首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adhesion of circulating leukocytes to the vascular endothelium during inflammation is mediated in part by their interaction with the endothelial-leukocyte adhesion molecule ELAM-1. ELAM-1, a member of the LEC-CAM family of cell adhesion molecules, expresses an N-terminal carbohydrate recognition domain (CRD) homologous to various calcium-dependent mammalian lectins. However, the contribution of the CRD to cell adhesion and its carbohydrate binding specificity have not been elucidated. This study demonstrates that transfection of a human fucosyltransferase cDNA into nonmyeloid cell lines confers ELAM-1--dependent endothelial adhesion. Binding activity correlates with de novo cell surface expression of the sialylated Lewis x tetrasaccharide, whose biosynthesis is determined by the transfected fucosyltransferase cDNA. We propose that specific alpha(1,3)fucosyltransferases regulate cell adhesion to ELAM-1 by modulating cell surface expression of one or more alpha(2,3)sialylated, alpha(1,3)fucosylated lactosaminoglycans represented by the sialyl Lewis x carbohydrate determinant.  相似文献   

2.
We and others have previously described the isolation of three human alpha (1,3)fucosyltransferase genes which form the basis of a nascent glycosyltransferase gene family. We now report the molecular cloning and expression of a fourth homologous human alpha (1,3)fucosyltransferase gene. When transfected into mammalian cells, this fucosyltransferase gene is capable of directing expression of the Lewis x (Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc), sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4 [Fuc alpha 1-->3]GlcNAc), and difucosyl sialyl Lewis x (NeuNAc alpha 2-->3Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc beta 1-->3 Gal beta 1-->4[Fuc alpha 1-->3]GlcNAc) epitopes. The enzyme shares 85% amino acid sequence identity with Fuc-TIII and 89% identity with Fuc-TV but differs substantially in its acceptor substrate requirements. Polymerase chain reaction analyses demonstrate that the gene is syntenic to Fuc-TIII and Fuc-TV on chromosome 19. Southern blot analyses of human genomic DNA demonstrate that these four alpha (1,3)fucosyltransferase genes account for all DNA sequences that cross-hybridize at low stringency with the Fuc-TIII catalytic domain. Using similar methods, a catalytic domain probe from Fuc-TIV identifies a new class of DNA fragments which do not cross-hybridize with the chromosome 19 fucosyltransferase probes. These results extend the molecular definition of a family of human alpha (1,3)fucosyltransferase genes and provide tools for examining fucosyltransferase gene expression.  相似文献   

3.
Six monoclonal antibodies with known specificities for the carbohydrate antigens i, X or Y, and seven anti-myeloid antibodies (determinants unknown) selected for their differing reaction patterns with human leucocytes were tested in chromatogram binding assays for reactions with myeloid cell glycolipids derived from normal human granulocytes and chronic myelogenous leukemia cells. Antigenicities were found exclusively on minor glycolipids which were barely or not at all detectable with orcinol-sulphuric acid stain. Among these, a neutral glycosphingolipid bound the anti-i antibody Den and chromatographed as the ceramide octasaccharide, Gal beta 1----4GlcNac beta 1----3Gal beta 1----4GlcNac beta 1----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1----4Glc-Cer. Several species of neutral glycosphingolipids with six to more than ten monosaccharides were detected which carry the X antigen and others the Y antigen: Gal beta 1----4(Fuc alpha 1----3)GlcNAc and Fuc alpha 1----2Gal beta 1----4(Fuc alpha 1----3)GlcNAc, respectively. In addition, three new types of carbohydrate specificities were detected among the myeloid cell glycolipids. Two were associated with neutral glycolipids: the first, recognised by anti-myeloid antibodies VIM-1 and VIM-10, was expressed on a distinct set of glycolipids with six or more monosaccharides, and the second, recognized by VIM-8, was expressed on glycolipids with more than ten monosaccharides. The third specificity, recognised by the anti-myeloid antibody VIM-2, was expressed on slow migrating sialoglycolipids with backbone structures of the poly-N-acetyllactosamine type that are susceptible to degradation with endo-beta-galactosidase. Thus, we conclude that the i and Y antigens occur among the glycolipids of normal myeloid and chronic myelogenous leukemia cells and that a high proportion of hybridoma antibodies raised against differentiation antigens of myeloid cells are directed at carbohydrate structures.  相似文献   

4.
Biosynthesis of the cancer-associated sialyl-Lea antigen   总被引:2,自引:0,他引:2  
A cancer-associated glycolipid antigen defined by monoclonal antibody 19-9 has the structure NeuAc alpha 2-3Gal Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc beta 1-Cer. We have (formula; see text) studied its biosynthesis by testing the capacity of a crude microsomal fraction of SW 1116 cells to catalyze the addition of fucosyl or sialyl residues from GDP-fucose or CMP-sialic acid to glycolipid or oligosaccharide precursors. When the tetrasaccharide NeuAc alpha 2-3Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc (LSTa) is incubated with GDP-[14C]fucose and SW 1116 microsomes, a 14C-labeled oligosaccharide is formed that can be separated from the incubation mixture on an affinity column containing antibody 19-9 bound to protein A-Sepharose. The product migrates slower than LSTa when analyzed by paper or thin-layer chromatography. After treatment with neuraminidase, it co-migrates with the pentasaccharide Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc (formula; see text) (LNF II) in both chromatographic systems. Similar experiments demonstrate that SW 1116 microsomes catalyze the addition of a sialyl residue to the tetrasaccharide Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4Glc to form LSTa. However, when LNF II is incubated with CMP-[14C]sialic acid and SW 1116 microsomes, no 19-9-active product is detected by affinity chromatography or by paper or thin-layer chromatography. Results using glycolipid precursors are consistent with these findings and also demonstrate the presence of the Lewis fucosyltransferase in SW 1116 cells. Thus, the biosynthesis of the sialyl-Lea antigen proceeds by addition of sialic acid to a type 1 precursor chain by a sialyltransferase, followed by addition of fucose by the Lewis fucosyltransferase.  相似文献   

5.
Coordinate expression of X and Y haptens during murine embryogenesis   总被引:3,自引:0,他引:3  
The X hapten (Gal beta 1----4[Fuc alpha 1----3]GlcNAc) may play an important role in the adhesion of blastomeres during compaction. Therefore, we have investigated more thoroughly developmental changes in the fucosylation of lactoseries carbohydrate chains and the enzymatic basis of these fucosylation changes using well-characterized monoclonal antibodies. The Y hapten (Fuc alpha 1----2Gal beta 1----4[Fuc alpha 1----3]GlcNAc) and polymeric X haptens were detected by fluorescence-activated flow cytometry on murine embryonal carcinoma cells. In paraffin sections of postimplantation mouse embryos, the Y hapten was detected in the embryonic ectoderm and visceral endoderm on Days 5.5-7.5; this pattern of antigen expression is identical to that previously reported for the X hapten (SSEA-1). Thus, the Gal:alpha 1----2 (H) and GlcNAc:alpha 1----3 (X) fucosyltransferases appear to be co-regulated during embryogenesis. Reciprocal changes in X and Y hapten expression were observed, however, during preimplantation development. Unlike the X hapten, the Y hapten is expressed maximally on 16-cell morulae and 32- to 64-cell blastocysts. Eight-cell embryos cultured to the blastocyst stage in vitro did not acquire the Y hapten, however, suggesting a role for the uterine environment in carbohydrate antigen expression. Homogenates of F9 embryonal carcinoma cells were found to possess a potent GlcNAc:alpha 1----3 fucosyltransferase activity, as well as a weaker Gal:alpha 1----2 fucosyltransferase activity, using paragloboside as a substrate. The results suggest that embryonic cell surface carbohydrate phenotypes represent a balance in the competition between glycosyltransferases for available substrates. Rapid changes in carbohydrate expression during development may reflect intermediate states of cellular commitment and determination that are critical for lineage formation and morphogenesis.  相似文献   

6.
The pathway for synthesis of three glycosphingolipids bearing a common sialyl-Lex determinant (NeuAc alpha 2----3Gal beta 1----4[Fuc alpha 1----3]GlcNac beta 1----R) from their type 2 lactoseries precursors has been studied using the 0.2% Triton X-100-soluble fraction from human lung carcinoma PC9 cells. Two enzymes were found to be required for their synthesis: (i) an alpha 1----3 fucosyltransferase, the properties of which have been characterized as being similar to the enzyme from human small cell lung carcinoma NCI-H69 cells (Holmes, E. H., Ostrander, G. K., and Hakomori, S. (1985) J. Biol. Chem. 260, 7619-7627); and (ii) an alpha 2----3 sialyltransferase that was efficiently solubilized by 0.2% Triton X-100 and required divalent metal ions and 0.3% Triton CF-54 for optimal activity at pH 5.9 in cacodylate buffer. Biosynthesis of the sialyl-Lex determinant was shown to proceed via sialylation of nLc6 and nLc4, followed by alpha 1----3 fucosylation at the penultimate GlcNAc residues, based on the following: (i) transfer of NeuAc by PC9 cell sialyltransferase was found only when the nonfucosylated acceptors nLc4 and nLc6 were added, and none of the glycolipids with Lex structure (III3FucnLc4; V3FucnLc6; III3V3Fuc2nLc6) were sialylated; and (ii) the PC9 cell fucosyltransferase was active with both neutral and ganglioside neolacto (type 2 chain) acceptors. Transfer of fucose to VI3NeuAcnLc6 yielded mono- and difucosyl derivatives, whereas only a monofucosyl derivative was obtained when VI6NeuAcnLc6 was the acceptor. This is most probably due to different conformations at the terminus of the two acceptor gangliosides. The fucosyltransferase was incapable of transferring fucose to sialyl 2----3 lactotetraosylceramide (IV3NeuAcLc4).  相似文献   

7.
The biosynthetic pathways for the difucosylated type 1 and 2 glycolipids, Leb and Y, respectively, were investigated in the gastric carcinoma cell line KATO III, using a novel chromatogram binding assay. The type of fucosylation obtained was deduced from the binding pattern of monoclonal antibodies specific for the biosynthesized glycolipid products using microsomal fractions as the source of enzyme, pure glycolipids and non-radioactive GDP-fucose as acceptor and donor substrates, respectively. The Leb glycolipid (Fuc alpha 1----2Gal beta 1----3GlcNAc(4----1 alpha Fuc) beta 1----3LacCer) was synthesized mainly via the blood group H, type 1, precursor (Fuc alpha 1----2Gal beta 1----3GlcNAc beta 1----3LacCer). However, the Lea glycolipid (Gal beta 1----3GlcNAc(4----1 alpha Fuc)beta 1----3LacCer) also served as a precursor for the alpha 1----2 fucosyltransferase, thus allowing conversion of Lea to Leb. This biosynthetic route represents either an "aberrant" specificity of the Fuc alpha 1----2 transferase associated with these gastric carcinoma cells and/or a new member of the alpha 1----2 fucosyltransferase family. The Y glycolipid (Fuc alpha 1----2Gal beta 1----4GlcNAc(3----1 alpha Fuc)beta 1----3LacCer) was synthesized exclusively via the classical pathway using the blood group H type 2 glycolipid (Fuc alpha 1----2Gal beta 1----4GlcNAc beta 1----3LacCer) as precursor. The X glycolipid (Gal beta 1----4GlcNAc(3----1 alpha Fuc)beta 1----3LacCer) did not serve as an acceptor substrate for the alpha 1----2 fucosyltransferase(s) present. The use of non-radioactive sugar-nucleotides as donor substrate, defined glycolipid precursors as acceptor substrates and of specific monoclonal anti-glycolipid antibodies for detection provides a rapid and highly specific assay for analyzing biosynthetic pathways of glycosyltransferases.  相似文献   

8.
Several mammalian alpha(1,3)fucosyltransferases (alpha[1,3]Fuc-T) that synthesize carbohydrates containing alpha(1,3)fucosylated lactosamine units have been identified. Although Chinese hamster ovary (CHO) cells do not express alpha(1,3)Fuc-T activity, the rare mutants LEC11 and LEC12, isolated after mutagenesis or DNA transfection, each express an alpha(1,3)Fuc-T that may be distinguished by several criteria. Two new CHO mutants possessing alpha(1,3)Fuc-T activity (LEC29 and LEC30) have now been isolated after treatment of a CHO cell population with 5-azacytidine (5-AzaC), ethylnitrosourea (ENU), or 5-AzaC followed by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Like LEC12, both mutants possess an N-ethylmaleimide-resistant alpha(1,3)Fuc-T activity that can utilize a variety of acceptors and both express the Lewis X (Lex) determinant (Gal beta[1,4](Fuc alpha[1,3])GlcNAc beta 1)) but not the sialyl alpha(2,3)Lex determinant on cell-surface carbohydrates. However, LEC29 and LEC30 may be distinguished from LEC11 and LEC12, as well as from each other, on the basis of their unique patterns of lectin resistance and their abilities to bind the VIM-2 monoclonal antibody that recognizes carbohydrates terminating in NeuNAc alpha(2,3)Gal beta(1,4)GlcNAc beta(1,3)Gal beta(1,4)(Fuc alpha[1,3])GlcNAc beta and also by the different in vitro substrate specificities and kinetic properties of their respective alpha(1,3)Fuc-T activities. The combined data provide good evidence that the LEC29 and LEC30 alpha(1,3)Fuc-Ts are novel transferases encoded by distinct gene products.  相似文献   

9.
A Thall  U Galili 《Biochemistry》1990,29(16):3959-3965
The study of the expression of Gal alpha 1----3Gal beta 1----4GlcNAc residues on mammalian glycoconjugates is of particular interest since as many as 1% of circulating IgG antibodies in man (the natural anti-Gal antibody) interact specifically with this carbohydrate residue. In recent studies, we have found that Gal alpha 1----3Gal beta 1----4GlcNAc residues are abundant on red cells and nucleated cells of nonprimate mammals, prosimians, and New World monkeys, but their expression is diminished in Old World monkeys, apes, and humans. In the present work, we have analyzed the expression of these residues on secreted mammalian glycoproteins. For this purpose, we have developed a radioimmunoassay (RIA) which enables the quantification of Gal alpha 1----3Gal beta 1----4GlcNAc residues on the secreted glycoproteins. Purified biotinylated anti-Gal was used as the antibody in the RIA, and bovine thyroglobulin enriched for Gal alpha 1----3Gal beta 1----4GlcNAc residues served as a solid-phase antigen. In this study, it is reported for the first time that the evolutionary pattern of Gal alpha 1----3Gal beta 1----4GlcNAc residue distribution in in vivo secreted glycoproteins is similar to that observed in membranes of cell lines and of red cells. Thyroglobulin, fibrinogen, or IgG molecules from nonprimate mammals and from New World monkeys express varying amounts of Gal alpha 1----3Gal beta 1----4GlcNAc residues ranging between 0.01 and 11 residues per molecule, whereas no such residues are present on any of these glycoproteins of human or Old World monkey origin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Granule membrane protein-140 (GMP-140) is an inducible receptor for myeloid leukocytes on activated platelets and endothelium. Like other selectins, GMP-140 recognizes specific oligosaccharide ligands. However, prior data on the nature of these ligands are contradictory. We investigated the structural features required for ligand interaction with GMP-140 using purified GMP-140, cells naturally expressing specific oligosaccharides, and cells expressing cloned glycosyltransferases. Like the related selectin endothelial leukocyte adhesion molecule-1 (ELAM-1), GMP-140 recognizes alpha(2-3)sialylated, alpha(1-3)fucosylated lactosaminoglycans on both myeloid and nonmyeloid cells, including the sequence Neu5Ac alpha 2-3Gal beta 1-4(Fuc alpha 1-3)GlcNac beta-R (sialyl Lewis x). Recognition requires sialic acid, because cells expressing large amounts of Lewis x, but not sialyl Lewis x, do not interact with GMP-140. Although sialyl Lewis x is expressed by both myeloid HL-60 cells and CHO cells transfected with an alpha 1-3/4 fucosyltransferase, GMP-140 binds with significantly higher affinity to HL-60 cells. Thus, the sialyl Lewis x tetrasaccharide may require additional structural modifications or specific presentations in order for leukocytes in flowing blood to interact rapidly and with high affinity to GMP-140 on activated platelets or endothelium.  相似文献   

11.
Fucosyl residues in the alpha 1----3 linkage to N-acetylglucosamine (Fuc alpha 1----3GlcNAc) on oligosaccharides of glycoproteins and glycolipids have been detected in certain human tumors and are developmentally expressed (reviewed in Foster, C. S., and Glick, M. C. (1988) Adv. Neuroblastoma Res. 2, 421-432). In order to understand control mechanisms for the biosynthesis of these fucosylated glycoconjugates, GDP-L-Fuc-N-acetyl-beta-D-glucosaminide alpha 1----3fucosyltransferase was purified from human neuroblastoma cells, CHP 134, utilizing either the immobilized oligosaccharide or disaccharide substrates. The enzyme, extracted from CHP 134 cells, was purified by DEAE- and SP-Sephadex chromatography and then by either immobilized substrate. alpha 1----3Fucosyltransferase was obtained in approximately 10% yield and was purified 45,000-fold from the cell extract. The kinetic properties of the enzyme showed an apparent KGDP-Fuc 43 microM, KGal beta 1----4GlcNAc 0.4 mM, KGal beta 1----4Glc 8.1 mM, and KFuc alpha 1----2Gal beta 1----4Glc 1.0 mM. Polyacrylamide gel electrophoresis of the affinity-purified enzyme showed two proteins which migrated, Mr = 45,000-40,000. The enzyme differed in substrate specificity, pH optimum, response to N-ethylmaleimide and ion requirements from the enzymes purified from human milk or serum. The inability of alpha 1----3fucosyltransferase to transfer to substrates containing NeuAc alpha 2----3 or alpha 2----6Gal is in contrast to the reports for the enzyme in other human tumors. This substrate specificity correlates with the oligosaccharide residues thus far defined on glycoproteins of CHP 134 cells since NeuAc and Fuc alpha 1----3GlcNAc have yet to be detected on the same oligosaccharide antenna. However, the enzyme transfers to Fuc alpha 1----2Gal beta 1----4GlcNAc/Glc with higher activity than the unfucosylated disaccharides, although neither alpha 1----2fucosyltransferase nor Fuc alpha 1----2 residues have been detected in CHP 134 cells. The different substrate specificities of alpha 1----3fucosyltransferase isolated from human tumors and normal sources leads to the suggestion that a family of alpha 1----3fucosyltransferases may exist and that they may be differentially expressed in human tumors.  相似文献   

12.
A UDP-Gal:Gal beta 1----4GlcNAc-R alpha 1----3- and a UDP-Gal:GlcNAc-R beta 1----4-galactosyltransferase have been purified 44,000- and 101,000-fold, respectively, from a Triton X-100 extract of calf thymus by affinity chromatography on UDP-hexanolamine-Sepharose and alpha-lactalbumin-Sepharose in a yield of 25-40%. Sodium dodecyl sulfate gel electrophoresis under reducing conditions revealed a major polypeptide species with a molecular weight of 40,000 and a minor form at Mr 42,000 for the alpha 1----3-galactosyltransferase and a major polypeptide with Mr 51,000 for the beta 1----4-galactosyltransferase. Analytical gel filtration on Sephadex G-100 yielded a monomeric form for each of the galactosyltransferases with Mr 43,000 and 59,000 respectively, in addition to peaks of activity at higher molecular weights. Isoelectric focussing of the alpha 1----3-galactosyltransferase revealed a significant charge heterogeneity with forms varying in pI values between 5.0 and 6.5. Acceptor specificity studies indicated that the purified alpha 1----3-galactosyltransferase was free from contaminating galactosyltransferase activities such as those involved in the synthesis of Gal beta 1----4GlcNAc-R and Gal beta 1----3GalNAc-R sequences, the blood group B determinant, the Pk antigen, trihexosylceramide, and ganglioside GM1. The alpha 1----3-galactosyltransferase appeared to be highly active with glycoproteins, oligosaccharides, and glycolipids having a terminal Gal beta 1----4GlcNAc beta 1----unit such as asialo-alpha 1-acid glycoprotein (Km = 1.25 mM), Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3Man beta 1----4GlcNAc (Km = 0.57 mM), and paragloboside. The action of the alpha 1----3-galactosyltransferase was found to be mutually exclusive with that of the NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase from bovine colostrum. In addition alpha 1----3-fucosylation of the N-acetylglucosamine residue in the preferred disaccharide acceptor structure completely blocked galactosylation of the alpha 1----3-galactosyltransferase.  相似文献   

13.
Starting from a tumor-associated synthetic MUC1-derived peptide MUC1a' and using a completely enzymatic approach for the synthesis of the core-2 sialyl Lewis X glycopart, the following glycopeptide was synthesized: AHGV[Neu5Ac(alpha2-3)Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc(beta1-6)[Gal(beta1-3)]GalNAc(alpha1-O)]TSAPDTR. First, polypeptide N-acetylgalactosaminyltransferase 3 was used to site-specifically glycosylate MUC1a' to give MUC1a'-GalNAc. Then, in a one-pot reaction employing beta-galactosidase and core-2 beta6-N-acetylglucosaminyltransferase the core-2 O-glycan structure was prepared. The core-2 structure was then sequentially galactosylated, sialylated, and fucosylated by making use of beta4-galactosyltransferase 1, alpha3-sialyltransferase 3, and alpha3-fucosyltransferase 3, respectively, resulting in the sialyl Lewis X glycopeptide. The overall yield of the final compound was 23% (3.2 mg, 1.4 micromol). During the synthesis three intermediate glycopeptides containing O-linked GalNAc, Gal(beta1-4)GlcNAc(beta1-6)[Gal(beta1-3)]GalNAc, and Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc(beta1-6)[Gal(beta1-3)]GalNAc, respectively, were isolated in mg quantities. All products were characterized by mass spectrometry and NMR spectroscopy.  相似文献   

14.
15.
The mechanism of expression of a series of glycolipid antigens carrying the Lex determinant structure, Gal beta 1----4[Fuc alpha 1----3]GlcNAc beta 1----, and characterized by oncofetal expression in fetal colon and colonic adenocarcinomas has been studied in human fetal and adult proximal colon tissue. Results presented from TLC immunostain analysis of neutral glycolipids isolated from normal adult colonic mucosa have indicated the presence of only barely detectable quantities of both an Lex-active glycolipid that co-migrated with III3V3Fuc2nLc6 and its precursor nLc6. These structures were found in large quantities in glycolipid fractions from human adenocarcinoma tumors and human small cell lung carcinoma NCI-H69 cells. In contrast, type 1 chain-based Lea antigen structures were found in both normal mucosa and adenocarcinomas. Analysis of gangliosides of normal colonic mucosa by TLC immunostain indicated the presence of a series of type 2 chain-based gangliosides; however, sialyl-Lex was not detected. The ability of normal colonic mucosa to synthesize type 2 chain core structures was demonstrated by the presence of a beta 1----4 galactosyltransferase activity with Lc3 as an acceptor in an amount equivalent to 60-65% of the total galactosyltransferase activity. An alpha 1----3 fucosyltransferase was also found to be expressed in significant quantity in adult colonic mucosa. Kinetic studies indicated that this is most probably the alpha 1----3/4 fucosyltransferase suggested to be a product of the Lewis gene (Le). Thus, although normal adult colonic mucosa contained the enzymes to synthesize Lex and sialyl-Lex structures, these antigens were not found. Tissue immunofluorescence studies indicated that type 2 chain precursors and the alpha 1----3/4 fucosyltransferase were found in different cell populations in adult proximal colonic mucosa. However, both type 2 chain core structures and their fucosylated derivatives were found to be associated with epithelial cells of fetal colon. These results indicate that oncofetal expression of Lex antigens in fetal colonic epithelium and in adenocarcinomas but not in normal adult mucosa is due to the retrogenetic expression of type 2 chain precursors which are not found in normal adult colonic epithelial cells.  相似文献   

16.
The asparagine-linked sugar chains of natural interferon-beta 1 secreted from human foreskin fibroblasts by poly I:poly C induction and of three recombinant human interferon-beta 1 produced by Chinese hamster ovary cells, mouse epithelial cells (C127), and human lung adenocarcinoma cells (PC8) were released quantitatively as oligosaccharides by hydrazinolysis followed by N-acetylation. After being reduced with either NaB3H4 or NaB2H4, their structures were comparatively analyzed. More than 80% of the sugar chains of natural interferon-beta 1 occur as biantennary complex-type sugar chains, approximately 10% of which contain N-acetyllactosamine repeating structure in their outer chain moieties. The remainders are 2,4- and 2,6-branched triantennary complex-type sugar chains. The sugar chains of the recombinant interferon-beta 1 derived from Chinese hamster ovary cells were very similar to those of its natural counterpart. In contrast, two other recombinant proteins contain quite different sugar chains. The protein derived from C127 cells contains complex-type sugar chains with the Gal alpha 1----3Gal beta 1----4GlcNAc group in their outer chain moieties. Their sialic acid residues occur solely as the Sia alpha 2----6Gal group, where Sia is sialic acid. In contrast, the sialic acid residues of other interferon-beta 1 occur as the Sia alpha 2----3Gal group only. A part of the sugar chains of the protein derived from PC8 cells contains bisecting N-acetylglucosamine residue in addition to the Gal alpha 1----3Gal beta 1----4GlcNAc group.  相似文献   

17.
A beta-N-Acetylglucosaminide alpha 1----3-fucosyltransferase was purified from human serum by ammonium sulfate precipitation, hydrophobic chromatography on phenyl-Sepharose, ion-exchange chromatography on sulfopropyl-Sepharose, affinity chromatography on GDP-hexanolamine-Sepharose, and finally high pressure liquid chromatography gel filtration. Gel filtration chromatography of the native enzyme revealed a Mr of 45,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified protein also appeared as a single molecular species of Mr 45,000. In contrast to the multisubunit beta-galactoside alpha 1----2-fucosyltransferases with an apparent Mr of 150,000, present in human serum, the native beta-N-acetylglucosaminide alpha 1----3-fucosyltransferase is a monomer with a Mr of 45,000. The enzyme is glycosylated, as revealed by wheat germ agglutinin binding properties. The alpha 1----3 linkage formed by the enzyme between alpha-L-fucose and the penultimate beta-N-acetylglucosamine by the purified enzyme was confirmed by 1H NMR homonuclear cross-irradiation analysis of the oligosaccharide product. The specificity of the purified enzyme is restricted to type 2 structures, as revealed by its reactivity with different substrates and from the Km values calculated from the initial rate data using various oligosaccharide acceptors. The enzyme has the ability to utilize the N-acetyl-beta-lactosamine determinant (Gal beta 1----4GlcNAc) and the sialylated (NeuAc alpha 2----3Gal beta 1----4GlcNAc) and fucosylated (Fuc alpha 1----2Gal beta 1----4GlcNAc) derivatives of N-acetyl-beta-lactosamine and thus is distinct from both the human Lewis gene-encoded enzyme and the alpha 1----3-fucosyltransferase of the myeloid cell type.  相似文献   

18.
Alkaline phosphatase purified from human placenta contains a single asparagine-linked sugar chain in one molecule. The sugar chain was quantitatively liberated as radioactive oligosaccharides from the polypeptide moiety by hydrazinolysis followed by N-acetylation and NaB3H4 reduction, and separated by paper electrophoresis into one neutral and two acidic fractions. By a combination of sequential exoglycosidase digestion and methylation analysis, the structures of oligosaccharides in the neutral fraction were confirmed to be as follows: Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc. The acidic oligosaccharide fractions were mixtures of mono- and disialyl derivatives of the neutral fraction. All the sialic acid residues of the sugar chains occur as the NeuAc alpha 2----3Gal group. In the case of monosialyl derivatives, the N-acetylneuraminic acid was exclusively linked to the Man alpha 1----3 arm.  相似文献   

19.
The alpha3 fucosyltransferase, FucT-VII, is one of the key glycosyltransferases involved in the biosynthesis of the sialyl Lewis X (sLex) antigen on human leukocytes. The sialyl Lewis X antigen (NeuAcalpha(2-3)Galbeta(1-4)[Fucalpha(1-3)]GlcNAc-R) is an essential component of the recruitment of leukocytes to sites of inflammation, mediating the primary interaction between circulating leukocytes and activated endothelium. In order to characterize the enzymatic properties of the leukocyte alpha3 fucosyltransferase FucT-VII, the enzyme has been expressed in Trichoplusia ni insect cells. The enzyme is capable of synthesizing both sLexand sialyl-dimeric-Lexstructures in vitro , from 3'-sialyl-lacNAc and VIM-2 structures, respectively, with only low levels of fucose transfer observed to neutral or 3'-sulfated acceptors. Studies using fucosylated NeuAcalpha(2-3)-(Galbeta(1- 4)GlcNAc)3-Me acceptors demonstrate that FucT-VII is able to synthesize both di-fucosylated and tri-fucosylated structures from mono- fucosylated precursors, but preferentially fucosylates the distal GlcNAc within a polylactosamine chain. Furthermore, the rate of fucosylation of the internal GlcNAc residues is reduced once fucose has been added to the distal GlcNAc. These results indicate that FucT-VII is capable of generating complex selectin ligands, in vitro , however the order of fucose addition to the lactosamine chain affects the rate of selectin ligand synthesis.   相似文献   

20.
The structures of the sugar chains present in two human monoclonal IgM molecules purified from the serum of a patient with Waldenstr?m's macroglobulinemia have been determined. The asparagine-linked sugar chains were liberated as oligosaccharides by hydrazinolysis and labeled by reduction with NaB3H4 after N-acetylation. Their structures were studied by serial lectin column chromatography and sequential exoglycosidase digestion in combination with methylation analysis. These two IgM's were shown to contain almost the same sugar chains. The sugar chains were a mixture of a series of high-mannose-type and biantennary complex-type oligosaccharides. The complex-type oligosaccharides contain Man alpha 1----6(+/- GlcNAc beta 1----4)(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(Fuc alpha 1----6)GlcNAc as their core and GlcNAc beta 1----, Gal beta 1----4GlcNAc beta 1---- and Neu5Ac alpha 2----6Gal beta 1----4GlcNAc beta 1---- groups in their outer chain moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号