave, and that the second wave would last until the end of January or early February, 2010.  相似文献   

9.
10.
We study the final size equation for an epidemic in a subdivided population with general mixing patterns among subgroups. The equation is determined by a matrix with the same spectrum as the next generation matrix and it exhibits a threshold controlled by the common dominant eigenvalue, the basic reproduction number R0{\mathcal{R}_{0}}: There is a unique positive solution giving the size of the epidemic if and only if R0{\mathcal{R}_{0}} exceeds unity. When mixing heterogeneities arise only from variation in contact rates and proportionate mixing, the final size of the epidemic in a heterogeneously mixing population is always smaller than that in a homogeneously mixing population with the same basic reproduction number R0{\mathcal{R}_{0}}. For other mixing patterns, the relation may be reversed.  相似文献   

11.
12.
13.
GrxS14 is a monothiol Glutaredoxin (Grx) from Populus tremula × tremuloides, which has a CGFS active site. GrxS14 is located in the chloroplasts and has been found to occur ether as an apo form or as a holo form with a [2Fe-2S] cluster. The holo form contains two monomers of apo GrxS14 bridged by the iron sulphur center, in the presence of two external glutathione molecules (Bandyopadhyay et al. 2008). The NMR assignments of the GrxS14 are essential for its solution structure determination.  相似文献   

14.

Background and Aims

Increased N availability induced by agricultural fertilization applications and atmospheric N deposition may affect plant nutrient resorption in temperate wetlands. However, the relationship between nutrient resorption and N availability is still unclear, and most studies have focused on leaf nutrient resorption only. The aim of our study was to examine the response of leaf and non-leaf organ nutrient resorption to N enrichment in a temperate freshwater wetland.

Methods

We conducted a 7-year N addition experiment to investigate the effects of increased N loading on leaf, sheath and stem nutrient (N and P) resorption of two dominant species (Deyeuxia angustifolia and Glyceria spiculosa) in a freshwater marsh in the Sanjiang Plain, Northeast China.

Results

Our results showed that, for both leaf and non-leaf organs (sheath and stem), N addition decreased N resorption proficiency and hence increased litter N concentration. Moreover, the magnitude of N addition effect on N resorption proficiency varied with fertilization rates for D. angustifolia sheaths and stems, and G. spiculosa leaves. However, increased N loading produced inconsistent impacts on N and P resorption efficiencies and P resorption proficiency, and the effects only varied with species and plant organs. In addition, N enrichment increased litter mass and altered litter allocation among leaf, sheath and stem.

Conclusions

Our results highlight that leaf and non-leaf organs respond differentially to N addition regarding N and P resorption efficiencies and P resorption proficiency, and also suggest that N enrichment in temperate freshwater wetlands would alter plant internal nutrient cycles and increase litter quality and quantity, and thus substantially influence ecosystem carbon and nutrient cycles.  相似文献   

15.
Albumin, the major circulating protein in blood, can undergo increased glycation in diabetes. One of the main properties of this plasma protein is its strong affinity to bind many therapeutic drugs, including warfarin and ketoprofen. In this study, we investigated whether or not there were any significant changes related to in vitro or in vivo glycation in the structural properties and the binding of human albumin to both therapeutic drugs. Structural parameters, including redox state and ketoamine contents of in vitro and in vivo glycated purified albumins, were investigated in parallel with their affinity for warfarin and ketoprofen. High-performance liquid chromatography was used to determine the free drug concentrations and dissociation constants according to the Scatchard method. An alternative method based on fluorescence spectroscopy was also used to assess drug-binding properties. Oxidation and glycation levels were found to be enhanced in albumin purified from diabetic patients or glycated with glucose or methylglyoxal, after determination of their ketoamine, free thiol, amino group and carbonyl contents. In parallel, significant impairments in the binding affinity of in vitro and in vivo glycated albumin, as indicated by the higher dissociation constant values and confirmed by higher free drug fractions, were observed. To a lesser extent, this alteration also significantly affected diabetic albumin affinity, indicated by a lower static quenching in fluorescence spectroscopy. This work provides useful information supporting in vivo diabetic albumin could be the best model of glycation for monitoring diabetic physiopathology and should be valuable to know if glycation of albumin could contribute to variability in drugs response during diabetes.  相似文献   

16.
17.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

18.
In normal hyaline cartilage the predominant collagen type is collagen type II along with its associated collagens, for example, types IX and XI, produced by normal chondrocytes. In contrast, investigations have demonstrated that in vitro a switch from collagen type II to collagen type I occurs. Some authors have detected collagen type I in osteoarthritic cartilage also in vivo, especially in late stages of osteoarthritis, while others have not. In the light of these diverging results, we have attempted to elucidate which type of collagen, type I and/or type II, is synthesized in the consecutive stages of human osteoarthritis. We performed in situ hybridization and immunohistochemistry with cartilage tissue samples from patients suffering from various stages of osteoarthritis. Furthermore, we quantitated our results on the gene expression of collagen type I and type II with the help of real-time PCR. We found that with the progression of the disease not only collagen type II, but also increasing amounts of collagen type I mRNA were produced. This supports the conclusion that collagen type I gradually becomes one of the factors involved in the pathogenesis of osteoarthritis.  相似文献   

19.
Age and sex structured HIV/AIDS model with explicit incubation period is proposed as a system of delay differential equations. The model consists of two age groups that are children (0–14 years) and adults (15–49 years). Thus, the model considers both mother-to-child transmission (MTCT) and heterosexual transmission of HIV in a community. MTCT can occur prenatally, at labour and delivery or postnatally through breastfeeding. In the model, we consider the children age group as a one-sex formulation and divide the adult age group into a two-sex structure consisting of females and males. The important mathematical features of the model are analysed. The disease-free and endemic equilibria are found and their stabilities investigated. We use the Lyapunov functional approach to show the local stability of the endemic equilibrium. Qualitative analysis of the model including positivity and boundedness of solutions, and persistence are also presented. The basic reproductive number (ℛ0) for the model shows that the adult population is responsible for the spread HIV/AIDS epidemic, thus up-to-date developed HIV/AIDS models to assess intervention strategies have focused much on heterosexual transmission by the adult population and the children population has received little attention. We numerically analyse the HIV/AIDS model to assess the community benefits of using antiretroviral drugs in reducing MTCT and the effects of breastfeeding in settings with high HIV/AIDS prevalence ratio using demographic and epidemiological parameters for Zimbabwe.  相似文献   

20.

Background and Aims

Soil mineralization, nitrification, and dynamic changes in abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were studied to validate our hypothesis that soil mineralization and nitrification decreased along the chronosequence of rice cultivation.

Methods

Paddy soils with a 300, 700 and 2000-year cultivation history (P300, P700 and P2000) were selected to study net mineralization and nitrification processes. Dynamic abundance of AOB and AOA was estimated by quantifying their respective amoA gene copies.

Results

The net mineralization rate was higher for P300 than P700 and P2000. Potential nitrification (N p ) and average nitrification rates (V a ) were similar for P300 and P700 soils, but the simulated potential nitrification rate (V p ) and nitrification rate (k1) was 72 % and 88 % higher for P300 than P700, respectively. V a was about 70 % lower than for P2000 than P300 and P700. AOB amoA gene copies were higher for P300 than P700 and P2000, whereas AOA abundance did not show significant differences. AOB abundance showed a positive response to NH4 supply but AOA did not.

Conclusions

Both N mineralization and nitrification were depressed with increased cultivation time. Archaea responded to mineralization positively rather than nitrification, which suggested that readily mineralized organic matter may play an important role in AOA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号