首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 981 毫秒
1.
In Madin-Darby canine kidney (MDCK) cells, the effect of 2-O-methyl PAF, an inactive analogue of platelet activating factor (PAF), on intracellular Ca2+ concentration ([Ca2+]i) was measured by using the Ca2+-sensitive fluorescent dye fura-2. 2-O-methyl PAF (> or = 15 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. 2-O-methyl PAF-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. 2-O-methyl PAF-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. The 2-O-methyl PAF-induced Ca2+ influx was blocked by nifedipine, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which 2-O-methyl PAF failed to increase [Ca2+]i; also, pretreatment with 2-O-methyl PAF depleted thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not 2-O-methyl PAF)-induced [Ca2+]i rise. These findings suggest that 2-O-methyl PAF evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release.  相似文献   

2.
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular CaCa2+ concentration ([Ca2+]i) and proliferation was examined by using the Ca(2 +)-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (> or =1 micro M) caused an increase of [CaCa2+]i in a concentration-dependent manner. Celecoxib-induced [CaCa2+]i increase was partly reduced by removal of extracellular CaCa2+. Celecoxib-induced CaCa2+ influx was independently suggested by MnCa2+ influx-induced fura-2 fluorescence quench. In Ca(2 +)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2 +)-ATPase, caused a monophasic [CaCa2+]i increase, after which celecoxib only induced a tiny [CaCa2+]i increase; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [CaCa2+]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [CaCa2+]i increases. Overnight incubation with 1 or 10 micro M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [CaCa2+]i increase in renal tubular cells by stimulating both extracellular CaCa2+ influx and intracellular CaCa2+ release and is highly toxic to renal tubular cells in vitro.  相似文献   

3.
In human neuroblastoma IMR32 cells, the effect of the anti-depressant maprotiline on baseline intracellular Ca2+ concentrations ([Ca2+]i) was explored by using the Ca2+-sensitive probe fura-2. Maprotiline at concentrations greater than 100 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50 = 200 microM). Maprotiline-induced [Ca2+]i rise was reduced by 50% by removal of extracellular Ca2+. Maprotiline-induced [Ca2+]i rises were inhibited by half by nifedipine, but was unaffected by verapamil or diiltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was abolished. U73122, an inhibitor of phospholipase C, did not affect maprotiline-induced [Ca2+]i rises. These findings suggest that in human neuroblastoma cells, maprotiline increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum via a phospholiase C-independent manner.  相似文献   

4.
In human prostate cancer PC3 cells, the effect of Y-24180, a presumed specific platelet activation factor (PAF) receptor antagonist, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2 as a Ca2+-sensitive fluorescent probe. Y-24180 (1-10 microM) caused a rapid and sustained [Ca2+]i rise in a concentration-dependent manner. The [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of 10 microM Y-24180 on [Ca2+]i was reduced by 67%; conversely, depletion of Ca2+ stores with 10 microM Y-24180 abolished thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phospholipase C, inhibited ATP-, but not Y-24180-induced [Ca2+]i rise. Activation of protein kinase C with phorbol-12-myristate-13-acetate (PMA) enhanced Y-24180-induced [Ca2+]i rise by 70%. Overnight treatment with 0.1-10 microM Y-24180 inhibited cell proliferation in a concentration-dependent manner. Collectively, these results suggest that Y-24180 acts as a potent and cytotoxic Ca2+ mobilizer in prostate cancer cells, by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release. Since alterations in Ca2+ movement may interfere with many cellular signalling processes unrelated to modulation of PAF receptors, caution must be applied in using this reagent as a selective PAF receptor antagonist.  相似文献   

5.
In Madin-Darby canine kidney (MDCK) cells, effect of NPC-15199 on intracellular Ca2+ concentration ([Ca2+]i) was investigated by using fura-2. NPC-15199 (100-1000 microM) caused a rapid and sustained increase of [Ca2+]i in a concentration-dependent manner (EC50=500 microM). NPC-15199-induced [Ca2+]i rise was prevented by 70% by removal of extracellular Ca2+, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 microM), a mitochondrial uncoupler, and thapsigargin (1 microM), an inhibitor of the endoplasmic reticulum (ER) Ca2(+)-ATPase, caused a monophasic [Ca2+]i rise, respectively, after which the increasing effect of NPC-15199 (1 mM) on [Ca2+]i was substantially attenuated; also, pretreatment with NPC-15199 abolished CCCP- and thapsigargin-induced [Ca2+]i rises. U73122, an inhibitor of phospholipase C, [corrected] abolished 10 microM ATP (but not 1 mM NPC-15199)-induced [Ca2+]i rise. These results suggest that NPC-15199 rapidly increases [Ca2+]i by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via as yet unidentified mechanism(s).  相似文献   

6.
The in vitro effect of desipramine on renal tubular cell is unknown. In Madin-Darby canine kidney (MDCK) cells, the effect of desipramine on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Desipramine (>25 microM) caused a rapid and sustained rise of [Ca2+]i in a concentration-dependent manner (EC50=50 microM). Desipramine-induced [Ca2+]i rise was prevented by 40% by removal of extracellular Ca2+ but was not altered by L-type Ca2+ channel blockers. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which desipramine failed to release more Ca2+; in addition, pretreatment with desipramine partly decreased thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, did not change desipramine-induced [Ca2+]i rise. Incubation with 10-100 microM desipramine enhances or inhibits cell proliferation in a concentration- and time-dependent manner. The inhibitory effect of desipramine on proliferation was not extracellular Ca2+-dependent. Apoptosis appears to contribute to desipramine-induced cell death. Together, these findings suggest that desipramine increases baseline [Ca2+]i in renal tubular cells by evoking both extracellular Ca2+ influx and intracellular Ca2+ release, and can cause apoptosis.  相似文献   

7.
Jan CR  Jiann BP  Lu YC  Chang HT  Huang JK 《Life sciences》2002,71(26):3081-3090
In canine renal tubular cells, effect of olvanil, a presumed cannabinoid and vanilloid receptor modulator, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Olvanil (5-100 microM) caused a rapid and sustained [Ca2+]i rise in a concentration-dependent manner. Olvanil-induced [Ca2+]i rise was prevented by 70 and 90% by removal of extracellular Ca2+ and La3+, respectively, but was not changed by dihydropyridines, verapamil and diltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of olvanil on [Ca2+]i was abolished; also, pretreatment with olvanil partly reduced thapsigargin-induced [Ca2+]i rise. U73122, an inhibitor of phoispholipase C, abrogated ATP-, but partly inhibited olvanil-, induced [Ca2+]i rise. Two cannabinoid receptor antagonists (AM251 and AM281; 5 microM) and a vanilloid receptor antagonist (capsazepine; 100 microM) did not alter olvanil (50 microM)-induced [Ca2+]i rise. These results suggest that olvanil rapidly increases [Ca2+]i in renal tubular cells, by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release via mechanism(s) independent of stimulation of cannabinoid and vanilloid receptors.  相似文献   

8.
The effect of NPC-14686, a potential anti-inflammatory drug, on cytosolic free Ca2+ levels ([Ca2+]i) and growth in PC3 human prostate cancer cells was examined by using fura-2 as a fluorescent Ca2+ indicator and WST-1 as a fluorescent growth dye. NPC-14686 at concentrations above 10 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 100 microM. NPC-14686-induced Ca2+ influx was confirmed by Mn2+ quench of fura-2 fluorescence. The Ca2+ signal was also reduced by removing extracellular Ca2+. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ nearly abolished 200 microM NPC-14686-induced Ca2+ release; and conversely pretreatment with NPC-14686 completely inhibited thapsigargin-induced Ca2+ release. The Ca2+ release induced by 200 microM NPC-14686 was not affected by inhibiting phospholipase C with 2 microM U73122. Overnight treatment with 1-500 microM NPC-14686 decreased cell viability in a concentration-dependent manner. These findings suggest that in human PC3 prostate cancer cells, NPC-14686 increases [Ca2+]i by evoking extracellular Ca2+ influx and releasing intracellular Ca2+ from the endoplasmic reticulum via a phospholiase C-independent manner. NPC-14686 may be cytotoxic to prostate cancer cells.  相似文献   

9.
In human breast cancer cells, the effect of the widely prescribed estrogen diethylstilbestrol (DES) on intracellular Ca2+ concentrations ([Ca2+]i) and cell viability was explored by using fura-2 and trypan blue exclusion, respectively. DES caused a rise in [Ca2+]i in a concentration-dependent manner (EC50 = 15 microM). DES-induced [Ca2+]i rise was reduced by 80 % by removal of extracellular Ca2+. DES-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that DES induced extracellular Ca2+ influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of DES on [Ca2+]i was greatly inhibited. Conversely, pretreatment with DES to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+, whereas ionomycin added afterward still released some Ca2+. These findings suggest that in human breast cancer cells, DES increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum. Acute trypan blue exclusion studies suggest that 10-20 NM DES killed cells in a time-dependent manner.  相似文献   

10.
The effect of nordihydroguaiaretic acid (NDGA), a compound commonly used as a lipoxygenases inhibitor, on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells was investigated. [Ca2+]i was measured by using the Ca2+ -sensitive dye fura-2. NDGA increased [Ca2+]i in a concentration-dependent manner with an EC50 of 30 microM. The Ca2+ signal comprised a gradual and sustained increase. Removal of extracellular Ca2+ partly decreased the NDGA-induced [Ca2+]i increase, suggesting that the Ca2+ signal was due to both extracellular Ca2+ influx and intracellular Ca2+ release. NDGA-induced Ca2+ influx was independently confirmed by measuring NDGA-induced Mn2+ -coupled quench of fura-2 fluorescence. The NDGA-induced Ca2+ influx was not affected by L-type Ca2+ channel blockers. In Ca2+ -free medium, the NDGA-induced [Ca2+]i increase was abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), and conversely, pretreatment with NDGA abolished thapsigargin-induced [Ca2+]i increase. NDGA-induced intracellular Ca2+ release was not altered by inhibition of phospholipase C. Overnight treatment with 20-50 microM NDGA inhibited cell proliferation rate in a concentration-dependent manner. Several other lipoxygenases inhibitors did not alter [Ca2+]i. Collectively, this study shows that in prostate cells, NDGA induced a [Ca2+]i increase via releasing stored Ca2+ from the endoplasmic reticulum in a manner independent of phospholipase C activity, and by causing Ca2+ influx. NDGA also caused cytotoxicity at higher concentrations.  相似文献   

11.
To explore the effect of nortriptyline, a tricyclic antidepressant, on cytosolic free Ca2+ concentrations ([Ca2+]i) in corneal epithelial cells, [Ca2+]i levels in suspended SIRC rabbit corneal epithelial cells were measured by using fura-2 as a Ca2+-sensitive fluorescent dye. Nortriptyline at concentrations between 20-200 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. Nortriptyline-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers econazole and SK&F96365, the phospholipase A2 inhibitor aristolochic acid, and alteration of activity of protein kinase C. In Ca2+-free medium, 200 microM nortriptyline pretreatment greatly inhibited the rise of [Ca2+]i induced by the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin. Conversely, pretreatment with thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ; another endoplasmic reticulum Ca2+ pump inhibitor) nearly abolished nortriptyline-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 decreased nortriptyline-induced [Ca2+]i rise by 75%. Taken together, nortriptyline induced [Ca2+]i rises in SIRC cells by causing phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via store-operated Ca2+ channels.  相似文献   

12.
In Madin-Darby canine kidney (MDCK) cells, the effect of nortriptyline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Nortriptyline (> 10 microM) caused a rapid increase of [Ca2+]i in a concentration-dependent manner (EC50 = 75 microM). Nortriptyline-induced [Ca2+]i increase was prevented by 40% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i, increase, after which the increasing effect of nortriptyline on [Ca2+], was abolished; also, pretreatment with nortriptyline reduced a large portion of thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, abolished ATP (but not nortriptyline)-induced [Ca2+]i increase. Overnight incubation with 10 microM nortriptyline decreased cell viability by 16%, and 50 microM nortriptyline killed all cells. Prechelation of cytosolic Ca2+ with BAPTA did not alter nortriptyline-induced cell death. These findings suggest that nortriptyline rapidly increased [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and was cytotoxic at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

13.
The effect of the oxidant t-butyl hydroperoxide on intracellular free levels of Ca2+ ([Ca2+]i) in PC12 pheochromocytoma cells was examined by using fura-2 as a fluorescent dye. t-Butyl hydroperoxide induced an increase in [Ca2+]i in a concentration-dependent fashion between 50-250 microM with an EC50 of 100 microM. The [Ca2+]i signal consisted of a slow rise and a sustained phase. The response was decreased by 65% by removal of extracellular Ca2+. In Ca(2+)-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) abolished 150 microM t-butyl hydroperoxide-induced [Ca2+]i increase, and conversely, pretreatment with t-butyl hydroperoxide abrogated thapsigargin-induced [Ca2+]i increase. The 150 microM t-butyl hydroperoxide-induced [Ca2+]i increase in Ca2+ medium was reduced by 42 +/- 5% by pretreatment with 0.1 microM nicardipine but not by 10 microM verapamil, nifedipine, nimodipine or diltiazem, or by 50 microM La3+ or Ni2+. Pretreatment with 10 microM t-butyl hydroperoxide for 40 min did not affect 10 microM ATP-induced [Ca2+]i increase. Together, the results show that t-butyl hydroperoxide induced significant [Ca2+]i increase in PC12 cells by causing store Ca2+ release from the thapsigargin-sensitive endoplasmic reticulum pool in an inositol 1,4,5-trisphosphate-independent manner and by inducing Ca2+ influx via a nicardipine-sensitive pathway.  相似文献   

14.
The effect of ketoconazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2+ levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 microM and above increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The ketoconazole-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 50 microM ketoconazole, thapsigargin-(1 microM)-induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change ketoconazole-induced [Ca2+]i rises. At concentrations between 5 and 100 microM, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 microM ketoconazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2+]i rise.  相似文献   

15.
The effect of the antidepressant paroxetine on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unclear. This study explored whether paroxetine changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Paroxetine at concentrations between 100-1,000 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 50% by removing extracellular Ca2+. Paroxetine-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and protein kinase C modulators. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished paroxetine-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not alter paroxetine-induced [Ca2+]i rise. Paroxetine at 10-50 microM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Propidium iodide staining suggests that apoptosis plays a role in the death. Collectively, in OC2 cells, paroxetine induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via store-operated Ca2+ channels in a manner regulated by protein kinase C and phospholipase A2. Paroxetine (up to 50 microM) induced cell death in a Ca2+-independent manner.  相似文献   

16.
The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS), a presumed phospholipase C activator, on cytosolic free Ca2+ concentrations ([Ca2+]i) in PC3 human prostate cancer cells is unclear. This study explored whether m-3M3FBS changed basal [Ca2+]i levels in suspended PC3 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. M-3M3FBS at concentrations between 10-50 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 60% by removing extracellular Ca2+. M-3M3FBS-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca2+-free medium, 30 microM m-3M3FBS pretreatment greatly inhibited the [Ca2+]i rise induced by the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin or BHQ. Conversely, pretreatment with thapsigargin, BHQ or cyclopiazonic acid reduced the major part of m-3M3FBS-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not much alter m-3M3FBS-induced [Ca2+]i rise. Collectively, in PC3 cells, m-3M3FBS induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via store-operated Ca2+ channels.  相似文献   

17.
Jan CR  Tseng CJ 《Life sciences》1999,65(23):2513-2522
The effect of miconazole on intracellular calcium levels ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells was studied using fura-2 as the Ca2+ indicator. Miconazole increased [Ca2+]i dose-dependently at concentrations of 5-100 microM. The [Ca2+]i transient consisted of an initial rise, a gradual decay and an elevated plateau (220 s after addition of the drug). Removal of extracellular Ca2+ partly reduced the miconazole response. Mn2+ quench of fura-2 fluorescence confirmed that miconazole induced Ca2+ influx. The miconazole-sensitive intracellular Ca2+ store overlapped with that sensitive to thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+ pump, because 20 microM miconazole depleted the thapsigargin (1 microM)-sensitive store, and conversely, thapsigargin abolished miconazole-induced internal Ca2+ release. Miconazole (20-50 microM) partly inhibited the capacitative Ca2+ entry induced by 1 microM thapsigargin, measured by depleting intracellular Ca2+ store in Ca(2+)-free medium followed by addition of 10 mM CaCl2. Miconazole induced capacitative Ca2+ entry on its own. Pretreatment with 0.1 mM La3+ partly inhibited 20 microM miconazole-induced Mn2+ quench of fura-2 fluorescence and [Ca2+]i rise, suggesting that miconazole induced Ca2+ influx via two pathways separable by 0.1 mM La3+. Miconazole-induced internal Ca2+ release was not altered when the cytosolic level of inositol 1,4,5-trisphosphate (IP3) was substantially inhibited by the phospholipase C inhibitor U73122.  相似文献   

18.
Chou KJ  Tseng LL  Cheng JS  Wang JL  Fang HC  Lee KC  Su W  Law YP  Jan CR 《Life sciences》2001,69(13):1541-1548
The effect of CP55,940, a presumed CB1/CB2 cannabinoid receptor agonist, on intracellular free Ca2+ levels ([Ca2+]i) in Madin-Darby canine kidney cells was examined by using the fluorescent dye fura-2 as a Ca2+ indicator. CP55,940 (2-50 microM) increased [Ca2+]i concentration-dependently with an EC50 of 8 microM. The [Ca2+]i signal comprised an initial rise and a sustained phase. Extracellular Ca2+ removal decreased the maximum [Ca2+]i signals by 32+/-12%. CP55,940 (20 microM)-induced [Ca2+]i signal was not altered by 5 microM of two cannabinoid receptor antagonists, AM-251 and AM-281. CP55,940 (20 microM)-induced [Ca2+]i increase in Ca2+-free medium was inhibited by 86+/-3% by pretreatment with 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor. Conversely, pretreatment with 20 microM CP55,940 in Ca2+-free medium for 6 min abolished thapsigargin-induced [Ca2+]i increases. CP55,940 (20 microM)-induced intracellular Ca2+ release was not inhibited when inositol 1,4,5-trisphosphate formation was abolished by suppressing phospholipase C with 2 microM U73122. Collectively, this study shows that CP,55940 induced significant [Ca2+]i increases in canine renal tubular cells by releasing stored Ca2+ from the thapsigargin-sensitive pools in an inositol 1,4,5-trisphosphate-independent manner, and also by causing extracellular Ca2+ entry. The CP55,940's action appears to be dissociated from stimulation of cannabinoid receptors.  相似文献   

19.
The effect of histamine on intracellular free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatoma cells were evaluated using fura-2 as a fluorescent Ca2+ dye. Histamine (0.2-5 microM) increased [Ca2+]i in a concentration-dependent manner with an EC50 value of about 1 microM. The [Ca2+]i response comprised an initial rise, a slow decay, and a sustained phase. Extracellular Ca2+ removal inhibited 50% of the [Ca2+]i signal. In Ca2+-free medium, after cells were treated with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 5 microM histamine failed to increase [Ca2+]i. After pretreatment with 5 microM histamine in Ca2+-free medium for 4 min, addition of 3 mM Ca2+ induced a [Ca2+]i increase of a magnitude 7-fold greater than control. Histamine (5 microM)-induced intracellular Ca2+ release was abolished by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122), and by 5 microM pyrilamine but was not altered by 50 microM cimetidine. Together, this study shows that histamine induced [Ca2+]i increases in human hepatoma cells by stimulating H1, but not H2, histamine receptors. The [Ca2+]i signal was caused by Ca2+ release from thapsigargin-sensitive endoplasmic reticulum in an inositol 1,4,5-trisphosphate-dependent manner, accompanied by Ca2+ entry.  相似文献   

20.
The effect of miconazole, an anti-fungal drug, on cytoplasmic free Ca2+ concentrations ([Ca2+]i) in human osteosarcoma cells (MG63) was explored by using the Ca2+-sensitive dye fura-2. Miconazole acted in a concentration-dependent manner with an EC50 of 75 microM. The Ca2+ signal comprised a gradual rise and a sustained elevation. Removal of extracellular Ca2+ reduced 50% of the signal. In Ca2+-free medium, the [Ca2+]i rise induced by 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) was completely inhibited by pretreatment with 20 microM miconazole. Pretreatment with thapsigargin partly inhibited miconazole-induced Ca2+ release. The miconazole-induced Ca2+ release was not changed by inhibition of phospholipase C with 2 microM U73122. By using tetrazolium as a fluorescent probe, it was shown that 10-100 microM miconazole decreased cell proliferation rate in a concentration-dependent manner. Collectively, this study shows that miconazole induces [Ca2+]i rises in human osteosarcoma cells via releasing Ca2+ mainly from the endoplasmic reticulum in a manner independent of phospholipase C activity, and by causing Ca2+ influx. Furthermore, miconazole may be cytotoxic to the cells at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号