首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We compared the field competitiveness of sterile codling moth, Cydia pomonella (L.), males mass-reared through diapause or standard production protocols and treated with either 150 or 250 Gy of gamma radiation. Evaluations were performed during spring and summer 2003 by using field release-recapture tests. Released males were recaptured using traps baited with synthetic pheromone or with virgin females. In addition, mating tables baited with virgin females were used in the summer to assess the mating competitiveness of the released moths. Field performance of released males was significantly improved by rearing through diapause and by lowering the dose of radiation used to treat the insects. These effects were observed during spring when evening temperatures were relatively cool and in summer when evening temperatures were high. These effects were observed regardless of the sampling method (i.e., capture in pheromone-baited traps, virgin female-baited traps, or in mating tables). There were significant interactions between larval rearing strategy and radiation dose with respect to day of recapture. The effect of rearing strategy on male performance was observed immediately after release, whereas the effect of dose of radiation was usually delayed by 2-3 d. In general, the best treatment for improving codling moth male field performance was a combination of rearing through diapause and using a low dose of radiation (150 Gy). The difference in performance when insects were treated with 150 or 250 Gy was greater when males had been reared using standard (nondiapause) rearing protocols, suggesting that diapause rearing may attenuate some of the negative effects of the higher doses of radiation.  相似文献   

2.
Mating competitiveness and pheromone trap catches of mass‐reared, male codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), from the Osoyoos, British Columbia, Canada, mass‐rearing facility operated by the Okanagan‐Kootenay Sterile Insect Release Board, were compared to wild males using mark–release–recapture field experiments in spring, summer, and autumn at Summerland, British Columbia. In spring, significantly more wild diapause males mated with tethered, wild females than did non‐irradiated (0 Gy) or irradiated (100 or 250 Gy) non‐diapause, mass‐reared males. A lower dose of radiation did not improve mating competitiveness, nor catches of mass‐reared males released in spring. Median mating time for wild males was approximately 45 min earlier than mass‐reared males with most wild males (70.5%) mating before sunset and mass‐reared males mating at or shortly after sunset in spring. Superior mating competitiveness of wild males in spring was mirrored by greater recapture rates in pheromone‐baited traps. In summer, mating competitiveness of mass‐reared moths improved relative to wild males and there was a significant inverse relationship between radiation dose (0, 100, and 250 Gy) and competitiveness of mass‐reared males. In autumn, untreated, wild males were significantly more responsive to pheromone traps than non‐diapausing mass‐reared males receiving 250 Gy of radiation. Mass‐reared males, subjected to diapause‐inducing conditions as larvae and emerged from diapause before this irradiation treatment, were recaptured significantly more often than similarly irradiated, non‐diapause, mass‐reared males, but not more than untreated, diapause wild males. We hypothesize that differences between wild and mass‐reared males in daily timing or speed of responses to natural or synthetic pheromone sources under montane weather patterns typical of spring in British Columbia may partially explain poor activity of sterile males, and low sterile : wild overflooding ratios during spring when measured using pheromone traps by the sterile insect release programme in British Columbia.  相似文献   

3.
Desirable behavioral attributes in mass-reared insects should include the ability to perform favorably under the various environmental conditions they encounter upon release in the field. Insect quality also may be influenced by storage conditions and storage duration before field release. We studied the effects of three different constant ambient temperatures (15, 20, and 25 degrees C) and different lengths of adult cold storage (0, 24, 48, and 72 h at 2 degrees C) on the locomotor activity of adult Cydia pomonella (L.) mass reared through diapause or standard production protocols. Mobility was assessed in actographs housed in a climate controlled chamber; tests lasted 24 h. We found that adult mobility was significantly higher for both males and females at 25 and 20 degrees C than at 15 degrees C. There were no significant differences in mobility in moths reared through diapause or nondiapaused production protocols. In addition, temporal analysis of the data revealed a significant shift in the diel patterns of activity for both genders when adults were tested at the three different temperatures. Moths exposed to the lower temperature shifted their activity pattern from evening to mid-afternoon, which may be an adaptive behavior to take advantage of the expected warmest period of the day. Diapaused adults were significantly less mobile when stored in the cold (24, 48, or 72 h of storage at 2 degrees C) than were diapaused adults that did not experience cold storage (0 h). However, length of time in cold storage did not significantly influence the mobility of adult codling moths reared through standard production protocols.  相似文献   

4.
Does the mating status or body size of a female parasitoid wasp affect her host size choice or propensity to burrow? In Spalangia endius, using smaller hosts appears to reduce a female's cost of parasitization but not her son's fitness. However, virgin females, which produce only sons, did not preferentially parasitize smaller hosts. Mated females also showed no host size preference. Mated females burrowed more than virgins in the presence of hosts, although not in their absence. Burrowing may reduce a mated female's harassment from males, and not burrowing may increase a virgin female's chance of mating because males avoid burrowing. Mating did not increase female longevity. Greater female size increased the offspring production of mated females burrowing for hosts but not in the absence of burrowing and not in virgin females. A female's size had no significant effect on whether her first drill attempt was on a large or a small host or on the duration of her successful drills.  相似文献   

5.
The radiation biology of two geographically isolated populations of the light brown apple moth [Epiphyas postvittana (Walker)] was studied in Australia and New Zealand as an initiation of a SIT/F1 sterility program. Pharate and < or = 2 d pre-emergence pupae were exposed to increasing radiation doses up to a maximum dose of 300 Gy. Fertility and other life history parameters were measured in emerging adults (parental) and their progeny (F1-F3 adults). Parental fecundity was significantly affected by increasing irradiation dose in pharate pupae only. For both populations, parental egg fertility declined with increasing radiation. This was most pronounced for the irradiated parental females whose fertility declined at a higher rate than of irradiated males. At 250 Gy, females < or = 2 d preemergence pupae produced few larvae and no adults at F1. No larvae hatched from 250 Gy-irradiated female pharate pupae. At 300 Gy, males still had residual fertility of 2-5.5%, with pharate pupae being the more radio-sensitive. Radiation-induced deleterious inherited effects in offspring from irradiated males were expressed as increased developmental time in F1 larvae, a reduction in percent F1 female survival, decreased adult emergence and increased cumulative mortality over subsequent generations. Males irradiated at > or = 150 Gy produced few but highly sterile offspring at F1 and mortality was > 99% by F2 egg.  相似文献   

6.
Stages of Metaseiulus occidentalis sensitive to photoperiod induction of diapause were determined by transferring various stadia into diapause-inducing conditions, and rearing them until adult females could be scored for reproductive condition. When eggs were transferred to 10 hr light at 19°C from 24 hr light at 25°C and the mites reared to adults, 92 per cent entered diapause. When larvae and all subsequent stages were kept under the inductive conditions, 62 per cent of adult females diapaused. Mites transferred as protonymphs into inductive conditions yielded only 10 per cent in diapause, and mites transferred as deutonymphs or newly emerged females did not enter diapause.However, adult females reared from eggs at 19°C under 12 hr light (which is near the critical photophase of 11·2 hr at 19°C) showed an unexpected sensitivity to photoperiod. Some newly emerged females oviposited upon transfer to an 8 hr photophase at 19°C. Some then stopped ovipositing and apparently entered diapause; these females resumed ovipositing after intervals ranging from 34 to 100 days. This was termed ‘switching’ into diapause. Some females reared under a 16 hr photophase at 19°C ‘switched’ also upon transfer as adults to shorter photophases—either 8 or 12 hr at 19°C. Thus, ‘switching’ may be due to transfer to shorter photophases. Promptness of mating vs delayed mating allowed ‘switching’ to be more easily detected.  相似文献   

7.
The recent success of the sterile insect technique (SIT) in eradicating Glossina austeni from Zanzibar has stimulated interest in applying this technology to control Glossina pallidipes. However, little is known about the mating behaviour of this species in relation to the development and implementation of an effective SIT programme. The effect of age on male and female receptivity to mating was evaluated together with copulation duration, sperm transfer and the growth of the accessory gland and follicle A in males and females, respectively. Females and males reached their optimal sexual receptivity 9–13 days after emergence. Mean copulation duration was 20–30 min for mature males and females. The growth of follicle A and the accessory gland (apical body) was a function of age of females and males, respectively. Ovulation was not observed in virgin females up to 15 days of age whereas mated females ovulated by day 9. Males aged 7–15 days were equally effective in inseminating. Cages of males and females of different ages were set up to monitor puparial production in relation to optimization of mass rearing. The results are discussed in relation to the development of an efficient mass rearing protocol for this species and an optimal release strategy for sterile males.  相似文献   

8.
Males of many insects eclose with their entire lifetime sperm supply and have to allocate their ejaculates at mating prudently. In polyandrous species, ejaculates of rival males overlap, creating sperm competition. Recent models suggest that males should increase their ejaculate expenditure when experiencing a high risk of sperm competition. Ejaculate expenditure is also predicted to vary in relation to sperm competition intensity. During high intensity, where several ejaculates compete for fertilization of the female''s eggs, ejaculate expenditure is expected to be reduced. This is because there are diminishing returns of providing more sperm. Additionally, sperm numbers will depend on males'' ability to assess female mating status. We investigate ejaculate allocation in the polyandrous small white butterfly Pieris rapae (Lepidoptera). Males have previously been found to ejaculate more sperm on their second mating when experiencing increased risk of sperm competition. Here we show that males also adjust the number of sperm ejaculated in relation to direct sperm competition. Mated males provide more sperm to females previously mated with mated males (i.e. when competing with many sperm) than to females previously mated to virgin males (competing with few sperm). Virgin males, on the other hand, do not adjust their ejaculate in relation to female mating history, but provide heavier females with more sperm. Although virgin males induce longer non-receptive periods in females than mated males, heavier females remate sooner. Virgin males may be responding to the higher risk of sperm competition by providing more sperm to heavier females. It is clear from this study that males are sensitive to factors affecting sperm competition risk, tailoring their ejaculates as predicted by recent theoretical models.  相似文献   

9.
Reunion Island suffers from high densities of the chikungunya and dengue vector Aedes albopictus. The sterile insect technique (SIT) offers a promising strategy for mosquito-borne diseases prevention and control. For such a strategy to be effective, sterile males need to be competitive enough to fulfil their intended function by reducing wild mosquito populations in natura. We studied the effect of irradiation on sexual maturation and mating success of males, and compared the sexual competitiveness of sterile versus wild males in the presence of wild females in semi-field conditions. For all untreated or sterile males, sexual maturation was completed within 13 to 20 h post-emergence and some males were able to inseminate females when 15 h old. In the absence of competition, untreated and sterile males were able to inseminate the same number of virgin females during 48 h, in small laboratory cages: an average of 93% of females was inseminated no matter the treatment, the age of males, and the sex ratio. Daily mating success of single sterile males followed the same pattern as for untreated ones, although they inseminated significantly fewer females after the ninth day. The competitiveness index of sterile males in semi-field conditions was only 0.14 when they were released at 1-day old, but improved to 0.53 when the release occurred after a 5-day period in laboratory conditions. In SIT simulation experiments, a 5∶1 sterile to wild male ratio allowed a two-fold reduction of the wild population’s fertility. This suggests that sterile males could be sufficiently competitive to mate with wild females within the framework of an SIT component as part of an AW-IPM programme for suppressing a wild population of Ae. albopictus in Reunion Island. It will be of interest to minimise the pre-release period in controlled conditions to ensure a good competitiveness without increasing mass rearing costs.  相似文献   

10.
The sterile insect technique (SIT) is widely used to suppress or eradicate target pest insect populations. Although the effectiveness of SIT depends on the ability of released sterile males to mate with and inseminate wild females, the use of gamma radiation to induce sterility negatively impacts reproductive cells as well as somatic cells. Consequently, sterilization by irradiation drastically diminishes mating performance over time. In the current study, we evaluated the effect of irradiation dose intensity on fertility, mating propensity, and mating competitiveness in sweetpotato weevil, Cylas formicarius elegantulus (Summers) (Coleoptera: Curculionidae), for 16 d after irradiation. Although the mating propensity of males irradiated with 200 Gy, the dose currently used to induce complete sterility of C. f. elegantulus in the SIT program in Okinawa Prefecture, was equal to that of nonirradiated weevils for the first 6 d, the mating propensity of males irradiated with doses between of 75 and 150 Gy was maintained for the first 12 d. The potential fertilization ability of weevils was highly depressed compared with the control weevils, even in those treated with 75 Gy. Mating performance was severely compromised in weevils that were irradiated with a dose of 100 Gy or more. These results demonstrate that partial sterilization can be highly advantageous in eradication programs for the sweetpotato weevil. We discuss the advantages of the application of partial irradiation in insect eradication programs.  相似文献   

11.
The sterile insect technique (SIT) is based on population and behavioral ecology and is widely used to suppress or eradicate target pest insect populations. The effectiveness of SIT depends on the ability of the released sterile males to mate with and inseminate wild females. The use of gamma‐radiation to induce sterility is, however, associated with negative impacts not only on reproductive cells but also on somatic cells. Consequently, irradiation for sterilization diminishes mating performance over time. In this study, we evaluated the balance between the irradiation dose and both fertility and mating propensity in Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) for 22 days following irradiation. The mating propensity of males irradiated with a 150‐Gy dose, as currently used to induce complete sterility of E. postfasciatus in the SIT program in Okinawa Prefecture, was equal to that of non‐irradiated weevils for up to 6 days, and the mating propensity of males irradiated with a dose of 125 Gy was equal to that of non‐irradiated weevils for twice this period (12 days). The fertilization ability of weevils irradiated with a dose of 125 Gy was reduced by 4.6% in males and 0.6% in females, compared to the potential fertilization ability. We also discuss the possibility of the application of partially sterilized insects in eradication programs.  相似文献   

12.
The cost of sexual interactions, usually expressed as a reduction of life-span, is a fundamental but poorly understood aspect of life. According to a widely accepted view, a rise in the “pro-aging” juvenile hormone (JH) might contribute to the decrease of life span caused by sexual interactions. We tested this hypothesis using the linden bug Pyrrhocoris apterus by removing the corpus allatum (CA), the source of JH. If JH is causally involved in the cost of sexual interactions, then the absence of CA (JH) should decrease the negative effect of sexual interactions on survival. As expected, ablating the CA significantly prolonged life-span of both virgin females and virgin males. Mated insects of both sexes lived significantly shorter than virgins. However, contrary to prediction, the decrease of life span by sexual interactions was similar in control and CA-ablated males, and was even enhanced in CA-ablated females. Another unexpected finding was that males paired with CA-ablated females lived almost as long as virgin males and significantly longer than did males paired with control females, although ablating the female CA did not cause any decrease in mating activity. On the other hand, females paired with CA-ablated males lived only slightly longer than did females paired with control males. These results highlight several important points. (1) In both genders, the negative effect of sexual interactions on insect's survival is not mediated by the insect's own CA. (2) The male CA has only minor effect on female survival, while (3) the female CA (JH) is principally responsible for the sex-induced reduction in the male survival.  相似文献   

13.
Abstract To understand the adaptive strategies of the overwintering adults of Stenocatantops splendens, the mechanism of maintenance and termination of the reproductive diapause, the variation in mortality between overwintering females and males, and the mating strategy of the males were investigated. The results indicated that the adult reproductive diapause in natural conditions was mainly regulated by photoperiod in the fall – long photoperiods promoted reproductive development and short photoperiods maintained reproductive diapause, and the sensitivity of the overwintering adults to photoperiod was over before the end of the winter. When transferred from natural conditions to controlled laboratory conditions on dates from September through February, pre‐oviposition became increasingly shorter with increasingly deferred transfer dates regardless of photoperiod conditions. The adults treated with low temperature for 30 days in September through November had significantly shorter pre‐oviposition, suggesting that low temperatures in winter had an important role in the termination of reproductive diapause. The female had a significantly lower supercooling point than the male, which was related to their lower mortality after winter. In addition, observations of wild populations of the species indicated that mating behavior prior to winter and the duration of pre‐mating period were not affected by photoperiod; mating and sperm transfer were mostly completed by November. Compared with females only mating before winter, females mating in the spring had shorter life span, longer pre‐oviposition, lower hatching rate and laid fewer egg pods while showing no significant difference with regard to ovipositional interval, per pod number of eggs and nymph dry weight.  相似文献   

14.
Rearing environment can have an impact on adult behavior, but it is less clear how rearing environment influences adult behavior plasticity. Here we explore the effect of rearing temperature on adult mating behavior plasticity in the butterfly Bicyclus anynana, a species that has evolved two seasonal forms in response to seasonal changes in temperature. These seasonal forms differ in both morphology and behavior. Females are the choosy sex in cohorts reared at warm temperatures (WS butterflies), and males are the choosy sex in cohorts reared at cooler temperatures (DS butterflies). Rearing temperature also influences mating benefits and costs. In DS butterflies, mated females live longer than virgin females, and mated males live shorter than virgin males. No such benefits or costs to mating are present in WS butterflies. Given that choosiness and mating costs are rearing temperature dependent in B. anynana, we hypothesized that temperature may also impact male and female incentives to remate in the event that benefits and costs of second matings are similar to those of first matings. We first examined whether lifespan was affected by number of matings. We found that two matings did not significantly increase lifespan for either WS or DS butterflies relative to single matings. However, both sexes of WS but not DS butterflies experienced decreased longevity when mated to a non-virgin relative to a virgin. We next observed pairs of WS and DS butterflies and documented changes in mating behavior in response to changes in the mating status of their partner. WS but not DS butterflies changed their mating behavior in response to the mating status of their partner. These results suggest that rearing temperature influences adult mating behavior plasticity in B. anynana. This developmentally controlled behavioral plasticity may be adaptive, as lifespan depends on the partner’s mating status in one seasonal form, but not in the other.  相似文献   

15.
The sterile insect technique (SIT) potentially provides a socially acceptable approach for insect eradication of new pest incursions. The light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), was discovered in Berkeley (CA, USA) in 2006, leading to an incursion response that included this technology. In this study, we assessed factors affecting mating success from a bisex release of irradiated moths: effects of radiation dose on male multiple mating, male flight competition, female sex pheromone titre and attractiveness of irradiated females to males, and identification of successful mating in vineyards of either irradiated or wild males (identified by isotope analysis of spermatophores from sentinel females). There was a significant negative relationship between male radiation dose and mating frequency. In head‐to‐head flights of irradiated males against non‐irradiated males to a pheromone lure in a wind tunnel, irradiated males reached the lure first only 31% of the time. With increasing radiation dose, the production of the major sex pheromone component in females, (E)‐11‐tetradecenyl acetate, dropped, from 0.7 ± 0.1 ng per female in non‐irradiated females to 0.2 ± 0.07 ng per female when irradiated at 300 Gy. Male catch was reduced to 11% of control females in traps containing females irradiated at 300 Gy. Isotope analysis of spermatophores found in the bursa copulatrix of females indicated that mating success of irradiated males inside the live (entry‐only) traps containing virgin females was lower (13.1 ± 3.3%) than suggested by male catch (21.2 ± 3.8%) in pheromone traps, the current standard for assessing field competitiveness. Impacts of irradiation on male and female moth fitness should be taken into account to improve estimates of irradiated to wild male E. postvittana overflooding ratios needed for population suppression.  相似文献   

16.
Abstract. 1. We report on the mating status of overwintering adults of the imported leaf beetle, Plagiodera versicolora Laicharting. This species overwinters as adults, under the bark of willow trees.
2. Individuals were collected both in the autumn, just after initiation of diapause, and in the spring, just before natural termination of diapause. From the autumn sample, we discovered that diapause can be terminated by husbanding the adults at 4°C for 4 weeks.
3. Most females lay fertile eggs upon the termination of diapause; however, a significant number of females lay non-fertile eggs after overwintering in the field.
4. Many females mate with more than one male before entering diapause. Progeny analysis using allozyme genetic markers shows that, on average, females who are fertile upon termination of diapause utilize sperm from 1.2 males to fertilize their eggs.  相似文献   

17.
Because mating entails both costs and potential benefits to both sexes, males and females should be under selection to make optimal choices from among available potential mates. For example, in some cases, individuals may benefit by using information on potential mates' previous sexual histories to make mate choices. In such cases, the form and direction of these benefits may vary both between the sexes and based on the sexual history of the choosing individuals themselves. We investigated the effects of recent previous sexual history on the mate choice and mating behavior of both males and females of the crayfish Orconectes limosus. In one experiment, we found that opposite‐sex dyads comprising crayfish that had both mated 7–8 d previously with other conspecifics were significantly less likely to mate than dyads in which at least one crayfish was unmated. In a second experiment, we found that, when presented with a choice of tethered (but free to move) opposite‐sex conspecifics, only virgin females discriminated between males based on sexual history, showing a preference for virgin males over recently mated males. Mated females, mated males, and virgin males showed no preferences based on the sexual histories of potential mates. We discuss the implications of these inferences in the context of what was previously known about mating behavior and potential sperm limitation in crustaceans and other taxa.  相似文献   

18.
Female mating history can have a strong effect on male fertilization success. Although males often prefer to mate with virgin females, they often also engage with mated females. As the intensity of sperm competition can differ among mated females, males are expected to evolve means to identify their status. In spiders, males often use female silk to gather information about female quality. Males of many spider species deposit mating plugs into female genitalia to hinder further copulations. We tested whether males of the foliage‐dwelling, plug‐producing spider Philodromus cespitum, which is an important natural enemy of pests, discriminate between females of different mating status and whether they can determine the extent of genital plugging in mated females solely on the basis of cues gained from deposited female silk. We presented males with draglines of females that varied in either mating status (virgin vs. mated), the extent of plugging (small vs. big plug), or the age of the plug (fresh vs. old plug) and examined their mate preferences. Additionally, we tested whether males were attracted to volatile cues produced by female bodies. Our experiments revealed that males preferred draglines of virgin females to those of mated females, and mated females with small plugs to those with large plugs. They were also attracted to female volatile cues. This study suggests that males are able to extract fine‐scale information on mating status from female draglines.  相似文献   

19.
Issues of male fertility must be addressed to support the development of a sterile insect technique (SIT) programme for the control of Aedes albopictus Skuse (Diptera: Culicidae) populations on Reunion Island in the Indian Ocean. The mating ability of a local strain of Ae. albopictus was tested using several batches of females and different cage sizes under laboratory conditions. Individual males were able to inseminate up to 14 females at an average of 9.5 females per male when exposed to 20 females over 7 days. Males filled between three and 27 spermathecal capsules at an average of 15.5 capsules per male. The average number of females inseminated per male was 5.3 when two virgin females were introduced to one male and replaced every day for 12 days, and 8.6 when 10 virgin females were introduced to one male and replaced every day for 14 days. A continuous decrease in the number of both inseminated females and filled spermathecal capsules was observed over time, until no mating occurred after 14 days. The high number of females inseminated by one male and the duration of male activity may have strong implications for SIT control of mosquitoes.  相似文献   

20.
Sterile insect technique (SIT) is used, among other biological control tools, as a sustainable measure for the management of Ceratitis capitata Wiedemann (Diptera: Tephritidae) in many agricultural regions where this pest can trigger severe economic impacts. The tendency of wild females to remate multiple times has been deeply studied; it has been a common point of controversy when evaluating SIT programmes. Nevertheless, the remating potential of the released sterile males remains unknown. Here, under laboratory conditions, the remating capability of mass-reared sterile males was determined. Wild-type virgin females were offered to sterile males (Vienna-8 strain), which had the opportunity to mate up to four consecutive times. The remating assays were carried out at 24 hr, 48 hr, 4 days and 7 days after the first mating. At the end of each tested time period, males were divided according to their mating response, mated or unmated, and subsequently reused for the next round of mating assays. The frequency of successful remating in each tested time period was obtained. Insemination was confirmed by determining the sperm transfer in mated female spermathecae by quantitative real-time PCR. Our results demonstrate that 73% of the mass-reared sterile males were able to remate 24 hr after the first mating, 55% of which remated again the day after. Close to 25% of the V8 sterile males tended to copulate in all of the four mating opportunities. The qPCR analysis of the spermathecae contents verified an effective transfer of V8 sperm to wild females with every mating; 99% of copulations resulted in sperm transfer. These findings shed light on the remating potential of V8 sterile males, an aspect until now underestimated in many SIT programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号