首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.  相似文献   

2.
The 50 to 70S RNA of the Harvey sarcoma-Moloney leukemia virus (MLV) complex consists of 30 to 40S RNA subunits of two different size classes and contains sequences homologous to Moloney mouse leukemia virus and to information contained in a C-type rat virus, termed NRK virus. We have isolated by preparative gel electrophoresis the large (component 1) and the small (component 2) 30 to 40S RNA species from the Harvey sarcoma-MLV complex. Harvey RNA component 1 was completely complementary to DNA transcribed from MLV RNA and showed no homology to DNA transcribed from NRK virus when annealed under conditions of DNA excess. Harvey RNA component 2 was about 65% complementary to MLV DNA and about 33% complementary to NRK virus DNA. Approximately 60 to 80% of the MLV-specific sequences in RNA component 2 is either a distinct molecular species or is part of a hydrid molecular including NRK virus- and MLV-specific sequences. The rest of the MLV sequences in component 2 could be accounted for by degraded component 1 co-purifying with component 2. The possible role of these sequences in the ability of the virus to transform cells is discussed.  相似文献   

3.
The initial step of virus-cell interaction was studied by immunofluorescence microscopy. Single particles of murine leukemia virus (MLV) vectors and human immunodeficiency virus (HIV) were visualized by immunofluorescence. Fluorescent dots representing single virions could be localized by staining of capsid proteins (CA) or surface envelope proteins (SU) after fixation of virus supernatants. This technique can be used to determine particle concentration in viral supernatants and also to study virus-cell interaction. We investigated the role of the Env-receptor interaction for the initial binding event between the cell and the viral particles. Ecotropic MLV vector particles were shown to bind to human cells which do not express the specific viral receptor. In addition, MLV particles defective for Env were shown to bind the cells similarly to infectious MLV. Time course experiments of virus-cell binding and dissociation showed identical profiles for infectious and Env-defective MLV particles and suggested that MLV Env is not involved in the early phases of attachment of virus to cells. The possible implication of cellular factors in enhancing viral binding and infectivity is discussed.  相似文献   

4.
5.
Complementary DNAs (cDNA's) specific for various regions of the Moloney murine sarcoma virus (MSV) 124 RNA genome were prepared by cross-hybridization techniques. A cDNA specific for the first 1,000 nucleotides adjacent to the RNA 3' end (cDNA 3') was prepared and shown to also be complementary to the 3'-terminal 1,000 nucleotides of a related Moloney murine leukemia virus (MLV) genome. A cDNA complementary to the "MSV-specific" portion of the MSV 124 genome was prepared. This cDNA was shown not to anneal to Moloney MLV RNA and to anneal to a portion of the viral RNA of about 1,500 to 1,800 nucleotides in length, located 1,000 nucleotides from the 3' end of MSV RNA. A cDNA common to the genome of MSV and MLV was also obtained and shown to anneal to the 5'-terminal two-thirds, as well as to the 3'-terminal 1,000 nucleotides, of the MSV RNA genome. This cDNA also annealed to the RNA from MLV and mainly to the 5'-terminal half of the MLV genome. It is concluded that the 6-kilobase Moloney MSV 124 RNA genome has a sequence arrangement that includes (i) a 3' portion of about 1,000 nucleotides, which is also present at the 3' terminus of MLV; (ii) an MSV-specific region, not shared with MLV, which extends between 1,000 and 2,500 nucleotides from the 3' terminus; and (iii) a second "common" region, again shared with MLV, which extends from 2,500 nucleotides to the 5' terminus. This second common region appears to be located in the 5' half of the 10-kilobase MLV genome as well. Experiments in which a large excess of cold MLV cDNA was annealed to (3)H-labeled polyadenylic acid-containing fragments of MSV RNA gave results consistent with this arrangement of the MSV genome.  相似文献   

6.
It has been documented that spleen necrosis virus (SNV) can package murine leukemia virus (MLV) RNA efficiently and propagate MLV vectors to the same titers as it propagates SNV-based vectors. Although the SNV packaging signal (E) and MLV packaging signal (Ψ) have little sequence homology, similar double-hairpin RNA structures were predicted and supported by experimental evidence. To test whether SNV RNA can be packaged by MLV proteins, we modified an SNV vector to be expressed in an MLV-based murine helper cell line. Surprisingly, we found that MLV proteins could not support the replication of SNV vectors. The decrease in titer was approximately 2,000- to 20,000-fold in one round of retroviral replication. RNA analysis revealed that SNV RNA was not efficiently packaged by MLV proteins. RNA hybridization of the cellular and viral RNAs indicated that SNV RNA was packaged at least 25-fold less efficiently than MLV RNA, which was the sensitivity limit of the hybridization assay. The contrast between the MLV and SNV packaging specificity is striking. SNV proteins can recognize both SNV E and MLV Ψ, but MLV can recognize only MLV Ψ. This is the first demonstration of two retroviruses with nonreciprocal packaging specificities.  相似文献   

7.
Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.  相似文献   

8.
Beasley BE  Hu WS 《Journal of virology》2002,76(10):4950-4960
Spleen necrosis virus (SNV) proteins can package RNA from distantly related murine leukemia virus (MLV), whereas MLV proteins cannot package SNV RNA efficiently. We used this nonreciprocal recognition to investigate regions of packaging signals that influence viral RNA encapsidation specificity. Although the MLV and SNV packaging signals (Psi and E, respectively) do not contain significant sequence homology, they both contain a pair of hairpins. This hairpin pair was previously proposed to be the core element in MLV Psi. In the present study, MLV-based vectors were generated to contain chimeric SNV/MLV packaging signals in which the hairpins were replaced with the heterologous counterpart. The interactions between these chimeras and MLV or SNV proteins were examined by virus replication and RNA analyses. SNV proteins recognized all of the chimeras, indicating that these chimeras were functional. We found that replacing the hairpin pair did not drastically alter the ability of MLV proteins to package these chimeras. These results indicate that, despite the important role of the hairpin pair in RNA packaging, it is not the major motif responsible for the ability of MLV proteins to discriminate between the MLV and SNV packaging signals. To determine the role of sequences flanking the hairpins in RNA packaging specificity, vectors with swapped flanking regions were generated and evaluated. SNV proteins packaged all of these chimeras efficiently. In contrast, MLV proteins strongly favored chimeras with the MLV 5'-flanking regions. These data indicated that MLV Gag recognizes multiple elements in the viral packaging signal, including the hairpin structure and flanking regions.  相似文献   

9.
Kirsten murine sarcoma-leukemia virus (Ki-MSV[MLV]) was found to contain less RNase H per unit of viral DNA polymerase than avian Rous sarcoma virus (RSV). Upon purification by chromatography on Sephadex G-200 and subsequent glycerol gradient sedimentation the avian DNA polymerase was obtained in association with a constant amount of RNase H. By contrast, equally purified DNA polymerase of Ki-MSV(MLV) and Moloney [Mo-MSV(MLV)] lacked detectable RNase H if assayed with two homopolymer and phage fd DNA-RNA hybrids as substrates. On the basis of picomoles of nucleotides turned over, the ratio of RNase H to purified avian DNA polymerase was 1:20 and that of RNase H to purified murine DNA polymerase ranged between <1:2,800 and 5,000. Based on the same activity with poly (A).oligo(dT) the activity of the murine DNA polymerase was 6 to 60 times lower than that of the avian enzyme with denatured salmon DNA template or with avian or murine viral RNA templates assayed under various conditions (native, heat-dissociated, with or without oligo(dT) and oligo(dC) and at different template enzyme ratios). The template activities of Ki-MSV(MLV) RNA and RSV RNA were enhanced uniformly by oligo(dT) but oligo(dC) was much less efficient in enhancing the activity of MSV(MLV) RNA than that of RSV RNA. It was concluded that the purified DNA polymerase of Ki-MSV(MLV) differs from that of Rous sarcoma virus in its lack of detectable RNase H and in its low capacity to transcribe viral RNA and denatured salmon DNA. Some aspects of these results are discussed.  相似文献   

10.
11.
Flynn JA  An W  King SR  Telesnitsky A 《Journal of virology》2004,78(22):12129-12139
Retroviral genomes consist of two unspliced RNAs linked noncovalently in a dimer. Although these two RNAs are generally identical, two different RNAs can be copackaged when virions are produced by coinfected cells. It has been assumed, but not tested, that copackaging results from random RNA associations in the cytoplasm to yield encapsidated RNA homodimers and heterodimers in Hardy-Weinberg proportions. Here, virion RNA homo- and heterodimerization were examined for Moloney murine leukemia virus (MLV) using nondenaturing Northern blotting and a novel RNA dimer capture assay. The results demonstrated that coexpressed MLV RNAs preferentially self-associated, even when RNAs were identical in known packaging and dimerization sequences or when they differed overall by less than 0.1%. In contrast, HIV-1 RNAs formed homo- and heterodimers in random proportions. We speculate that these species-specific differences in RNA dimer partner selection may at least partially explain the higher frequency of genetic recombination observed for human immunodeficiency virus type 1 than for MLV.  相似文献   

12.
13.
14.
15.
16.
Upon inoculation into AKR mice, mink cell focus-forming murine leukemia virus (MCF MLV) accelerates thymic lymphoma formation. During the preleukemic phase of disease, we observed the induction of apoptosis in thymic lymphocytes. A similar induction of apoptosis was observed for cultured mink epithelial cells after MCF13 MLV infection. In this study, the relevance of viral pathogenicity to cell killing was determined by testing the susceptibility of various cell types from different species to lymphomagenic MLVs. We observed that the cytopathic effect of lymphomagenic MLVs was restricted to mink cells. Southern blot analysis of MLV-infected cells revealed an accumulation of the linear form of unintegrated viral DNA, particularly in mink cells after MCF13 MLV infection. Thus, a strong correlation was observed between viral superinfection, which results in the accumulation of high levels of unintegrated viral DNA, and cell killing. Immunoblot analysis for MCF13 MLV-infected mink epithelial cells did not show a significant change in total p53 levels or its phosphorylated form at Ser-15 compared with that in mock-treated cells. Moreover, a time course analysis for mink epithelial cells infected with MCF13 MLV did not reveal mitochondrial depolarization or a significant change in Bax levels. These results demonstrate that MCF13 MLV induces apoptosis preferentially in cells in which superinfection occurs, and the mechanism involved is independent of p53 activation and mitochondrial damage.  相似文献   

17.
Retroviral recombinants result from template switching between copackaged viral genomes. Here, marker reassortment between coexpressed vectors was measured during single replication cycles, and human immunodeficiency virus type 1 (HIV-1) recombination was observed six- to sevenfold more frequently than murine leukemia virus (MLV) recombination. Template switching was also assayed by using transduction-type vectors in which donor and acceptor template regions were joined covalently. In this situation, where RNA copackaging could not vary, MLV and HIV-1 template switching rates were indistinguishable. These findings argue that MLV's lower intermolecular recombination frequency does not reflect enzymological differences. Instead, these data suggest that recombination rates differ because coexpressed MLV RNAs are less accessible to the recombination machinery than are coexpressed HIV RNAs. This hypothesis provides a plausible explanation for why most gammaretrovirus recombinants, although relatively rare, display evidence of multiple nonselected crossovers. By implying that recombinogenic template switching occurs roughly four times on average during the synthesis of every MLV or HIV-1 DNA, these results suggest that virtually all products of retroviral replication are biochemical recombinants.  相似文献   

18.
Nanua S  Yoshimura FK 《Journal of virology》2004,78(21):12071-12074
We previously demonstrated that mink cells undergo apoptosis after MCF13 murine leukemia virus (MLV) infection. In this study, we observed that virus-infected mink epithelial cells had significantly larger amounts of steady-state levels of MCF13 MLV envelope precursor protein (gPr80(env)) than did Mus dunni fibroblasts, which are resistant to virus-induced cytopathicity. Infection of mink cells with the noncytopathic NZB-9 MLV did not result in the accumulation of gPr80(env). MCF13 MLV infection of mink cells produced low cell surface expression of envelope glycoprotein and less efficient spread of infectious virus. Western blot analysis of mink epithelial cells infected with MCF13 MLV showed an increase in GRP78/BiP, which was not observed for either mink cells infected with NZB-9 MLV or M. dunni fibroblasts infected with MCF13 MLV. MCF13 MLV infection of mink cells also resulted in a significant upregulation of CHOP/GADD153. These results indicate that the accumulation of MCF13 MLV gPr80(env) triggers endoplasmic reticulum stress, which may mediate apoptosis in mink epithelial cells.  相似文献   

19.
Analysis of the Ribonucleic Acid of Murine Leukemia Virus   总被引:42,自引:28,他引:14       下载免费PDF全文
Cells producing the Rauscher strain of murine leukemia virus (MLV) were exposed to (3)H-uridine, and labeled virus was collected at hourly intervals. Ribonucleic acid (RNA) extracted from virions (vRNA) had a characteristic single peak when analyzed by electrophoresis in polyacrylamide-agarose composite gels. Exposure of vRNA to dimethyl sulfoxide, urea, formaldehyde, or heat altered the mobility to a faster moving form (vRNA'). This vRNA' sedimented more slowly than native vRNA in sucrose gradients. Incubation of labeled virions at 37 C resulted in fragmentation of viral RNA which was detectable only after denaturation. Also, large differences in the temperature required for the change from vRNA to vRNA' were seen with alterations in NaCl concentration. These experiments demonstrate that the vRNA of MLV is held in a specific conformation by hydrogen bonds distributed over a large part of the molecule. The possibility that an undefined factor is associated with viral RNA is discussed.  相似文献   

20.
ASSEMBLY AND AGGREGATION OF TOBACCO MOSAIC VIRUS IN TOMATO LEAFLETS   总被引:5,自引:5,他引:0       下载免费PDF全文
Cells of tomato leaflets (Lycopersicum esculentum Mill.) were studied by phase and electron microscopy at various intervals after inoculation with a common strain of tobacco mosaic virus (TMV). Forty-eight hours after inoculation, prior to the development of assayable virus, individual TMV particles, and also particle aggregates, were observed in the ground cytoplasm of mesophyll cells. The most rapid synthesis of virus occurred between 80 and 300 hours after inoculation. Cytological changes during this time were characterized by an increased number of individual particles in the cytoplasm, growth of some aggregates, distortion and vacuolation of chloroplasts, and formation of filaments in the cytoplasm which were approximately four times the size of TMV. These filaments were interpreted as possible developmental forms of the TMV particle. Vacuoles in chloroplasts commonly contained virus particles. Evidence indicated that TMV was assembled in the ground cytoplasm and, in some cases, subsequently was enveloped by distorted chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号