首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Thirteen naturally occurring dwarf lines of pearl millet [Pennisetum americanum (L.) Leeke], identified from the world collection, varied for several morphological and agronomic characters. Extreme dwarfs were characterized by a tufted growth habit which could be distinguished from the time of germination, while the other dwarf lines could be distinguished only after anthesis. The F1 hybrids between the tall and dwarf genotypes were tall, indicating that dwarfness is a recessive trait. In 10 out of the 13 crosses, the F2 segregation ratio was three tall to one dwarf (31) suggesting that the dwarfness is controlled by a single recessive gene, while the height differences in 3 of the dwarfs (IP 8056, IP 8210 and IP 8214) were controlled by more than one gene as they showed continuous variation for plant height in F2. When the remaining 10 single gene dwarfs were crossed to either d 1 (Tift 238) or d 2 (Tift 23 DB) dwarfs, only 2 crosses produced tall F2 hybrids and they segregated for height in F2 indicating that these 2 dwarfs are non-allelic to d 1 and d 2. Reciprocal crosses of these 2 dwarfs produced tall F1 hybrids and showed a dihybrid segregation of 934 in F2 indicating that the dwarfing genes of these 2 parents are non-allelic to each other. These non-allelic dwarfs were assigned the gene symbols d 3 (IP 10401), and d 4 (IP 10402).Submitted as J.A. No. 429 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

2.
The concentrations of endogenous gibberellins (GAs) were determined by combined gas chromatography-mass spectrometry in shoots of five non-allelic dwarfs of pearl millet Pennisetum glaucum (L.) R. Br. One mutant (d3), with an extreme dwarf phenotype, was found to be deficient in all GAs measured; the others (d1, d2, d4 and the quantitatively inherited dwarf) had similar levels of GAs to the tall genotype. Only the GA-deficient dwarf recovered the tall phenotype in response to applying GA3 up to the adult stage, while the others showed slight to moderate responses at the seedling stage, depending on the season, and no response at later stages. The d1, d3 and d4 dwarfs had short coleoptiles. A wide range of coleoptile lengths with a normal distribution pattern was observed in the tall, d2 and the quantitatively inherited dwarf, suggesting that there is polygenic control of this trait.  相似文献   

3.
The d2 dwarfing gene in pearl millet [Pennisetum glaucum (L.) R. Br.] carries a yield penalty due to an associated reduction in individual grain mass. This reduction, however, varies with genetic background, indicating that it may be possible to select against poor grain filling in d2 dwarfbackgrounds, given an effective measure of grain filling. This study was conducted to assess genetic variability forgrain-filling ability (in contrast to simply grain size),and its relationship to grain yield,indwarf pearl milletrestorer (R) lines. The grain-filling ability (GFA) of an individual R line was defined as the least squares estimate of its effect on individual grain mass in the analysis of variance, following a linear covariance adjustment for grain number. The study was based on 93dwarf hybrids involving31 d2 dwarfR-lines, evaluated over 3 years. Half of the variation in individual grain mass in the 93 hybrids was related to variation in grain number. Covariance adjustment in individual grain mass for grain number resulted in highly significant differences among hybrids and R lines in GFA. The R-line combining ability for GFA accounted for 26% of the variation in the R-line combining ability for yield, compared to 46% for the combining ability for grain number, and just 8% for the combining ability of individual grain mass. The combining ability for GFA was independent of the combining ability for various pre-flowering effects, including grain number, but was related to the combining ability for individual grain mass and harvest index. Improvement in individual grain mass achieved through selection for GFA should translate directly into yield improvement, whereasimprovement by direct selectionfor individual grain mass is less-likely to do so. Received: 9 April 2000 / Accepted: 16 May 2000  相似文献   

4.
The use of different sources of cytoplasmic male sterility (CMS) in hybrid seed production of pearl millet [Pennisetum glaucum (L.) R. Br.] is advocated to avoid possible disease epidemics occurring due to cytoplasmic uniformity. The effects of commercially unexploited, but potentially exploitable, sources of CMS, like A2, A3 and A4, on downy mildew [Sclerospora graminicola (Sacc.) Schroet] incidence were studied by using the disease incidence of isonuclear hybrids with male-sterile and fertile cytoplasm. The mean downy mildew incidence of hybrids carrying different male-sterile cytoplasm was similar to that of hybrids retaining the fertile cytoplasm. The cytoplasm accounted for only 0.6% of the total variation and its effect was non-significant; pollinators could explain most of the variation in determining the disease incidence of hybrids. This suggested that these male-sterile cytoplasms are not linked to downy mildew susceptibility and thus can be exploited commercially to broaden the cytoplasmic base of the male-sterile lines and, ultimately, of hybrids.  相似文献   

5.
The existence of hybrid dwarfs from intraspecific crosses in wheat (Triticum aestivum) was described 100 years ago, and the genetics underlying hybrid dwarfness are well understood. In this study, we report a dwarf phenotype in interspecific hybrids between wheat and rye (Secale cereale). We identified two rye lines that produce hybrid dwarfs with wheat and have none of the hitherto known hybrid dwarfing genes. Genetic analyses revealed that both rye lines carry a single allelic gene responsible for the dwarf phenotype. This gene was designated Hdw‐R1 (Hybrid dwarf‐R1). Application of gibberellic acid (GA3) to both intraspecific (wheat–wheat) and interspecific (wheat–rye) hybrids showed that hybrid dwarfness cannot be overcome by treatment with this phytohormone. Histological analysis of shoot apices showed that wheat–rye hybrids with the dwarf phenotype at 21 and 45 days after germination failed to develop further. Shoot apices of dwarf plants did not elongate, did not form new primordia and had a dome‐shaped appearance in the seed. The possible relationship between hybrid dwarfness and the genes responsible for the transition from vegetative to generative growth stage is discussed.  相似文献   

6.
林佳琦  李燕培  肖世祥  冯斗  禤维言 《广西植物》2022,42(11):1921-1928
香蕉的矮化突变是香蕉无性繁殖后代最常见的表型变异之一,但其变异的分子调控机理目前尚未研究清楚; 而内源赤霉素是影响植物株高的重要激素之一,GA3-氧化酶是赤霉素生物合成后期的关键酶。为探究GA3-氧化酶编码基因对香蕉矮化的分子调控机理,该研究以威廉斯B6矮化突变体及其野生型亲本为材料,通过RT-PCR技术克隆得到矮化香蕉及其野生型亲本GA3ox基因的全长cDNA序列,并对其推测的氨基酸序列进行比对分析,同时利用qRT-PCR技术对GA3ox基因在不同组织中的表达水平差异进行分析。结果表明:(1)矮化香蕉GA3ox-A和野生型香蕉GA3ox-G的ORF长度均为864 bp,均编码287个氨基酸,经序列比对分析发现两条氨基酸序列之间存在5个位点的差异,从而产生具有不同性质的蛋白质。(2)氨基酸序列同源性分析表明,矮化香蕉GA3ox的氨基酸序列与油棕、海枣、椰子的同源性最高。(3)qRT-PCR显示,GA3ox基因在矮化香蕉叶片和茎秆中的表达水平整体上低于野生型,其中GA3ox在野生型茎秆中的表达水平是矮化植株的2.2~32倍。综上推测,GA3ox基因可能对香蕉茎杆的矮化变异具有重要的调控作用。该研究结果为揭示香蕉矮化突变的分子机制与筛选优良矮化香蕉株系奠定了基础。  相似文献   

7.
The most common dwarfing genes in wheat, Rht-B1b and Rht-D1b, classified as gibberellin-insensitive (GAI) dwarfing genes due to their reduced response to exogenous GA, have been verified as encoding negative regulators of gibberellin signaling. In contrast, the response of gibberellin-responsive (GAR) dwarfing genes, such as Rht12, to exogenous GA is still unclear and the role of them, if any, in GA biosynthesis or signaling is unknown. The responses of Rht12 to exogenous GA3 were investigated on seedling vigour, spike phenological development, plant height and other agronomic traits, using F2∶3 and F3∶4 lines derived from a cross between Ningchun45 and Karcagi-12 in three experiments. The application of exogenous GA3 significantly increased coleoptile length and seedling leaf 1 length and area. While there was no significant difference between the dwarf and the tall lines at the seedling stage in the responsiveness to GA3, plant height was significantly increased, by 41 cm (53%) averaged across the three experiments, in the GA3-treated Rht12 dwarf lines. Plant height of the tall lines was not affected significantly by GA3 treatment (<10 cm increased). Plant biomass and seed size of the GA3-treated dwarf lines was significantly increased compared with untreated dwarf plants while there was no such difference in the tall lines. GA3-treated Rht12 dwarf plants with the dominant Vrn-B1 developed faster than untreated plants and reached double ridge stage 57 days, 11 days and 50 days earlier and finally flowered earlier by almost 7 days while the GA3-treated tall lines flowering only 1–2 days earlier than the untreated tall lines. Thus, it is clear that exogenous GA3 can break the masking effect of Rht12 on Vrn-B1 and also restore other characters of Rht12 to normal. It suggested that Rht12 mutants may be deficient in GA biosynthesis rather than in GA signal transduction like the GA-insensitive dwarfs.  相似文献   

8.
 Dwarfing genes were detected following intra- and interspecific hybridization in Lens. Dwarf phenotypes are controlled by two complementary dominant genes, Df 1 and Df 2. These two genes are suppressed by the dominant allele of the dwarf inhibitor genes, Dfi. The dominant allele of the Df gene was detected in L. ervoides from Ethiopia and Uganda and in a cultivated line of L. culinaris from Ethiopia, that of the Df 2 gene in a L. ervoides accession from Israel. The dominant allele of the Dfi gene was detected in segregating populations of hybrids between L. ervoides accessions from Israel and Uganda. Using the homozygous dwarf, dfidfi, Df 1 Df 1, Df 2 Df 2 as the parent in interspecific crosses, we detected the dominant allele of the Dfi gene in one accession of L. nigricans and another of L. lamottei. The appearance of dwarf plants in segregating populations of hybrids between the cultivated line from Ethiopia and L. ervoides from Israel indicate that the cultivated line possesses the dominant allele of the Dfi gene. Dwarf plants were characterized by short internodes, a short leaf axis and smaller, convex leaflets. Spraying the dwarf plants with gibberellic acid induced internode and lead-axis elongation but had no effect on leaflet shape and size. When the dwarfs and their parental lines were grown in the dark they had the same internode length. Received: 12 April 1997 / Accepted: 25 June 1997  相似文献   

9.
Large-scale cultivation of pearl millet [Pennisetum glaucum (L.) R. Br. F1 hybrids in India has led to increased incidence of downy-mildew (Sclerospora graminicola). There is concern that the A1 male-sterile cytoplasm used in all the hybrids released so far is responsible for this increase. The influence of A1 malesterile cytoplasm on downy-mildew incidence in pearl millet was studied by comparing the disease reaction of 40 pairs of F1 hybrids, each pair carrying respectively a1 male-sterile and normal B cytoplasm. Mean downy-mildew incidence was similar in the hybrids carrying either A1 male-sterile or B cytoplasm. The general combining ability of lines with and without A1 cytoplasm was found to be similar for downy-mildew incidence. These results indicated that in pearl millet A1 cytoplasm is not associated with increased downymildew incidence. The possible danger of using only one source of cytoplasm has been briefly discussed.  相似文献   

10.
Semi-dwarfism is an agronomically important trait in breeding for stable high yields and for resistance to damage by wind and rain (lodging resistance). Many QTLs and genes causing dwarf phenotype have been found in maize. However, because of the yield loss associated with these QTLs and genes, they have been difficult to use in breeding for dwarf stature in maize. Therefore, it is important to find the new dwarfing genes or materials without undesirable characters. The objectives of this study were: (1) to figure out the inheritance of semi-dwarfism in mutants; (2) mapping dwarfing gene or QTL. Maize inbred lines ‘18599’ and ‘DM173’, which is the dwarf mutant derived from the maize inbred line ‘173’ through 60Co-γ ray irradiation. F2 and BC1F1 population were used for genetic analysis. Whole genome resequencing-based technology (QTL-seq) were performed to map dwarfing gene and figured out the SNP markers in predicted region using dwarf bulk and tall bulk from F2 population. Based on the polymorphic SNP markers from QTL-seq, we were fine-mapping the dwarfing gene using F2 population. In F2 population, 398 were dwarf plants and 135 were tall plants. Results of χ2 tests indicated that the ratio of dwarf plants to tall plants was fitted to 3:1 ratio. Furthermore, the χ2 tests of BC1F1 population showed that the ratio was fitted to 1:1 ratio. Based on QTL-seq, the dwarfing gene was located at the region from 111.07 to 124.56 Mb of chromosome 9, and we named it rht-DM. Using traditional QTL mapping with SNP markers, the rht-DM was narrowed down to 400 kb region between SNP-21 and SNP-24. The two SNPs were located at 0.43 and 0.11 cM. Segregation analysis of F2 and BC1F1 indicated that the dwarfing gene was likely a dominant gene. This dwarfing gene was located in the region between 115.02 and 115.42 Mb on chromosome 9.  相似文献   

11.
Summary Pearl millet, Pennisetum americanum L. Leeke-napiergrass, Pennisetum purpureum Schum. amphiploids (2n=42) were crossed with pearl millet X Pennisetum squamulatum Fresen. interspecific hybrids (2n=41) to study the potential of germplasm transfer from wild Pennisetum species to pearl millet. These two interspecific hybrids were highly cross-compatible and more than two thousand trispecific progenies were produced from 17 double crosses. All doublecross hybrids were perennial and showed a wide range of morphological variations intermediate to both parents in vegetative and inflorescence characteristics. Some crosses resulted in sublethal progenies. Chromosomes paired mainly as bivalents (¯x15.88) or remained as univalents. At metaphase I, trivalents, quadrivalents, an occasional hexavalent and a high frequency of bivalents indicated some homeology among the genomes of the three species. Delayed separation of bivalents, unequal segregation of multivalents, lagging chromosomes, and chromatin bridges were observed at anaphase I. Although approximately 93% of the double-cross hybrids were male-sterile, pollen stainability in male-fertile plants ranged up to 94%. Seed set ranged from 0 to 37 seed per inflorescence in 71 plants under open-pollinated conditions. Apomictic embryo sac development was observed in double-cross progenies when crosses involved a pearl millet x P. squamulatum apomictic hybrid as pollen parent. These new double-cross hybrids may serve as bridging hybrids to transfer genes controlling apomixis and other plant characteristics from the wild Pennisetum species to pearl millet.  相似文献   

12.
Among the various available sources of male-sterile cytoplasm in pearl millet [Pennisetum glaucum (L.) R.Br.], the A1 source has been exploited the most for the breeding of commercial F1 hybrids. The effect of this source on the combining ability (CA) for smut severity was studied since it is the CA that determines the performance of hybrids. The effect was estimated by comparing the CA estimates of 5 pairs of lines and 35 pairs of crosses with and without A1 cytoplasm. The cytoplasm showed either a significantly desirable or at least no adverse effect on the CA of 4 out of the 5 line pairs and 56 out of 70 pairs of comparison of crosses in two environments. The differential effect of cytoplasm in some pairs might be due to its interaction with nuclear genes. These results further substantiated that the A1 cytoplasm is not linked with increased smut severity in pearl millet hybrids.  相似文献   

13.
Dwarfing and sensitivity to the duration of a single inductive dark period for flowering ofPharbitis nil in F2 progeny of a cross between the tall strain Tendan, and the dwarf, Kidachi appear to be controlled by the alleles at two independent loci. Progeny of a similar cross between the tall strain Violet and the dwarf Kidachi at F2 and F3 also showed single locus segregation for tall: dwarf plants. In this cross, differences in photoperiodic response could be identified in F3 families but they were not simply inherited. There was some evidence of difficulties with classification of the F2 plants, but also, the flowering of the F1 between the two less sensitive strains Tendan and Violet indicated complex inheritance of their photoperiodic response. Complementary dominant alleles at three independent loci may be necessary for flowering in even shorter dark periods with the sensitive strain Kidachi. The dwarf strain Kidachi has a reduced gibberellin (GA) content (Barendse and Lang 1972), it flowers in a short dark period without terminal flowering, and it responds positively to GA application both for flowering and growth. However, since control of dwarfing and photoperiodic sensitivity can be separated genetically, there is no strick link between the gibberellin responsiveness of Kidachi for its growth and flowering. Despite the complexity of flowering genetics in Violet×Kidachi, a short-dark-period-sensitive, terminal flowering and tall F7 line was obtained in a pedigree previously held heterozygous for the dwarf: tall character but not selected for flowering time. Thus, flowering in a short dark period can also be obtained in the presence of the non-dwarfing allele from strain Violet, again demonstrating genetic independence.  相似文献   

14.
Four near-isonuclear polycytoplasmic versions of 81A and two of Pb 402A male-sterile lines of pearl millet (Pennisetum typhoides) were used in factorial matings with five inbred male testers in different combinations in three sets. The cytoplasmic differences were studied for several agronomic traits using mean values and general combining effects (gca) of male-sterile lines, and specific combining ability effects of hybrids. The fertility/ sterility behaviour of different male-sterile lines in crosses with common male parents was also studied. Significant differences among near-isonuclear polycytoplasmic lines were observed in mean values for a few traits such as plant height, leaf length and peduncle length, but the differences for combining ability were more pronounced. The A3 cytoplasm was a better general combiner than the A2 cytoplasm for grain yield and both A2 and A3 cytoplasms were better general combiners for leaf length and peduncle length. In addition, superiority of A3 cytoplasm for gca was observed for plant height and ear characters over the A2 cytoplasm in set II. A differential behaviour of cytoplasms, both in combination with a common pollinator and across pollinators, was observed for several traits. The results provide evidence for the distinctiveness of different cytoplasmic sources in pearl millet and for the influence of cytoplasmic factors on the phenotypic expression of nuclear genes. A diversification of male sterility sources in the breeding of pearl millet hybrids is suggested.  相似文献   

15.
Results are reported of crossing a dwarf seed stalk line (mean height 44.8 cm) from Israel with five inbred lines of the Rijnsburger type each having normal tall seed stalks (mean heights 83.1–105.9 cm). The seed stalk height of F1 generations from these crosses was slightly greater than that of the Rijnsburger parents but segregation occurred in the F2 giving plants which could be considered ‘dwarf’ and ‘normal’ with respect to seed stalk height. Selfing individual F2‘dwarf’ plants produced F3 progenies whose mean heights were in the dwarf range, and were significantly correlated with those of their F2 parent. The results obtained in the F2 and F3 families suggest that although a major recessive gene for dwarfness may be present, substantial minor gene and environmental variation is also involved.  相似文献   

16.
Fertile transgenic pearl millet plants expressing a phosphomannose isomerase (PMI) transgene under control of the maize ubiquitin constitutive promoter were obtained using the transformation system described here. Proliferating immature zygotic embryos were used as target tissue for bombardment using a particle inflow gun. Different culture and selection strategies were assessed in order to obtain an optimised mannose selection protocol. Stable integration of the manA gene into the genome of pearl millet was confirmed by PCR and Southern blot analysis. Stable integration of the manA transgene into the genome of pearl millet was demonstrated in T1 and T2 progeny of two independent transformation events with no more than four to ten copies of the transgene. Similar to results obtained from previous studies with maize and wheat, the manA gene was shown to be a superior selectable marker gene for improving transformation efficiencies when compared to antibiotic or herbicide selectable marker genes.Abbreviations 2,4-D: 2,4-Diclorophenoxyacetic acid - IAA: Indole acetic acid - ICRISAT: International Crops Research Institute for the Semi-Arid Tropics - IZEs Immature zygotic embryos Communicated by H. Lörz  相似文献   

17.
Summary Over 300 landraces of pearl millet were collected in Burkina Faso and grown at the Coastal Plain Experiment Station in Tifton/GA. At Tifton, these landraces are predominantly tall and late-maturing. The photoperiod requirements of these landraces hinder evaluation of their performance in the field and their use in breeding programs. A conversion program has been initiated to transfer genes for dwarf stature and early flowering into the tall, late-maturing landraces. The inbred Tift 85DB is being used as a donor of genes for the dwarf and early characteristics, and was crossed to nine randomly selected landraces from Burkina Faso. The parents, F1, F2, and backcrosses to each parent were grown in the field and evaluated for plant height at anthesis and time in days from planting to anthesis. In general, plant height of F1s was taller than the tallest parent, and in all crosses the maturity of F1s was intermediate between the parents. Numbers of loci conferring height varied among crosses, ranging from 0 to 9.6, and averaged 1.6. Estimated numbers of loci conferring maturity ranged from 0 to 12.8 and averaged 3.4. Broad-sense heritability estimates for height and maturity averaged 60.2 and 65.7%, respectively. Corresponding narrow-sense estimates averaged 23.8 and 48.2%. Joint scaling tests revealed that additive-genetic effects were highly significant for both traits, but dominance and epistatic-genetic effects contributed to the inheritance of each trait in some crosses. The low gene numbers, high heritability estimates, and preponderance of additive-genetic effects suggest that selection for these traits should be effective.  相似文献   

18.
HENSON  I. E. 《Annals of botany》1984,53(1):1-12
Using detached leaves, two cultivars of pearl millet [Pennisetumamericanum (L.) Leeke], B282 and Serere 39, were assessed forvariation in the capacity to accumulate ABA in response to waterstress. Significant differences in ABA accumulation were detectedbetween cultivars and between different inbred lines withina cultivar, but within lines there was much less variation inthis character. In crosses between individual lines of B282(low ABA) and Serere 39 (high ABA), ABA accumulation in theF1 was mid-way between parental values, indicating additivegenetic control and lack of dominance. Selfed progeny of a B282 x Serere 39 cross were selected forcontrasting ABA accumulation in the F2 to F4 generations. Asixfold range in ABA accumulation was found amongst 207 F2 progeny.This increased to nearly ninefold at F3 and F4. Regression analysisindicated high heritability of ABA accumulation and rapid approachto homozygosity. As the cross studied involved a dwarf (B282) and a tall (Serere39) parent, segregation occurred for height as well as for ABA,though not entirely independently. Tall F3 progeny had significantlyhigher ABA contents than dwarf progeny and high ABA was thereforeassociated with other traits (e.g. large leaves, high leaf percent d. wt) characteristic of tall plants. Nevertheless, therewas a substantial range of ABA content within both groups whichwas uncorrelated with height and other characters. The potential use of the selections in studies on drought responseis briefly discussed. Pennisetum americanum (L.), Leeke, pearl millet, abscisic acid accumulation, water stress, genetic differences, inheritance  相似文献   

19.
Based on visual assessment of disease severity, previous studies reported that tall genotypes tend to be more severely affected by Fusarium crown rot (FCR) in wheat and barley. To clarify whether tall and dwarf genotypes have different susceptibility to FCR or whether it takes longer for Fusarium pathogens to infect dwarf genotypes, histological analyses were conducted with two pairs of near isogenic lines (NILs) for a semi‐dwarfing gene in barley. This analysis showed that F. pseudograminearum hyphae were detected earlier and proliferated more rapidly during the time‐course of FCR development in the tall isolines. Histological analysis showed that cell densities of the dwarf isolines were significantly higher than those of the tall isolines due to reduced lengths and widths of cells, and FCR severity was strongly correlated with cell density. An analysis with real‐time quantitative polymerase chain reaction detected a higher amount of F. pseudograminearum in the tall isolines at each of the time points assessed during FCR development. These results support the hypothesis that the increased cell density associated with dwarf genes could act as a physical barrier to the spread of FCR in cereals.  相似文献   

20.
We present data on the evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). A defective Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and its entire 4531 bp sequence has been determined. When the pearl millet Ac-like sequence is aligned with the maize Ac sequence, it is found that there is approximately 70% DNA similarity in the central region spanning most of maize Ac exon II and all of exon III. In addition, there are two smaller regions of similarity at the Ac terminii. Besides these three major structural similarities, Pennisetum Ac has two large regions, one 5 and one 3, that show little similarity to Zea Ac. Furthermore, most of the sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between the central region of maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. Conserved DNA and amino acid sequence motifs are also examined. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet and have thus existed in the grasses for at least 25 million years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号